Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Cancer Prev ; 28(3): 77-92, 2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37830114

RESUMO

A category of diseases known as cancer includes abnormal cell development and the ability to infiltrate or spread to other regions of the body, making them a major cause of mortality worldwide. Chemotherapy, radiation, the use of cytotoxic medicines, and surgery are the mainstays of cancer treatment today. Plants or products produced from them hold promise as a source of anti-cancer medications that have fewer adverse effects. Due to the presence of numerous phytochemicals that have been isolated from various parts of the Hibiscus sabdariffa (HS) plant, including anthocyanin, flavonoids, saponins, tannins, polyphenols, organic acids, caffeic acids, citric acids, protocatechuic acid, and others, extracts of this plant have been reported to have anti-cancer effects. These compounds have been shown to reduce cancer cell proliferation, induce apoptosis, and cause cell cycle arrest. They also increase the expression levels of the cell cycle inhibitors (p53, p21, and p27) and the pro-apoptotic proteins (BAD, Bax, caspase 3, caspase 7, caspase 8, and caspase 9). This review highlights various intracellular signalling pathways involved in cancer preventive potential of HS.

2.
Immunology ; 164(1): 173-189, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33964011

RESUMO

Multiple pathogen-associated molecular patterns (PAMPs) on a pathogen's surface imply their simultaneous recognition by the host cell membrane-located multiple PAMP-specific Toll-like receptors (TLRs). The TLRs on endosomes recognize internalized pathogen-derived nucleic acids and trigger anti-pathogen immune responses aimed at eliminating the intracellular pathogen. Whether the TLRs influence each other's expression and effector responses-termed TLR interdependency-remains unknown. Herein, we first probed the existence of TLR interdependencies and next determined how targeting TLR interdependencies might determine the outcome of Leishmania infection. We observed that TLRs selectively altered expression of their own and of other TLRs revealing novel TLR interdependencies. Leishmania major-an intra-macrophage parasite inflicting the disease cutaneous leishmaniasis in 88 countries-altered this TLR interdependency unfolding a unique immune evasion mechanism. We targeted this TLR interdependency by selective silencing of rationally chosen TLRs and by stimulation with selective TLR ligands working out a novel phase-specific treatment regimen. Targeting the TLR interdependency elicited a host-protective anti-leishmanial immune response and reduced parasite burden. To test whether this observation could be used as a scientific rationale for treating a potentially fatal L. donovani infection, which causes visceral leishmaniasis, we targeted the inter-TLR dependency adopting the same treatment regimen. We observed reduced splenic Leishman-Donovan units accompanied by host-protective immune response in susceptible BALB/c mice. The TLR interdependency optimizes TLR-induced immune response by a novel immunoregulatory framework and scientifically rationalizes targeting TLRs in tandem and in sequence for redirecting immune responses against an intracellular pathogen.


Assuntos
Leishmania major/fisiologia , Leishmaniose Cutânea/imunologia , Macrófagos/imunologia , Receptores Toll-Like/metabolismo , Animais , Células Cultivadas , Modelos Animais de Doenças , Inativação Gênica , Interações Hospedeiro-Parasita , Humanos , Imunomodulação , Leishmaniose Cutânea/terapia , Camundongos , Camundongos Endogâmicos BALB C , Moléculas com Motivos Associados a Patógenos/imunologia , RNA Interferente Pequeno/genética , Receptor Cross-Talk , Transdução de Sinais , Receptores Toll-Like/genética
3.
Cytokine ; 145: 155304, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33004260

RESUMO

Parasites of the genus Leishmania cause the disease leishmaniasis. As the sandfly vector transfers the promastigotes into the skin of the human host, the infection is either cured or exacerbated. In the process, there emerge several unsolved paradoxes of leishmaniasis. Chronologically, as the infections starts in skin, the role of the salivary proteins in supporting the infection or the host response to these proteins influencing the induction of immunological memory becomes a conundrum. As the parasite invokes inflammation, the infiltrating neutrophils may act as "Trojan Horse" to transfer parasites to macrophages that, along with dendritic cells, carry the parasite to lymphoid organs to start visceralization. As the visceralized infection becomes chronic, the acutely enhanced monocytopoiesis takes a downturn while neutropenia and thrombocytopenia ensue with concomitant rise in splenic colony-forming-units. These responses are accompanied by splenic and hepatic granulomas, polyclonal activation of B cells and deviation of T cell responses. The granuloma formation is both a containment process and a form of immunopathogenesis. The heterogeneity in neutrophils and macrophages contribute to both cure and progression of the disease. The differentiation of T-helper subsets presents another paradox of visceral leishmaniasis, as the counteractive T cell subsets influence the curing or non-curing outcome. Once the parasites are killed by chemotherapy, in some patients the cured visceral disease recurs as a cutaneous manifestation post-kala azar dermal leishmaniasis (PKDL). As no experimental model exists, the natural history of PKDL remains almost a black box at the end of the visceral disease.


Assuntos
Leishmania/imunologia , Leishmaniose Cutânea/imunologia , Leishmaniose Visceral/imunologia , Animais , Linfócitos B/imunologia , Linfócitos B/parasitologia , Humanos , Leishmaniose Cutânea/parasitologia , Leishmaniose Visceral/parasitologia , Macrófagos/imunologia , Macrófagos/parasitologia , Pele/imunologia , Pele/parasitologia , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/parasitologia
4.
Scand J Immunol ; 92(6): e12952, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32748397

RESUMO

Toll-like receptors (TLRs), TLR2 in particular, are shown to recognize various glycans and glycolipid ligands resulting in various immune effector functions. As barley ß-glucan and zymosan are the glycans implicated in immunomodulation, we examined whether these ligands interact with Dectin-1, a lectin-type receptor for glycans, and TLR2 and induce immune responses that can be used against Leishmania infection in a susceptible host. The binding affinity of barley ß-glucan and zymosan with Dectin-1 and TLR2 was studied in silico. Barley ß-glucan- and zymosan-induced dectin-1 and TLR2 co-localization was studied by confocal microscopy and co-immunoprecipitation. These ligands-induced signalling and effector functions were assessed by Western blot analyses and various immunological assays. Finally, the anti-leishmanial potential of barley ß-glucan and zymosan was tested in Leishmania donovani -infected macrophages and in L. donovani-infected BALB/c mice. Both barley ß-glucan and zymosan interacted with TLR2 and dectin-1, but with a much stronger binding affinity for the latter, and therefore induced co-localization of these two receptors on BALB/c-derived macrophages. Both ligandsactivated MyD88- and Syk-mediated downstream pathways for heightened inflammatory responses in L. donovani-infected macrophages. These two ligands induced T cell-dependent host protection in L. donovani-infected BALB/c mice. These results establish a novel modus operandi of ß-glucans through dectin-1 and TLR2 and suggest an immuno-modulatory potential against infectious diseases.


Assuntos
Lectinas Tipo C/metabolismo , Leishmania donovani/fisiologia , Leishmaniose Visceral/imunologia , Macrófagos/imunologia , Receptor 2 Toll-Like/metabolismo , Zimosan/metabolismo , beta-Glucanas/metabolismo , Animais , Células Cultivadas , Hordeum , Humanos , Imunidade Inata , Camundongos , Camundongos Endogâmicos BALB C , Ligação Proteica , Transporte Proteico , Transdução de Sinais
5.
Arch Microbiol ; 201(4): 487-498, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30386884

RESUMO

Genomic instability resulting from oxidative stress responses may be traced to chromosomal aberration. Oxidative stress suggests an imbalance between the systemic manifestation of reactive free radicals and biological system's ability to repair resulting DNA damage and chromosomal aberration. Bacterial infection associated insult is considered as one of the major factors leading to such stress conditions. To study free radical responses by host cells, RAW 264.7 macrophages were infected with non-pathogenic M. smegmatis mc2155 at different time points. The infection process was followed up with an assessment of free radical stress, cytokine, toll-like receptors (TLRs) and the resulting DNA damage profiles. Results of CFU count showed that maximum infection in macrophages was achieved after 9 h of infection. Host responses to the infection across different time periods were validated from nitric oxide quantification and expression of iNOS and were plotted at regular intervals. IL-10 and TNF-α expression profile at protein and mRNA level showed a heightened pro-inflammatory response by host macrophages to combat M. smegmatis infection. The expression of TLR4, a receptor for recognition of mycobacteria, in infected macrophages reached the highest level at 9 h of infection. Furthermore, comet tail length, micronuclei and γ-H2AX foci recorded the highest level at 9 h of infection, pointing to the fact that breakage in DNA double strands in macrophage reaches its peak at 9 h of infection. In contrast, treatment with ROS inhibitor N-acetyl-L-cysteine (NAC) prevented host cell death through reduction in oxidative stress and DNA damage response during M. smegmatis infection. Therefore, it can be concluded that enhanced oxidative stress response in M. smegmatis infected macrophages might be correlated with DNA damage response.


Assuntos
Dano ao DNA , Macrófagos/microbiologia , Mycobacterium smegmatis/fisiologia , Estresse Oxidativo , Animais , Citocinas/genética , Citocinas/metabolismo , Radicais Livres/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Células RAW 264.7 , Receptor 4 Toll-Like/metabolismo
6.
Int J Antimicrob Agents ; 50(4): 512-522, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28669838

RESUMO

Visceral leishmaniasis (VL) is one of the most severe forms of leishmaniasis, caused by the protozoan parasite Leishmania donovani. Nowadays there is a growing interest in the therapeutic use of natural products to treat parasitic diseases. Sterculia villosa is an ethnomedicinally important plant. A triterpenoid was isolated from this plant and was screened for its antileishmanial and immunomodulatory activities in vitro and in vivo. Biochemical colour test and spectroscopic data confirmed that the isolated pure compound was lupeol. Lupeol exhibited significant antileishmanial activity, with IC50 values of 65 ± 0.41 µg/mL and 15 ± 0.45 µg/mL against promastigote and amastigote forms, respectively. Lupeol caused maximum cytoplasmic membrane damage of L. donovani promastigote at its IC50 dose. It is well known that during infection the Leishmania parasite exerts its pathogenicity in the host by suppressing nitric oxide (NO) production and inhibiting pro-inflammatory responses. It was observed that lupeol induces NO generation in L. donovani-infected macrophages, followed by upregulation of pro-inflammatory cytokines and downregulation of anti-inflammatory cytokines. Lupeol was also found to reduce the hepatic and splenic parasite burden through upregulation of the pro-inflammatory response in L. donovani-infected BALB/c mice. Strong binding affinity of lupeol was observed for four major potential drug targets, namely pteridine reductase 1, adenine phosphoribosyltransferase, lipophosphoglycan biosynthetic protein and glycoprotein 63 of L. donovani, which also supported its antileishmanial and immunomodulatory activities. Therefore, the present study highlights the antileishmanial and immunomodulatory activities of lupeol in an in vitro and in vivo model of VL.


Assuntos
Antiprotozoários/farmacologia , Leishmania donovani/efeitos dos fármacos , Leishmaniose Visceral/tratamento farmacológico , Triterpenos Pentacíclicos/farmacologia , Sterculia/química , Animais , Membrana Celular/efeitos dos fármacos , Citocinas/imunologia , Imunomodulação/efeitos dos fármacos , Leishmaniose Visceral/parasitologia , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Simulação de Acoplamento Molecular , Óxido Nítrico/biossíntese , Testes de Sensibilidade Parasitária , Extratos Vegetais/farmacologia , Células Th1/imunologia , Células Th2/imunologia
7.
Chem Biodivers ; 14(10)2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28686323

RESUMO

In the context of ethno botanical importance with no phytochemical investigations, Mussaenda roxburghii have been investigated to explore it's phytoconstituents and studies of their antibiofilm activity. Four compounds have been isolated from the aerial parts of this plant and were characterized as 2α,3ß,19α,23-tetrahydroxyurs-12-en-28-oic acid (1), ß-sitosterol glucoside (4), lupeol palmitate (5), and myoinositol (6). All these compounds were tested for antibacterial and antibiofilm activity against Pseudomonas aeruginosa. Compound 1 exhibited three times more antibiofilm activity with minimum inhibitory concentration (MIC) at 0.74 mm compared to that of streptomycin. Molecular docking studies exhibited a very high binding affinity of 1 with P. aeruginosa quorum sensing proteins and motility associated proteins viz. LasR and PilB, PilY1, PilT, respectively. Compound 1 was also found to be non-cytotoxic against sheep RBC and murine peritoneal macrophages at selected sub-MIC doses.


Assuntos
Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Extratos Vegetais/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Rubiaceae/química , Animais , Antibacterianos/química , Antibacterianos/isolamento & purificação , Relação Dose-Resposta a Droga , Eritrócitos , Macrófagos , Camundongos , Testes de Sensibilidade Microbiana , Conformação Molecular , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Ovinos , Relação Estrutura-Atividade
8.
Inflamm Res ; 66(2): 119-128, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27653961

RESUMO

INTRODUCTION: Chronic inflammation can affect the normal cell homeostasis and metabolism by rendering the cells susceptible to genomic instability that may lead to uncontrolled cellular growth and proliferation ensuing tumorigenesis. The causal agents for inflammation may be pathogenic infections like microbial agents ranging from viruses to bacteria. These infections lead to DNA damage or disruption of normal cell metabolism and alter the genome integrity. FINDINGS: In this review, we have highlighted the role of recurrent infections in tumor microenvironment can lead to recruitment of pro-inflammatory cells, cytokines and growth factors to the site of inflammation. This makes the environment rich in cytokines, chemokines, DNA-damaging agents (ROS, RNS) and growth factors which activate DNA damage response pathway and help in sustained proliferation of the tumor cells. In any inflammatory response, the production of cytokines and related signaling molecules is self-regulating and limiting. But in case of neoplastic risk, deregulation of these factors may lead to abnormalities and related pathogenesis. CONCLUSION: The scope of the present review is to explore the probable mechanistic link and factors responsible for chronic inflammation. The relation between chronic inflammation and DNA damage response was further elucidated to understand the mechanism by which it makes the cells susceptible to carcinogenesis.


Assuntos
Inflamação/imunologia , Neoplasias/imunologia , Microambiente Tumoral/imunologia , Animais , Dano ao DNA , Instabilidade Genômica , Humanos , Infecções/imunologia , Estresse Oxidativo
9.
Sci Rep ; 6: 23347, 2016 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-27000525

RESUMO

Microbial biofilm are communities of surface-adhered cells enclosed in a matrix of extracellular polymeric substances. Extensive use of antibiotics to treat biofilm associated infections has led to the emergence of multiple drug resistant strains. Pseudomonas aeruginosa is recognised as a model biofilm forming pathogenic bacterium. Vitexin, a polyphenolic group of phytochemical with antimicrobial property, has been studied for its antibiofilm potential against Pseudomonas aeruginosa in combination with azithromycin and gentamicin. Vitexin shows minimum inhibitory concentration (MIC) at 260 µg/ml. It's antibiofilm activity was evaluated by safranin staining, protein extraction, microscopy methods, quantification of EPS and in vivo models using several sub-MIC doses. Various quorum sensing (QS) mediated phenomenon such as swarming motility, azocasein degrading protease activity, pyoverdin and pyocyanin production, LasA and LasB activity of the bacteria were also evaluated. Results showed marked attenuation in biofilm formation and QS mediated phenotype of Pseudomonas aeruginosa in presence of 110 µg/ml vitexin in combination with azithromycin and gentamicin separately. Molecular docking of vitexin with QS associated LuxR, LasA, LasI and motility related proteins showed high and reasonable binding affinity respectively. The study explores the antibiofilm potential of vitexin against P. aeruginosa which can be used as a new antibiofilm agent against microbial biofilm associated pathogenesis.


Assuntos
Antibacterianos/farmacologia , Apigenina/farmacologia , Azitromicina/farmacologia , Biofilmes , Gentamicinas/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Animais , Camundongos , Testes de Sensibilidade Microbiana , Pseudomonas aeruginosa/metabolismo , Percepção de Quorum
10.
Arch Microbiol ; 198(1): 1-15, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26377585

RESUMO

Biofilms contain group(s) of microorganisms that are found to be associated with the biotic and abiotic surfaces. Biofilms contain either homogenous or heterogeneous populations of bacteria which remain in the matrix made up of extracellular polymeric substances secreted by constituent population of the biofilm. Biofilms can be either single or multilayered. Biofilms are an increasing issue of concern that is gaining importance with each passing day. Due to the ubiquitous nature of biofilms, it is difficult to eradicate them. It has been seen that many infectious diseases harbour biofilms of bacterial pathogens as the reservoir of persisting infections which can prove fatal at times. The presence of biofilms can be seen in diseases like endocarditis, cystic fibrosis, periodontitis, rhinosinusitis and osteomyelitis. The presence of biofilms has been mostly seen in medical implants and urinary catheters. Various signalling events including two-component signalling, extra cytoplasmic function and quorum sensing are involved in the formation of biofilms. The presence of an extracellular polymeric matrix in biofilms makes it difficult for the antimicrobials to act on them and make the bacteria tolerant to antibiotics and other drugs. The aim of this review was to discuss about the basic formation of a biofilm, various signalling cascades involved in biofilm formation, possible mechanisms of drug resistance in biofilms and recent therapeutic approaches involved in successful eradication of biofilms.


Assuntos
Infecções Bacterianas/prevenção & controle , Fenômenos Fisiológicos Bacterianos , Biofilmes , Bactérias/patogenicidade , Farmacorresistência Bacteriana/fisiologia , Humanos , Percepção de Quorum , Transdução de Sinais
11.
Environ Sci Pollut Res Int ; 23(5): 3984-99, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25758420

RESUMO

Siderophores are small organic molecules produced by microorganisms under iron-limiting conditions which enhance the uptake of iron to the microorganisms. In environment, the ferric form of iron is insoluble and inaccessible at physiological pH (7.35-7.40). Under this condition, microorganisms synthesize siderophores which have high affinity for ferric iron. These ferric iron-siderophore complexes are then transported to cytosol. In cytosol, the ferric iron gets reduced into ferrous iron and becomes accessible to microorganism. In recent times, siderophores have drawn much attention due to its potential roles in different fields. Siderophores have application in microbial ecology to enhance the growth of several unculturable microorganisms and can alter the microbial communities. In the field of agriculture, different types of siderophores promote the growth of several plant species and increase their yield by enhancing the Fe uptake to plants. Siderophores acts as a potential biocontrol agent against harmful phyto-pathogens and holds the ability to substitute hazardous pesticides. Heavy-metal-contaminated samples can be detoxified by applying siderophores, which explicate its role in bioremediation. Siderophores can detect the iron content in different environments, exhibiting its role as a biosensor. In the medical field, siderophore uses the "Trojan horse strategy" to form complexes with antibiotics and helps in the selective delivery of antibiotics to the antibiotic-resistant bacteria. Certain iron overload diseases for example sickle cell anemia can be treated with the help of siderophores. Other medical applications of siderophores include antimalarial activity, removal of transuranic elements from the body, and anticancer activity. The aim of this review is to discuss the important roles and applications of siderophores in different sectors including ecology, agriculture, bioremediation, biosensor, and medicine.


Assuntos
Bactérias/metabolismo , Ferro/metabolismo , Sideróforos/metabolismo , Sideróforos/farmacologia , Antimaláricos/metabolismo , Antimaláricos/farmacologia , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Bactérias/crescimento & desenvolvimento , Transporte Biológico , Técnicas Biossensoriais , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/metabolismo , Portadores de Fármacos/metabolismo , Portadores de Fármacos/farmacologia , Ecologia , Humanos , Quelantes de Ferro/metabolismo , Quelantes de Ferro/farmacologia
12.
Nanoscale Res Lett ; 10(1): 371, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26400834

RESUMO

The fisheries and livestock sectors capture the highest share of protein-rich animal food and demonstrate accelerated growth as an agriculture subsidiary. Environmental pollution, climate change, as well as pathogenic invasions exert increasing stress impacts that lead the productivity momentum at a crossroads. Oxidative stress is the most common form of stress phenomenon responsible for the retardation of productivity in fisheries and livestock. Essential micronutrients play a determinant role in combating oxidative stress. Selenium, one of the essential micronutrients, appears as a potent antioxidant with reduced toxicity in its nanoscale form. In the present review, different methods of synthesis and characterization of nanoscale selenium have been discussed. The functional characterization of nano-selenium in terms of its effect on growth patterns, feed digestibility, and reproductive system has been discussed to elucidate the mechanism of action. Moreover, its anti-carcinogenic and antioxidant potentiality, antimicrobial and immunomodulatory efficacy, and fatty acid reduction in liver have been deciphered as the new phenomena of nano-selenium application. Biologically synthesized nano-selenium raises hope for pharmacologically enriched, naturally stable nanoscale selenium with high ecological viability. Hence, nano-selenium can be administered with commercial feeds for improvising stress resilience and productivity of fish and livestock.

13.
Eur J Med Chem ; 87: 328-35, 2014 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-25264585

RESUMO

One new flavonol methyl ether (1), along with four known compounds from the leaves of methanol extract of Vitex peduncularis Wall and three known compounds from the leaves of methanol extract of Vitex pinnata Linn (Verbenaceae) were isolated. The chemical structure of the new compound was established by detailed spectroscopic studies. The in vitro antileishmanial activities of 1 against both Leishmania donovani promastigote and amastigote forms were evaluated. To characterize the effector mechanism of compound 1 against Leishmania parasite infected THP-1 macrophage cells, RT-PCR analysis of inducible nitric oxide synthase 2 (iNOS2) was done followed by measurement of nitric oxide generation by Griess reaction. Pentostam (sodium antimonygluconate) was used as reference drug. Compound 1 exhibited better antileishmanial activity than sodium antimonygluconate (SAG) (having IC50 values for promastigote, 2.4 and 58.5 µM and for amastigotes, 0.93 and 36.2 µM, respectively). Compound 1 was less toxic than SAG towards THP-1 having CC50 of 123.7 µM and 364.3 µM, respectively. Moreover, compound 1 was found to induce a potent host-protective response by enhancing NO generation and iNOS2 expression in infected macrophages to prevent the progression of Leishmania parasite.


Assuntos
Flavonóis/química , Flavonóis/farmacologia , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Leishmania donovani/efeitos dos fármacos , Óxido Nítrico Sintase Tipo II/genética , Folhas de Planta/química , Vitex/química , Linhagem Celular , Humanos , Espaço Intracelular/efeitos dos fármacos , Espaço Intracelular/parasitologia , Leishmania donovani/citologia , Leishmania donovani/fisiologia , Macrófagos/efeitos dos fármacos , Macrófagos/parasitologia , Éteres Metílicos/química , Nitritos/metabolismo
14.
Indian J Exp Biol ; 52(1): 17-29, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24617012

RESUMO

In experimental visceral leishmaniasis the causative obligate protozoan parasite, L. donovani invades and multiplies inside of macrophages, one of the sentries of the mammalian immune system. The initial host-parasite interaction between the Leishmania promastigote and the macrophage takes place at the plasma membrane interface. To trace any possible interaction between Toll-like receptor 2 (TLR2) and CC chemokine receptor 5 (CCR5) during early Leishmania-macrophage interactions, it was observed that the expression of both TLR2 and CCR5 were significantly increased, along with their recruitment to the lipid raft. TLR2 silencing attenuates CCR5 expression and restricts L. donovani infection, indicating a regulatory role of TLR2 and CCR5 during infection. Silencing of CCR5 and TLR2 markedly reduced the number of intracellular parasites in macrophages by host protective cytokine responses, while raft disruption using beta-MCD affected TLR2/CCR5 cross-talk and resulted in a significant reduction in parasite invasion. In vivo RNA interference of TLR2 and CCR5 using shRNA plasmids rendered protection in Leishmania donovani-infected mice. Thus, this study for the first time demonstrates the importance of TLR2/CCR5 crosstalk as a significant determinant of Leishmania donovani entry in host macrophages.


Assuntos
Infecções/metabolismo , Leishmaniose Visceral/metabolismo , Receptores CCR5/metabolismo , Receptor 2 Toll-Like/metabolismo , Animais , Interações Hospedeiro-Parasita , Humanos , Infecções/parasitologia , Leishmania donovani/metabolismo , Leishmania donovani/patogenicidade , Leishmaniose Visceral/parasitologia , Macrófagos/metabolismo , Microdomínios da Membrana , Camundongos
15.
Food Funct ; 4(6): 889-98, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23644882

RESUMO

Consumption of a high-fat diet (HFD) promotes reactive oxygen species (ROS) which ultimately trigger inflammation. The aim of this study was to investigate the role of Moringa oleifera leaf extract (MoLE) and its active component quercetin in preventing NF-κB-mediated inflammation raised by short-term HFD. Quercetin was found to be one of the major flavonoid components from HPLC of MoLE. Swiss mice were fed for 15 days on HFD, both with or without MoLE/quercetin. The antioxidant profile was estimated from liver homogenate. NF-κB and some relevant inflammatory markers were evaluated by immunoblotting, RT-PCR and ELISA. Significantly (P < 0.05) lower antioxidant profile and higher lipid peroxidation was found in HFD group compared to control (P < 0.05). Increased nuclear import of NF-κB and elevated expressions of pro-inflammatory markers were further manifestations in the HFD group. All these changes were reversed in the MoLE/quercetin-treated groups with significant improvement of antioxidant activity compared to the HFD group. MoLE was found to be rich in polyphenols and both MoLE and quercetin showed potent free radical and hydroxyl radical quenching activity. Thus, the present study concluded that short-term treatment with MoLE and its constituent quercetin prevent HFD-mediated inflammation in mice.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Inflamação/tratamento farmacológico , Moringa oleifera/química , Extratos Vegetais/administração & dosagem , Quercetina/administração & dosagem , Animais , Humanos , Inflamação/etiologia , Inflamação/genética , Inflamação/imunologia , Fígado/imunologia , Masculino , Camundongos , NF-kappa B/genética , NF-kappa B/imunologia
16.
PLoS One ; 7(7): e40265, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22792256

RESUMO

Leishmania donovani, a protozoan parasite, causes a strong immunosuppression in a susceptible host and inflicts the fatal disease visceral leishmaniasis. Relatively high toxicity, low therapeutic index, and failure in reinstating host-protective anti-leishmanial immune responses have made anti-leishmanial drugs patient non-compliant and an immuno-modulatory treatment a necessity. Therefore, we have tested the anti-leishmanial efficacy of a combination of a novel immunomodulator, Mycobacterium indicus pranii (Mw), and an anti-leishmanial drug, Amphotericin B (AmpB). We observe that Mw alone or with a suboptimal dose of AmpB offers significant protection against L. donovani infection by activating the macrophages. Our experiments examining the anti-leishmanial activity of Mw alone or with AmpB also indicate a p38MAPK and ERK-1/2 regulated pro-inflammatory responses. The Mw-AmpB combination induced nitric oxide production, restored Th1 response, and significantly reduced parasite burden in wild type macrophages but not in IL-12-deficient macrophages indicating a pivotal role for IL-12 in the induction of host-protection by Mw and AmpB treatments. In addition, we observed that Mw alone or in combination with suboptimal dose of AmpB render protection against L. donovani infection in susceptible BALB/c mice. However, these treatments failed to render protection in IL-12-deficient mice in vivo which added further support that IL-12 played a central role in this chemo immunotherapeutic approach. Thus, we demonstrate a novel chemo-immunotherapeutic approach- Mw and AmpB crosstalk eliminating the parasite-induced immunosuppression and inducing collateral host-protective effects.


Assuntos
Interleucina-12/fisiologia , Leishmania donovani/imunologia , Leishmaniose Visceral/imunologia , Macrófagos/parasitologia , Micobactérias não Tuberculosas/imunologia , Anfotericina B/farmacologia , Anfotericina B/uso terapêutico , Animais , Antiprotozoários/farmacologia , Antiprotozoários/uso terapêutico , Células Cultivadas , Citocinas/metabolismo , Citocinas/fisiologia , Imunoterapia , Interleucina-12/metabolismo , Leishmaniose Visceral/parasitologia , Leishmaniose Visceral/terapia , Fígado/parasitologia , Sistema de Sinalização das MAP Quinases , Ativação de Macrófagos , Macrófagos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Óxido Nítrico/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Baço/parasitologia , Células Th1/imunologia , Células Th1/metabolismo
17.
J Antimicrob Chemother ; 67(8): 1905-14, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22589456

RESUMO

OBJECTIVES: The aim of the present study was to characterize glycyrrhizic acid (GA) and assess its immunomodulatory potential in a model of experimental visceral leishmaniasis. METHODS: The antileishmanial activity of GA was tested in an amastigote-macrophage model and its non-cytotoxic dose was measured by a cell viability assay. To understand the effector mechanism of GA-treated macrophages against leishmanial parasites, real-time PCR analysis of inducible nitric oxide synthase 2 (iNOS2) was carried out followed by measurement of nitric oxide generation by Griess reagent. The effect of GA on the production of cytokines, such as interleukin (IL)-12, tumour necrosis factor (TNF)-α, IL-10 and transforming growth factor (TGF)-ß, was measured by ELISA (protein) and real-time PCR. The expression of iNOS2 and cyclooxygenase-2 (Cox-2) was studied by western blotting. The parasite burden of the liver and spleen following GA treatment was determined by the stamp-smear method, and T cell proliferation was assessed via [³H]thymidine uptake, measured by a liquid scintillation counter. RESULTS: Results showed that GA treatment caused an enhanced expression of iNOS2 along with inhibition of Cox-2 in Leishmania donovani-infected macrophages. GA treatment in infected macrophages enhanced the expression of IL-12 and TNF-α, concomitant with a down-regulation of IL-10 and TGF-ß. GA increased macrophage effector responses via inhibition of Cox-2-mediated prostaglandin E2 release in L. donovani-infected macrophages. GA also decreased hepatic and splenic parasite burden and increased T cell proliferation in Leishmania-infected BALB/c mice. CONCLUSIONS: These results provide a mechanistic understanding of GA-mediated protection against leishmanial parasites within the host.


Assuntos
Anti-Inflamatórios/administração & dosagem , Ácido Glicirrízico/administração & dosagem , Fatores Imunológicos/administração & dosagem , Leishmania donovani/patogenicidade , Leishmaniose Visceral/tratamento farmacológico , Animais , Anti-Inflamatórios/farmacologia , Ciclo-Oxigenase 2/biossíntese , Citocinas/metabolismo , Dinoprostona/metabolismo , Ensaio de Imunoadsorção Enzimática , Perfilação da Expressão Gênica , Ácido Glicirrízico/farmacologia , Fatores Imunológicos/farmacologia , Leishmania donovani/imunologia , Fígado/parasitologia , Macrófagos/efeitos dos fármacos , Macrófagos/parasitologia , Camundongos , Camundongos Endogâmicos BALB C , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/biossíntese , Reação em Cadeia da Polimerase em Tempo Real , Baço/parasitologia , Resultado do Tratamento
18.
J Infect Dis ; 205(10): 1607-16, 2012 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-22517914

RESUMO

The initial macrophage-Leishmania donovani interaction results in the formation of membrane platforms, termed lipid rafts, that help in the entry of the parasite. Therefore, it is imperative that the parasite designs a strategy to modulate its uptake and survival within the macrophages. Herein, we report Leishmania-triggered biphasic ceramide generation. In the first phase, L. donovani promastigotes induce activation of acid sphingomyelinase (ASMase), which catalyzes the formation of ceramide from sphingomyelin. Inhibition of ASMase resulted in reduced uptake and infection with the parasite. In the second phase, de novo synthesis generates ceramide that reduces the cellular cholesterol level and displaces the cholesterol from the membrane, leading to enhanced membrane fluidity, disruption of rafts, and impaired antigen-presentation to the T cells. The results reveal a novel role for ceramide in the perspective of L. donovani infection and help formulate an antileishmanial strategy that can possibly be applied to other intracellular infections as well.


Assuntos
Ceramidas/metabolismo , Leishmania donovani/fisiologia , Leishmaniose Visceral/metabolismo , Macrófagos/metabolismo , Microdomínios da Membrana/fisiologia , Animais , Apresentação de Antígeno/imunologia , Linhagem Celular , Colesterol/metabolismo , Interações Hospedeiro-Parasita , Leishmania donovani/imunologia , Leishmaniose Visceral/parasitologia , Macrófagos/enzimologia , Macrófagos/parasitologia , Fluidez de Membrana , Camundongos , Camundongos Endogâmicos BALB C , Transdução de Sinais , Esfingolipídeos/metabolismo , Esfingomielina Fosfodiesterase/metabolismo , Esfingomielinas/metabolismo
19.
Exp Parasitol ; 130(1): 39-47, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22019416

RESUMO

The present study intends to evaluate the role of radio-attenuated leishmania parasites as immunoprophylactic agents for experimental murine visceral leishmaniasis. BALB/c mice were immunized with gamma (γ)-irradiated Leishmania donovani. A second immunization was given after 15 days of first immunization. After two immunizations, mice were infected with virulent L. donovani promastigotes. Protection against Kala-azar (KA) was estimated from spleen and liver parasitic burden along with the measurement of nitrite and superoxide anion generation by isolation of splenocytes and also by T-lymphocyte helper 1(Th1) and T-lymphocyte helper 2(Th2) cytokines release from the experimental groups. It was observed that BALB/c mice having prior immunization with radio-attenuated parasites showed protection against L. donovani infection through higher expression of Th1 cytokines and suppression of Th2 cytokines along with the generation of protective free radicals. The group of mice without prior priming with radio-attenuated parasites surrendered to the disease. Thus it can be concluded that radio-attenuated L. donovani may be used for.


Assuntos
Raios gama , Leishmania donovani/imunologia , Leishmania donovani/efeitos da radiação , Leishmaniose Visceral/prevenção & controle , Vacinas Protozoárias , Animais , Cricetinae , Citocinas/análise , Feminino , Humanos , Leishmania donovani/crescimento & desenvolvimento , Fígado/parasitologia , Fígado/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Nitritos/metabolismo , Baço/parasitologia , Baço/patologia , Superóxidos/metabolismo , Vacinas Atenuadas
20.
J Med Food ; 14(10): 1167-72, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21861723

RESUMO

The present study evaluated the hepatoprotective effect of aqueous ethanolic Moringa oleifera leaf extract (MoLE) against radiation-induced oxidative stress, which is assessed in terms of inflammation and lipid peroxidation. Swiss albino mice were administered MoLE (300 mg/kg of body weight) for 15 consecutive days before exposing them to a single dose of 5 Gy of 6°Co γ-irradiation. Mice were sacrificed at 4 hours after irradiation. Liver was collected for immunoblotting and biochemical tests for the detection of markers of hepatic oxidative stress. Nuclear translocation of nuclear factor kappa B (NF-κB) and lipid peroxidation were augmented, whereas the superoxide dismutase (SOD), catalase (CAT), reduced glutathione (GSH), and ferric reducing antioxidant power (FRAP) values were decreased by radiation exposure. Translocation of NF-κB from cytoplasm to nucleus and lipid peroxidation were found to be inhibited, whereas increases in SOD, CAT, GSH, and FRAP were observed in the mice treated with MoLE prior to irradiation. Therefore pretreatment with MoLE protected against γ-radiation-induced liver damage. The protection may be attributed to the free radical scavenging activity of MoLE, through which it can ameliorate radiation-induced oxidative stress.


Assuntos
Antioxidantes/farmacologia , Moringa oleifera/química , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/efeitos da radiação , Extratos Vegetais/farmacologia , Folhas de Planta/química , Animais , Catalase/metabolismo , Catalase/efeitos da radiação , Relação Dose-Resposta a Droga , Raios gama/efeitos adversos , Glutationa/metabolismo , Glutationa/efeitos da radiação , Peroxidação de Lipídeos/efeitos da radiação , Fígado/patologia , Fígado/efeitos da radiação , Hepatopatias/patologia , Masculino , Camundongos , NF-kappa B/metabolismo , NF-kappa B/efeitos da radiação , Radiação Ionizante , Protetores contra Radiação/farmacologia , Superóxido Dismutase/metabolismo , Superóxido Dismutase/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA