Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 18(11): e0294280, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37948406

RESUMO

Chemotherapy-induced memory loss ("chemobrain") can occur following treatment with the widely used chemotherapeutic agent doxorubicin (DOX). However, the mechanisms through which DOX induces cognitive dysfunction are not clear, and there are no commercially available therapies for its treatment or prevention. Therefore, the aim of this study was to determine the therapeutic potential of phenyl-2-aminoethyl selenide (PAESe), an antioxidant drug previously demonstrated to reduce cardiotoxicity associated with DOX treatment, against DOX-induced chemobrain. Four groups of male athymic NCr nude (nu/nu) mice received five weekly tail-vein injections of saline (Control group), 5 mg/kg of DOX (DOX group), 10 mg/kg PAESe (PAESe group), or 5 mg/kg DOX and 10 mg/kg PAESe (DOX+PAESe group). Spatial memory was evaluated using Y-maze and novel object location tasks, while synaptic plasticity was assessed through the measurement of field excitatory postsynaptic potentials from the Schaffer collateral circuit. Western blot analyses were performed to assess hippocampal protein and phosphorylation levels. In this model, DOX impaired synaptic plasticity and memory, and increased phosphorylation of protein kinase B (Akt) and extracellular-regulated kinase (ERK). Co-administration of PAESe reduced Akt and ERK phosphorylation and ameliorated the synaptic and memory deficits associated with DOX treatment.


Assuntos
Disfunção Cognitiva , Potenciação de Longa Duração , Camundongos , Animais , Masculino , Proteínas Proto-Oncogênicas c-akt/metabolismo , Doxorrubicina/farmacologia , Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/metabolismo , Hipocampo/metabolismo , Cognição
2.
Heliyon ; 7(7): e07456, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34296005

RESUMO

Doxorubicin (Dox) is a chemotherapeutic agent used widely to treat a variety of malignant cancers. However, Dox chemotherapy is associated with several adverse effects, including "chemobrain," the observation that cancer patients exhibit through learning and memory difficulties extending even beyond treatment. This study investigated the effect of Dox treatment on learning and memory as well as hippocampal synaptic plasticity. Dox-treated mice (5 mg/kg weekly x 5) demonstrated impaired performance in the Y-maze spatial memory task and a significant reduction in hippocampal long-term potentiation. The deficit in synaptic plasticity was mirrored by deficits in the functionality of synaptic `α-amino-3- hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) channels, including reduced probability of opening, decreased dwell open time, and increased closed times. Furthermore, a reduction in the AMPAR subunit GluA1 level, its downstream signaling molecule Ca2+/calmodulin-dependent protein kinase (CaMKII), and brain-derived neurotrophic factor (BDNF) were observed. This was also accompanied by an increase in extracellular signal regulated kinase (ERK) and protein kinase B (AKT) activation. Together these data suggest that Dox-induced cognitive impairments are at least partially due to alterations in the expression and functionality of the glutamatergic AMPAR system.

3.
Heliyon ; 6(1): e03045, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31938742

RESUMO

AIMS: This study investigated the neurotoxic effects of prenatal alcohol and nicotine exposure in the cortex and hippocampus of rodents. MAIN METHODS: Behavioral alterations, electrophysiological changes, and biochemical markers associated with cholinergic neurotransmission, neural oxidative stress, mitochondrial function, and apoptosis were evaluated. KEY FINDINGS: Prenatal alcohol exposure induced the generation of ROS, nitrite and lipid peroxide, decreased mitochondrial Complex-I and IV activities, increased Caspase-1 and 3 activities, had no effect on cholinergic neurotransmission, increased expression of PSD-95, decreased LTP and decreased performance on spatial memory tasks. However, nicotine exposure, in addition to alcohol exposure, was found to mitigate the negative effects of alcohol alone on ROS generation and spatial memory task performances. Furthermore, we also studied the role of ILK in prenatal alcohol and nicotine exposure. SIGNIFICANCE: Prenatal Smoking and/or drinking is a major health concern around the world. Thus, our current study may lead to better insights into the molecular mechanisms of fetal alcohol and nicotine exposure on the developing offspring.

4.
Toxicol Mech Methods ; 29(6): 457-466, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31010378

RESUMO

Cognitive deficits are commonly reported by patients following treatment with chemotherapeutic agents. Anthracycline-containing chemotherapy regimens are associated with cognitive impairment and reductions in neuronal connectivity in cancer survivors, and doxorubicin (Dox) is a commonly used anthracycline. Although it has been reported that Dox distribution to the central nervous system (CNS) is limited, considerable Dox concentrations are observed in the brain with co-administration of certain medications. Additionally, pro-inflammatory cytokines, which are overproduced in cancer or in response to chemotherapy, can reduce the integrity of the blood-brain barrier (BBB). Therefore, the aim of this study was to evaluate the acute neurotoxic effects of Dox on hippocampal neurons. In this study, we utilized a hippocampal cell line (H19-7/IGF-IR) along with rodent hippocampal slices to evaluate the acute neurotoxic effects of Dox. Hippocampal slices were used to measure long-term potentiation (LTP), and expression of proteins was determined by immunoblotting. Cellular assays for mitochondrial complex activity and lipid peroxidation were also utilized. We observed reduction in LTP in hippocampal slices with Dox. In addition, lipid peroxidation was increased as measured by thiobarbituric acid reactive substances content indicating oxidative stress. Caspase-3 expression was increased indicating an increased propensity for cell death. Finally, the phosphorylation of signaling molecules which modulate LTP including extracellular signal-regulated kinase 1/2 (ERK1/2), p38 mitogen-activated protein kinase, and Akt were increased. This data indicates that acute Dox exposure dose-dependently impairs synaptic processes associated with hippocampal neurotransmission, induces apoptosis, and increases lipid peroxidation leading to neurotoxicity.


Assuntos
Antibióticos Antineoplásicos/toxicidade , Apoptose/efeitos dos fármacos , Doxorrubicina/toxicidade , Hipocampo/efeitos dos fármacos , Peroxidação de Lipídeos/efeitos dos fármacos , Plasticidade Neuronal/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Animais , Técnicas de Cultura de Células , Linhagem Celular , Relação Dose-Resposta a Droga , Complexo I de Transporte de Elétrons/metabolismo , Hipocampo/metabolismo , Hipocampo/patologia , Neurônios/metabolismo , Neurônios/patologia , Síndromes Neurotóxicas/metabolismo , Síndromes Neurotóxicas/patologia , Ratos , Ratos Sprague-Dawley
5.
Life Sci ; 199: 34-40, 2018 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-29474811

RESUMO

The 2010 Deepwater Horizon (DWH) oil spill is the largest marine oil spill in US history. In the aftermath of the spill, the response efforts used a chemical dispersant, Corexit, to disperse the oil spill. The health impacts of crude oil and Corexit mixture to humans, mammals, fishes, and birds are mostly unknown. The purpose of this study is to investigate the in vivo effects of DWH oil, Corexit, and oil-Corexit mixture on the general behavior, hematological markers, and liver and kidney functions of rodents. C57 Bl6 mice were treated with DWH oil (80 mg/kg) and/or Corexit (95 mg/kg), and several hematological markers, lipid profile, liver and kidney functions were monitored. The results show that both DWH oil and Corexit altered the white blood cells and platelet counts. Moreover, they also impacted the lipid profile and induced toxic effects on the liver and kidney functions. The impacts were more pronounced when the mice were treated with a mixture of DWH-oil and Corexit. This study provides preliminary data to elucidate the potential toxicological effects of DWH oil, Corexit, and their mixtures on mammalian health. Residues from the DWH spill continue to remain trapped along various Gulf Coast beaches and therefore further studies are needed to fully understand their long-term impacts on coastal ecosystems.


Assuntos
Asseio Animal/efeitos dos fármacos , Rim/efeitos dos fármacos , Lipídeos/toxicidade , Fígado/efeitos dos fármacos , Poluição por Petróleo/efeitos adversos , Poluentes Químicos da Água/toxicidade , Animais , Biomarcadores/sangue , Biomarcadores/metabolismo , Asseio Animal/fisiologia , Rim/metabolismo , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Roedores
6.
Toxicol Mech Methods ; 28(3): 177-186, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28874085

RESUMO

Benzylpiperazine has been designated as Schedule I substance under the Controlled Substances Act by Drug Enforcement Administration. Benzylpiperazine is a piperazine derivative, elevates both dopamine and serotonin extracellular levels producing stimulatory and hallucinogenic effects, respectively, similar to methylenedioxymethamphetamine (MDMA). However, the comparative neurotoxic effects of Piperazine derivatives (benzylpiperazine and benzoylpiperazine) have not been elucidated. Here, piperazine derivatives (benzylpiperazine and benzoylpiperazine) were synthesized in our lab and the mechanisms of cellular-based neurotoxicity were elucidated in a dopaminergic human neuroblastoma cell line (SH-SY5Y). We evaluated the in vitro effects of benzylpiperazine and benzoylpiperazine on the generation of reactive oxygen species, lipid peroxidation, mitochondrial complex-I activity, catalase activity, superoxide dismutase activity, glutathione content, Bax, caspase-3, Bcl-2 and tyrosine hydroxylase expression. Benzylpiperazine and benzoylpiperazine induced oxidative stress, inhibited mitochondrial functions and stimulated apoptosis. This study provides a germinal assessment of the neurotoxic mechanisms induced by piperazine derivatives that lead to neuronal cell death.


Assuntos
Apoptose/efeitos dos fármacos , Agonistas de Dopamina/toxicidade , Neurônios Dopaminérgicos/efeitos dos fármacos , Alucinógenos/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Piperazinas/toxicidade , Proteínas Reguladoras de Apoptose/agonistas , Proteínas Reguladoras de Apoptose/antagonistas & inibidores , Proteínas Reguladoras de Apoptose/metabolismo , Biomarcadores/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Drogas Desenhadas/química , Drogas Desenhadas/toxicidade , Agonistas de Dopamina/química , Neurônios Dopaminérgicos/citologia , Neurônios Dopaminérgicos/metabolismo , Complexo I de Transporte de Elétrons/antagonistas & inibidores , Complexo I de Transporte de Elétrons/metabolismo , Alucinógenos/química , Humanos , Peroxidação de Lipídeos/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/enzimologia , Mitocôndrias/metabolismo , Estrutura Molecular , Proteínas do Tecido Nervoso/agonistas , Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteínas do Tecido Nervoso/metabolismo , Concentração Osmolar , Piperazinas/química , Espécies Reativas de Oxigênio/agonistas , Espécies Reativas de Oxigênio/metabolismo
7.
Life Sci ; 194: 177-184, 2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-29225110

RESUMO

The adverse effects of prenatal nicotine and alcohol exposure on human reproductive outcomes are a major scientific and public health concern. In the United States, substantial percentage of women (20-25%) of childbearing age currently smoke cigarettes and consume alcohol, and only a small percentage of these individuals quit after learning of their pregnancy. However, there are very few scientific reports on the effect of nicotine in prenatal alcohol exposure on the cerebellum of the offspring. Therefore, this study was conducted to investigate the cerebellar neurotoxic effects of nicotine in a rodent model of Fetal Alcohol Spectrum Disorder (FASD). In this study, we evaluated the behavioral changes, biochemical markers of oxidative stress and apoptosis, mitochondrial functions and the molecular mechanisms associated with nicotine in prenatal alcohol exposure on the cerebellum. Prenatal nicotine and alcohol exposure induced oxidative stress, did not affect the mitochondrial functions, increased the monoamine oxidase activity, increased caspase expression and decreased ILK, PSD-95 and GLUR1 expression without affecting the GSK-3ß. Thus, our current study of prenatal alcohol and nicotine exposure on cerebellar neurotoxicity may lead to new scientific perceptions and novel and suitable therapeutic actions in the future.


Assuntos
Cerebelo/efeitos dos fármacos , Cerebelo/embriologia , Transtornos do Espectro Alcoólico Fetal/patologia , Neurotoxinas/toxicidade , Nicotina/toxicidade , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Animais , Cerebelo/metabolismo , Cerebelo/patologia , Feminino , Transtornos do Espectro Alcoólico Fetal/metabolismo , Humanos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Estresse Oxidativo/efeitos dos fármacos , Gravidez , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Efeitos Tardios da Exposição Pré-Natal/patologia , Ratos , Ratos Sprague-Dawley
8.
Life Sci ; 155: 161-6, 2016 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-27155395

RESUMO

AIMS: The Deepwater Horizon oil spill (also known as the BP spill) is one of the largest oil spills in the U.S. HISTORY: To manage the spill, BP used an oil spill dispersant (Corexit 9500A) to disperse the oil. However, a portion of undispersed oil eventually got emulsified and interacted with near shore sediments along the Alabama shoreline and sank to the bottom forming tarmats, also known as submerged residual oil mats (SRMs). Natural shoreline transport processes have often broken these tarmats to form smaller oil fragments, known as surface residual oil balls (SRBs) or tarballs. The long-term human and the ecological health impacts of various toxic chemicals trapped in tarmat deposits are currently unknown. The purpose of this study is to investigate the in vitro cytotoxic effects of the chemicals trapped in tarmat fragments using hippocampal (neuron), kidney (nephron) and epithelial cells. MAIN METHODS: Water accommodated fraction (WAF) of tarmat fragments was used in this study. Cytotoxicity was elucidated by the MTT assay and cellular morphology assessment. Markers of oxidative stress and apoptosis were assessed to study the toxicity effects. Statistical analysis was performed using Sigma-stat. KEY FINDINGS: Tarmat WAF induced dose-dependent cellular toxicity. Chemicals trapped in tarmat WAF inhibited cell viability in the hippocampal (H19), kidney (HEK-293) and epithelial (MCF-10A) cells. Tarmat WAF also generated reactive oxygen species and increased activity of superoxide dismutase in hippocampal cells. SIGNIFICANCE: The study has provided preliminary data to elucidate the toxic potential of BP oil spill residues trapped along the Alabama shoreline.


Assuntos
Hipocampo/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Poluição por Petróleo , Poluentes Químicos da Água/toxicidade , Alabama , Animais , Linhagem Celular , Hipocampo/citologia , Humanos , Ratos
9.
Cell Stress Chaperones ; 20(5): 833-41, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26003133

RESUMO

Development of novel anti-cancer drug leads that target regulators of protein homeostasis is a formidable task in modern pharmacology. Finding specific inhibitors of human Heat Shock Factor 1 (hHSF1) has proven to be a challenging task, while screening for inhibitors of human Heat Shock Factor 2 (hHSF2) has never been described. We report the development of a novel system based on an in vivo cell growth restoration assay designed to identify specific inhibitors of human HSF2 in a high-throughput format. This system utilizes a humanized yeast strain in which the master regulator of molecular chaperone genes, yeast HSF, has been replaced with hHSF2 with no detrimental effect on cell growth. This replacement preserves the general regulatory patterns of genes encoding major molecular chaperones including Hsp70 and Hsp90. The controlled overexpression of hHSF2 creates a slow-growth phenotype, which is the basis of the growth restoration assay used for high-throughput screening. The phenotype is most robust when cells are cultured at 25 °C, while incubation at temperatures greater than 30 °C leads to compensation of the phenotype. Overexpression of hHSF2 causes overexpression of molecular chaperones which is a likely cause of the slowed growth. Our assay is characterized by two unique advantages. First, screening takes place in physiologically relevant, in vivo conditions. Second, hits in our screen will be of medically relevant potency, as compounds that completely inhibit hHSF2 function will further inhibit cell growth and therefore will not be scored as hits. This caveat biases our screening system for compounds capable of restoring hHSF2 activity to a physiologically normal level without completely inhibiting this essential system.


Assuntos
Proteínas de Choque Térmico/genética , Ensaios de Triagem em Larga Escala/métodos , Fatores de Transcrição/genética , Proteínas de Choque Térmico/antagonistas & inibidores , Humanos , Chaperonas Moleculares/metabolismo , Organismos Geneticamente Modificados , Saccharomyces cerevisiae , Fatores de Transcrição/antagonistas & inibidores
10.
Life Sci ; 95(2): 108-17, 2014 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-24361361

RESUMO

AIMS: The British Petroleum (BP) oil spill has raised several ecological and health concerns. As the first response, BP used a chemical dispersant, Corexit-9500, to disperse the crude oil in the Gulf of Mexico to limit shoreline contamination problems. Nevertheless, portions of this oil/Corexit mixture reached the shoreline and still remain in various Gulf shore environments. The use of Corexit itself has become a significant concern since its impacts on human health and environment is unclear. MAIN METHODS: In this study, in vitro cytotoxic effects of Corexit were evaluated using different mammalian cells. KEY FINDINGS: Under serum free conditions, the LC50 value for Corexit in BL16/BL6 cell was 16 ppm, in 1321N1 cell was 33 ppm, in H19-7 cell was 70 ppm, in HEK293 was 93 ppm, and in HK-2 cell was 95 ppm. With regard to the mechanisms of cytotoxicity, we hypothesize that Corexit can possibly induce cytotoxicity in mammalian cells by altering the intracellular oxidative balance and inhibiting mitochondrial functions. Corexit induced increased reactive oxygen species and lipid peroxide levels; also, it depleted glutathione content and altered catalase activity in H19-7 cells. In addition, there was mitochondrial complex-I inhibition and increase in the pro-apoptotic factors including caspase-3 and BAX expression. SIGNIFICANCE: The experimental results show changes in intracellular oxidative radicals leading to mitochondrial dysfunctions and apoptosis in Corexit treatments, possibly contributing to cell death. Our findings raise concerns about using large volumes of Corexit, a potential environmental toxin, in sensitive ocean environments.


Assuntos
Sobrevivência Celular/efeitos dos fármacos , Lipídeos/toxicidade , Poluentes Químicos da Água/toxicidade , Linhagem Celular , Células Cultivadas , Relação Dose-Resposta a Droga , Células HEK293 , Humanos , Dose Letal Mediana , Peroxidação de Lipídeos/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Espécies Reativas de Oxigênio/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA