Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Behav Brain Res ; 315: 10-22, 2016 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-27478140

RESUMO

The negative impact of chemotherapy on cognitive function in cancer patients has gained increasing attention in the last decade. Whilst the short-term acute effects on cognition are expected following chemotherapy, the persistence of such impairments in the long-term is still in question. This is despite clinical evidence indicating cognitive difficulties may persist well beyond treatment and affect quality of life. In the present study, we assessed the long-term (3 months) cognitive impact of chemotherapy in a mouse model intended to mimic the human female post-menopausal population receiving chemotherapy for breast cancer. Ovariectomized, female, C57BL/6J mice received two doses of Doxorubicin, Cyclophosphamide, and 5-Fluorouracil or saline vehicle (control), separated by one week. During this interval, mice received BrdU injections to label dividing cells. Results indicate a persistent impairment in learning and recall (1h, 24h and 48h) on the Morris water maze, reduced survival and differentiation of new neurons (BrdU+/NeuN+), and a persistent decline in proliferation of new cells (Ki67(+)) in the dentate gyrus. Locomotor activity, motor performance, and anxiety-like behavior were unaffected. We further evaluated the efficacy of a diet enriched in omega-3-fatty acids (DHA+EPA+DPA), in reversing long-term chemotherapy deficits but no rescue was observed. The model described produces long-term cognitive and cellular impairments from chemotherapy that mimic those observed in humans. It could be useful for identifying mechanisms of action and to test further the ability of lifestyle interventions (e.g., diet) for ameliorating chemotherapy-induced cognitive impairments.


Assuntos
Antineoplásicos/efeitos adversos , Antineoplásicos/farmacologia , Transtornos da Memória/induzido quimicamente , Neurogênese/efeitos dos fármacos , Aprendizagem Espacial/efeitos dos fármacos , Animais , Antineoplásicos/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Contagem de Células , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Ciclofosfamida/efeitos adversos , Doxorrubicina/efeitos adversos , Comportamento Exploratório/efeitos dos fármacos , Ácidos Graxos Ômega-3/administração & dosagem , Feminino , Fluoruracila/efeitos adversos , Antígeno Ki-67/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Ovariectomia , Fosfopiruvato Hidratase/metabolismo
2.
Behav Brain Res ; 213(2): 246-52, 2010 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-20472002

RESUMO

Voluntary wheel running activates dentate gyrus granule neurons and increases adult hippocampal neurogenesis. Average daily running distance typically increases over a period of 3 weeks in rodents. Whether neurogenesis and cell activation are greater at the peak of running as compared to the initial escalation period is not known. Therefore, adult C57BL/6J male mice received 5 days of BrdU injections, at the same age, to label dividing cells during the onset of wheel access or after 21 days during peak levels of running or in sedentary conditions. Mice were sampled either 24h or 25 days after the last BrdU injection to measure cell proliferation and survival, respectively. Immunohistochemistry was performed on brain sections to identify the numbers of proliferating BrdU-labeled cells, and new neurons (BrdU/NeuN co-labeled) in the dentate gyrus. Ki67 was used as an additional mitotic marker. The induction of c-Fos was used to identify neurons activated from running. Mice ran approximately half as far during the first 5 days as compared to after 21 days. Running increased Ki67 cells at the onset but after 21 days levels were similar to sedentary. Numbers of BrdU cells were similar in all groups 24h after the final injection. However, after 25 days, running approximately doubled the survival of new neurons born either at the onset or peak of running. These changes co-varied with c-Fos expression. We conclude that sustained running maintains a stable rate of neurogenesis above sedentary via activity-dependent increases in differentiation and survival, not proliferation, of progenitor cells in the C57BL/6J model.


Assuntos
Hipocampo/fisiologia , Camundongos Endogâmicos C57BL/fisiologia , Atividade Motora/fisiologia , Neurogênese/fisiologia , Proteínas Proto-Oncogênicas c-fos/biossíntese , Animais , Proliferação de Células , Sobrevivência Celular/fisiologia , Masculino , Camundongos , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA