Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 10(1): 2476, 2020 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-32051479

RESUMO

PEGylated recombinant human granulocyte colony stimulating factor (pegfilgrastim) is used clinically to accelerate immune reconstitution following chemotherapy and is being pursued for biosimilar development. One challenge to overcome in pegfilgrastim biosimilar development is establishing pharmacokinetic (PK) similarity, which is partly due to the degree of PK variability. We herein report that commercially available G-CSF and PEG ELISA detection kits have different capacities to detect pegfilgrastim aggregates that rapidly form in vitro in physiological conditions. These aggregates can be observed using SDS-PAGE, size-exclusion chromatography, dynamic light scattering, and real-time NMR analysis and are associated with decreased bioactivity as reflected by reduced drug-induced cellular proliferation and STAT3 phosphorylation. Furthermore, individual variability in the stability and detectability of pegfilgrastim in human sera is also observed. Pegfilgrastim levels display marked subject variability in sera from healthy donors incubated at 37 °C. The stability patterns of pegfilgrastim closely match the stability patterns of filgrastim, consistent with a key role for pegfilgrastim's G-CSF moiety in driving formation of inactive aggregates. Taken together, our results indicate that individual variability and ELISA specificity for inactive aggregates are key factors to consider when designing and interpreting studies involving the measurement of serum pegfilgrastim concentrations.


Assuntos
Variação Biológica Individual , Filgrastim/farmacocinética , Polietilenoglicóis/farmacocinética , Animais , Linhagem Celular Tumoral , Proliferação de Células , Ensaio de Imunoadsorção Enzimática/normas , Humanos , Camundongos , Fator de Transcrição STAT3/metabolismo
2.
Nanoscale ; 9(6): 2291-2300, 2017 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-28127597

RESUMO

Colloidal nanoparticles have shown tremendous potential as cancer drug carriers and as phototherapeutics. However, the stability of nanoparticles under physiological and phototherapeutic conditions is a daunting issue, which needs to be addressed in order to ensure a successful clinical translation. The design, development and implementation of unique algorithms are described herein for high-throughput hydrodynamic size measurements of colloidal nanoparticles. The data obtained from such measurements provide clinically-relevant particle size distribution assessments that are directly related to the stability and aggregation profiles of the nanoparticles under putative physiological and phototherapeutic conditions; those profiles are not only dependent on the size and surface coating of the nanoparticles, but also on their composition. Uncoated nanoparticles showed varying degrees of association with bovine serum albumin, whereas PEGylated nanoparticles did not exhibit significant association with the protein. The algorithm-driven, high-throughput size screening method described in this report provides highly meaningful size measurement patterns stemming from the association of colloidal particles with bovine serum albumin used as a protein model. Noteworthy is that this algorithm-based high-throughput method can accomplish sophisticated hydrodynamic size measurement protocols within days instead of years it would take conventional hydrodynamic size measurement techniques to achieve a similar task.


Assuntos
Coloides/química , Portadores de Fármacos , Ensaios de Triagem em Larga Escala , Nanopartículas , Algoritmos , Tamanho da Partícula , Soroalbumina Bovina
3.
ACS Nano ; 8(5): 4177-89, 2014 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-24708375

RESUMO

Resistance to chemotherapy is the primary cause of treatment failure in over 90% of cancer patients in the clinic. Research in nanotechnology-based therapeutic alternatives has helped provide innovative and promising strategies to overcome multidrug resistance (MDR). By targeting CD44-overexpressing MDR cancer cells, we have developed in a single-step a self-assembled, self-targetable, therapeutic semiconducting single-walled carbon nanotube (sSWCNT) drug delivery system that can deliver chemotherapeutic agents to both drug-sensitive OVCAR8 and resistant OVCAR8/ADR cancer cells. The novel nanoformula with a cholanic acid-derivatized hyaluronic acid (CAHA) biopolymer wrapped around a sSWCNT and loaded with doxorubicin (DOX), CAHA-sSWCNT-DOX, is much more effective in killing drug-resistant cancer cells compared to the free DOX and phospholipid PEG (PL-PEG)-modified sSWCNT formula, PEG-sSWCNT-DOX. The CAHA-sSWCNT-DOX affects the viscoelastic property more than free DOX and PL-PEG-sSWCNT-DOX, which in turn allows more drug molecules to be internalized. Intravenous injection of CAHA-sSWCNT-DOX (12 mg/kg DOX equivalent) followed by 808 nm laser irradiation (1 W/cm(2), 90 s) led to complete tumor eradication in a subcutaneous OVCAR8/ADR drug-resistant xenograft model, while free DOX alone failed to delay tumor growth. Our newly developed CAHA-sSWCNT-DOX nanoformula, which delivers therapeutics and acts as a sensitizer to influence drug uptake and induce apoptosis with minimal resistance factor, provides a novel effective means of counteracting the phenomenon of multidrug resistance.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Nanotecnologia/métodos , Nanotubos/química , Neoplasias/tratamento farmacológico , Animais , Apoptose , Linhagem Celular Tumoral , Doxorrubicina/administração & dosagem , Portadores de Fármacos , Sistemas de Liberação de Medicamentos , Resistência a Múltiplos Medicamentos , Elasticidade , Feminino , Humanos , Camundongos , Camundongos SCID , Nanotubos de Carbono/química , Neoplasias/patologia , Fosfolipídeos/química , Polietilenoglicóis/química , Polímeros/química , Técnicas de Microbalança de Cristal de Quartzo , Semicondutores , Temperatura , Viscosidade
4.
ACS Nano ; 6(12): 10999-1008, 2012 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-23121626

RESUMO

We designed a recyclable Hg(2+) probe based on Rhodamine B isothiocyanate (RBITC)-poly(ethylene glycol) (PEG)-comodified gold nanoparticles (AuNPs) with excellent robustness, selectivity, and sensitivity. On the basis of a rational design, only Hg(2+) can displace RBITC from the AuNP surfaces, resulting in a remarkable enhancement of RBITC fluorescence initially quenched by AuNPs. To maintain stability and monodispersity of AuNPs in real samples, thiol-terminated PEG was employed to bind with the remaining active sites of AuNPs. Besides, this displacement assay can be regenerated by resupplying free RBITC into the AuNPs solutions that were already used for detecting Hg(2+). Importantly, the detection limit of this assay for Hg(2+) (2.3 nM) was lower than the maximum limits guided by the United States Environmental Protection Agency as well as that permitted by the World Health Organization. The efficiency of this probe was demonstrated in monitoring Hg(2+) in complex samples such as river water and living cells.


Assuntos
Poluentes Ambientais/análise , Poluentes Ambientais/química , Mercúrio/análise , Mercúrio/química , Água/química , Adsorção , Linhagem Celular Tumoral , Sobrevivência Celular , Humanos , Polietilenoglicóis/química , Rodaminas/química , Soluções , Propriedades de Superfície
5.
ACS Nano ; 6(8): 6546-61, 2012 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-22835068

RESUMO

Bioanalytical methods have experienced unprecedented growth in recent years, driven in large part by the need for faster, more sensitive, more portable ("point of care") systems to detect protein biomarkers for clinical diagnosis. Electrochemical detection strategies, used in conjunction with immunosensors, offer advantages because they are fast, simple, and low cost. Recent developments in electrochemical immunosensors have significantly improved the sensitivity needed to detect low concentrations of biomarkers present in early stages of cancer. Moreover, the coupling of electrochemical devices with nanomaterials, such as gold nanoparticles, carbon nanotubes, magnetic particles, and quantum dots, offers multiplexing capability for simultaneous measurements of multiple cancer biomarkers. This review will discuss recent advances in the development of electrochemical immunosensors for the next generation of cancer diagnostics, with an emphasis on opportunities for further improvement in cancer diagnostics and treatment monitoring. Details will be given for strategies to increase sensitivity through multilabel amplification, coupled with high densities of capture molecules on sensor surfaces. Such sensors are capable of detecting a wide range of protein quantities, from nanogram to femtogram (depending on the protein biomarkers of interest), in a single sample.


Assuntos
Biomarcadores Tumorais/análise , Condutometria/instrumentação , Imunoensaio/instrumentação , Nanopartículas , Proteínas de Neoplasias/análise , Neoplasias/diagnóstico , Neoplasias/metabolismo , Desenho de Equipamento , Humanos , Microquímica/instrumentação
6.
ACS Nano ; 6(6): 4966-72, 2012 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-22540867

RESUMO

Nanoformulations have shown great promise for delivering chemotherapeutics and hold tremendous clinical relevance. However nuclear mapping of the chemodrugs is important to predict the success of the nanoformulation. In this study fluorescence microscopy and a subcellular tracking algorithm were used to map the diffusion of chemotherapeutic drugs in cancer cells. Positively charged nanoparticles efficiently carried the chemodrug across the cell membrane. The algorithm helped map free drug and drug-loaded nanoparticles, revealing a varying nuclear diffusion pattern of the chemotherapeutics in drug-sensitive and -resistant cells in a live dynamic cellular environment. While the drug-sensitive cells showed an exponential uptake of the drug with time, resistant cells showed random and asymmetric drug distribution. Moreover nanoparticles carrying the drug remained in the perinuclear region, while the drug accumulated in the cell nuclei. The tracking approach has enabled us to predict the therapeutic success of different nanoscale formulations of doxorubicin.


Assuntos
Doxorrubicina/administração & dosagem , Doxorrubicina/farmacocinética , Microscopia de Fluorescência/métodos , Nanocápsulas/ultraestrutura , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Reconhecimento Automatizado de Padrão/métodos , Algoritmos , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Núcleo Celular/patologia , Humanos , Imagem Molecular/métodos
7.
Theranostics ; 1: 310-21, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21769298

RESUMO

Recently portable Raman probes have emerged along with a variety of applications, including carbon nanotube (CNT) characterization. Aqueous dispersed CNTs have shown promise for biomedical applications such as drug/gene delivery vectors, photo-thermal therapy, and photoacoustic imaging. In this study we report the simultaneous detection and irradiation of carbon nanotubes in 2D monolayers of cancer cells and in 3D spheroids using a portable Raman probe. A portable handheld Raman instrument was utilized for dual purposes: as a CNT detector and as an irradiating laser source. Single-walled carbon nanotubes (SWCNTs) and multi-walled carbon nanotubes (MWCNTs) were dispersed aqueously using a lipid-polymer (LP) coating, which formed highly stable dispersions both in buffer and cell media. The LP coated SWCNT and MWCNT aqueous dispersions were characterized by atomic force microscopy, transmission electron microscopy, dynamic light scattering, Fourier transform infrared spectroscopy and Raman spectroscopy. The cellular uptake of the LP-dispersed SWCNTs and MWCNTs was observed using confocal microscopy, and fluorescein isothiocyanate (FITC)-nanotube conjugates were found to be internalized by ovarian cancer cells by using Z-stack fluorescence confocal imaging. Biocompatibility of SWCNTs and MWCNTs was assessed using a cell viability MTT assay, which showed that the nanotube dispersions did not hinder the proliferation of ovarian cancer cells at the dosage tested. Ovarian cancer cells treated with SWCNTs and MWCNTs were simultaneously detected and irradiated live in 2D layers of cancer cells and in 3D environments using the portable Raman probe. An apoptotic terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay carried out after laser irradiation confirmed that cell death occurred only in the presence of nanotube dispersions. We show for the first time that both SWCNTs and MWCNTs can be selectively irradiated and detected in cancer cells using a simple handheld Raman instrument. This approach could potentially be used to treat various diseases, including cancer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA