Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Food Chem ; 446: 138777, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38402763

RESUMO

Seven novel antioxidant peptides (AWF, LWQ, WIY, YLW, LAYW, LPWG, and LYFY) exhibiting a superior activity compared to trolox were identified through in silico screening. Among these, the four peptides (WIY, YLW, LAYW, and LYFY) displayed notably enhanced performance, with ABTS activity 2.58-3.26 times and ORAC activity 5.19-8.63 times higher than trolox. Quantum chemical calculations revealed that the phenolic hydroxyl group in tyrosine and the nitrogen-hydrogen bond in the indole ring of tryptophan serve as the critical sites for antioxidant activity. These findings likely account for the potent chemical antioxidant activity. The corn peptides also exerted a protective effect against AAPH-induced cytomorphologic changes in human erythrocytes by modulating the antioxidant system. Notably, LAYW exhibited the most pronounced cytoprotective effects, potentially due to its high content of hydrophobic amino acids.


Assuntos
Antioxidantes , Glutens , Humanos , Antioxidantes/química , Glutens/química , Zea mays/química , Peptídeos/química , Fenóis
2.
J Nutr Sci Vitaminol (Tokyo) ; 68(Supplement): S113-S115, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36436988

RESUMO

Bone health is an important medical concern in rapidly aging demographics worldwide. Excessive bone resorption, due to enhanced activity of osteoclasts, is a major underlying cause of bone disorders such as osteoporosis. Inflammation and oxidative stress are key factors contributing to increased osteoclastic activity. Like increased activity of osteoclasts, depletion of osteoblasts also contributes to weakened structural integrity of bone. Considering the epidemiology of bone disorders and aging demographics there is a substantial need for novel bone health therapeutics. IRW (Ile-Arg-Trp), an egg-derived tripeptide, exhibits a spectrum of pharmacological activity. In our recent work, we have shown that IRW inhibits osteoclastogenesis and promotes osteogenesis in the mouse macrophage RAW 264.7 and MC3T3-E1 cells. IRW treatment (25 and 50 µM) significantly inhibited osteoclastogenesis-associated factors [TRAF6 (TNF Receptor Associated Factor 6), Fos Proto-Oncogene (c-Fos), Nuclear Factor of Activated T Cells 1 (NFATc1), and cathepsin K] and upregulated osteogenesis-associated factors [RUNX2 (Runt-related transcription factor 2) and RANKL (Receptor activator of nuclear factor kappa-B ligand)] in the two cell lines. Currently, we are conducting studies to analyze the impact of IRW on Angiotensin II (Ang II)-induced stress in vitro and in vivo. In summary, our recent work presents the ability of IRW to prevent LPS-induced inflammatory bone resorption and activation of osteogenesis activity via multiple signaling pathways.


Assuntos
Reabsorção Óssea , Osteoporose , Camundongos , Animais , Osteoclastos/metabolismo , Osteoporose/prevenção & controle , Osteoporose/metabolismo , Reabsorção Óssea/prevenção & controle , Reabsorção Óssea/metabolismo , Suplementos Nutricionais
3.
Foods ; 11(21)2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36359987

RESUMO

Soybean is a rich source of high-quality proteins and an excellent food source of bioactive peptides. A tripeptide, Leu−Ser−Trp (LSW), was previously identified from soybean as an angiotensin-converting enzyme inhibitory peptide. In the present work, we further studied its antioxidant and anti-inflammatory activities in human vascular endothelial cells (EA.hy926) and elucidated the mechanisms underlying these biological activities. In tumor necrosis factor alpha (TNFα)-stimulated EA.hy926 cells, LSW significantly inhibited oxidative stress, both reduced superoxide and malondialdehyde levels (p < 0.001), owing to its free-radical-scavenging ability. LSW treatment also mitigated the elevated protein expression of vascular adhesion molecule-1 (p < 0.001) and cyclooxygenase 2 (p < 0.01) via inhibition of NF-κB and p38/JNK signaling, respectively. Additionally, LSW also inhibited the endogenous formation of TNFα and attenuated the expression of its two receptors in EA.hy926 cells. Furthermore, LSW upregulated sirtuin-1 level, which partially contributed to its anti-inflammatory activity. These results demonstrate the multiple roles of LSW in ameliorating vascular endothelial oxidative stress and inflammatory responses, which support its uses as a nutraceutical or functional food ingredient for combating endothelial dysfunction and cardiovascular diseases.

4.
Nutrients ; 14(15)2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-35956292

RESUMO

Mitochondrial function, including oxidative phosphorylation (OXPHOS), mitochondrial biogenesis, and mitochondria dynamics, are essential for the maintenance of renal health. Through modulation of mitochondrial function, the kidneys are able to sustain or recover acute kidney injury (AKI), chronic kidney disease (CKD), nephrotoxicity, nephropathy, and ischemia perfusion. Therapeutic improvement in mitochondrial function in the kidneys is related to the regulation of adenosine triphosphate (ATP) production, free radicals scavenging, decline in apoptosis, and inflammation. Dietary antioxidants, notably polyphenols present in fruits, vegetables, and plants, have attracted attention as effective dietary and pharmacological interventions. Considerable evidence shows that polyphenols protect against mitochondrial damage in different experimental models of kidney disease. Mechanistically, polyphenols regulate the mitochondrial redox status, apoptosis, and multiple intercellular signaling pathways. Therefore, this review attempts to focus on the role of polyphenols in the prevention or treatment of kidney disease and explore the molecular mechanisms associated with their pharmacological activity.


Assuntos
Injúria Renal Aguda , Polifenóis , Injúria Renal Aguda/tratamento farmacológico , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/prevenção & controle , Apoptose , Humanos , Rim/metabolismo , Mitocôndrias/metabolismo , Fosforilação Oxidativa , Polifenóis/metabolismo , Polifenóis/farmacologia , Polifenóis/uso terapêutico
5.
Molecules ; 27(12)2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35744810

RESUMO

Multiple strategies including the use of bioactive peptides and other nutraceuticals are being adopted to maintain bone health. This study provides an improved and deeper understanding of the pharmacological effects that a bioactive peptide IRW (Ile-Arg-Trp) extends on bone health. Our results showed that IRW treatment protects osteoblasts against Ang II induced decline in cell proliferation and restores protein levels of collagen type I alpha 2 chain (COL1A2) and alkaline phosphatase (ALP) levels in MC3T3-E1 cells (p < 0.05). Apart from augmentation of these mineralization factors, the angiotensin II (Ang II) induced apoptotic stress in osteoblasts was mitigated by IRW as well. At the molecular level, IRW abolished the cytochrome-c release via modulation of pro-and anti-apoptotic genes in MC3T3-E1 cells (p < 0.05). Interestingly, IRW also increased cellular levels of cytoprotective local RAAS factors such as MasR, Ang (1−7), ACE2, and AT2R, and lowered the levels of Ang II effector receptor (AT1R). Further, our results indicated a lower content of inflammation and osteoclastogenesis biomarkers such as cyclooxygenase 2 (COX2), nuclear factor kappa B (NF-κB), and receptor activator of nuclear factor kappa-B ligand (RANKL) following IRW treatment in MC3T3-E1 cells (p < 0.05). The use of an antagonist-guided cell study indicated that IRW contributed to the process of cytoprotection and proliferation of osteoblasts via Runt-related transcription factor 2 (RUNX2) in face of Ang II stress in an AT2R dependent manner. The key findings of our study showed that IRW could potentially have a therapeutic role in the treatment and/or prevention of bone disorders.


Assuntos
Angiotensina II , Oligopeptídeos , Angiotensina II/metabolismo , Angiotensina II/farmacologia , NF-kappa B/metabolismo , Oligopeptídeos/metabolismo , Oligopeptídeos/farmacologia , Osteoblastos/metabolismo , Peptídeos/farmacologia , Receptores de Angiotensina/metabolismo
6.
Biomedicines ; 10(6)2022 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-35740257

RESUMO

IRW (Isoleucine−Arginine−Tryptophan), has antihypertensive and anti-inflammatory properties in cells and animal models and prevents angiotensin-II- and tumor necrosis factor (TNF)-α-induced insulin resistance (IR) in vitro. We investigated the effects of IRW on body composition, glucose homeostasis and insulin sensitivity in a high-fat diet (HFD) induced insulin resistant (IR) model. C57BL/6 mice were fed HFD for 6 weeks, after which IRW was incorporated into the diet (45 or 15 mg/kg body weight (BW)) until week 14. IRW45 (at a dose of 45 mg/kg BW) reduced BW (p = 0.0327), fat mass gain (p = 0.0085), and preserved lean mass of HFD mice (p = 0.0065), concomitant with enhanced glucose tolerance and reduced fasting glucose (p < 0.001). In skeletal muscle, IRW45 increased insulin-stimulated protein kinase B (AKT) phosphorylation (p = 0.0132) and glucose transporter 4 (GLUT4) translocation (p < 0.001). Angiotensin 2 receptor (AT2R) (p = 0.0024), phosphorylated 5'-AMP-activated protein kinase (AMPKα) (p < 0.0124) and peroxisome proliferator-activated receptor gamma (PPARγ) (p < 0.001) were enhanced in skeletal muscle of IRW45-treated mice, as was the expression of genes involved in myogenesis. Plasma angiotensin converting enzyme-2 (ACE2) activity was increased (p = 0.0016). Uncoupling protein-1 in white adipose tissue (WAT) was partially restored after IRW supplementation. IRW improves glucose tolerance and body composition in HFD-fed mice and promotes glucose uptake in skeletal muscle via multiple signaling pathways, independent of angiotensin converting enzyme (ACE) inhibition.

7.
Mol Nutr Food Res ; 66(17): e2200184, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35770889

RESUMO

SCOPE: This study aims to investigate the protective effects of four chicken muscle-derived peptides Val-Arg-Pro (VRP), Leu-Lys-Tyr (LKY), Val-Arg-Tyr (VRY), and Val-Val-His-Pro-Lys-Glu-Ser-Phe [VVHPKESF (V-F)] on tumor necrosis factor alpha (TNFα)-induced endothelial inflammation and oxidative stress in human vascular endothelial EA.hy926 cells. METHODS AND RESULTS: Inflammation and oxidative stress are induced in EA.hy926 cells by TNFα (10 ng mL-1 ) treatment for different periods of time. Inflammatory proteins and signaling molecules including inducible nitric oxide synthase, intracellular cell adhesion molecule-1, vascular cell adhesion molecule-1 (VCAM-1), cyclooxygenase 2 (COX2), nuclear factor kappa B (NF-κB), mitogen-activated protein kinases (MAPKs), and TNFα receptor 1 (TNFR1) are measured by qRT-PCR or western blotting; soluble TNFR1 level and nicotinamide adenine dinucleotide phosphate NADPH) oxidase activity are determined by Elisa kits; superoxide is measured by dihydroethidium staining. Only V-F treatment inhibits the expression of VCAM-1 and COX2, via suppressing NF-κB and p38 MAPK signaling, respectively, while reduced oxidative stress via the inhibition of NADPH oxidase activity; V-F treatment attenuates both gene and protein expressions of TNFR1. CONCLUSION: V-F treatment ameliorates TNFα-induced endothelial inflammation and oxidative stress likely via the inhibition of TNFR1 signaling, suggesting its potential as a functional food ingredient or nutraceutical in the prevention and treatment of hypertension and cardiovascular diseases.


Assuntos
NF-kappa B , Fator de Necrose Tumoral alfa , Animais , Galinhas/metabolismo , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Células Endoteliais , Humanos , Inflamação/metabolismo , Proteínas Musculares/metabolismo , NF-kappa B/metabolismo , Estresse Oxidativo , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Molécula 1 de Adesão de Célula Vascular/genética , Molécula 1 de Adesão de Célula Vascular/metabolismo
8.
Food Chem (Oxf) ; 4: 100069, 2022 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-35415678

RESUMO

Dasatinib, a small-molecule drug used as a treatment for chronic myeloid leukemia induces mitochondrial damage in embryonic kidney (293 T) cells (p < 0.05). This dasatinib induced mitochondrial injury in kidney cells was mitigated by H3K36me3 activating ovotransferrin-derived peptides GWN and GW. Pre-treatment of kidney cells with GWN and GW lead to elevation of cytoprotective sirtuins, SIRT1 and SIRT3, in response to dasatinib injury (p < 0.01) in vitro. Both peptides, GWN and GW, also reversed dasatinib induced the loss of mitochondria in kidney cells and promoted the protein expression of COX4 (p < 0.01). Mechanistically, loss of SIRT1 in kidney cells abolished the ability of GWN and GW to protect embryonic kidney cells against dasatinib injury in vitro. Overall, we provide cell based evidence showing that GWN and GW exhibit the ability to protect mitochondria against dasatinib-induced mitochondrial damage in a SIRT1 dependent manner.

9.
J Agric Food Chem ; 70(12): 3585-3595, 2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35302369

RESUMO

Chronic diseases, including metabolic diseases, have become a worldwide public health issue. Research regarding the use of bioactive peptides or protein hydrolysates derived from food, as the diet-based strategies for the prevention and mitigation of chronic diseases, has increased exponentially in the past decades. Numerous in vitro and in vivo studies report the efficacy and safety of food-derived bioactive peptides and protein hydrolysates as antihypertensive, anti-inflammatory, antidiabetic, and antioxidant agents. However, despite promising preclinical results, an inadequate understanding of their mechanisms of action and pharmacokinetics restrict their clinical translation. Commercialization of bioactive peptides can be further hindered due to scarce information regarding their efficacy, safety, bitter taste, as well as the lack of a cost-effective method of production. This review provides an overview of the current clinical evidence and challenges to commercial applications of food-derived bioactive peptides and protein hydrolysates for the prevention and alleviation of chronic diseases.


Assuntos
Peptídeos , Hidrolisados de Proteína , Anti-Hipertensivos , Antioxidantes , Alimentos , Peptídeos/farmacologia
10.
Sci Rep ; 11(1): 14291, 2021 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-34253808

RESUMO

MOTS-c (mitochondrial ORF of the twelve S-c) is a 16-amino-acid mitochondrial peptide that has been shown to counter insulin resistance and alleviate obesity in vivo. However, the mechanisms involved in the pharmacological action of MOTS-c remain elusive. Based on the ability of MOTS-c to improve insulin resistance and promote cold adaptation, we hypothesized that MOTS-c might play a role in boosting the number of mitochondria in a cell. We found that treatment of mammalian cells with MOTS-c increased protein levels of TFAM, COX4, and NRF1, which are markers for mitochondrial biogenesis. However, flow cytometry analysis using MitoTracker Green revealed a sharp reduction in the mitochondrial count after MOTS-c treatment. We then anticipated possible synchronized activation of mitofusion/mitochondrial fusion by MOTS-c following the onset of mitochondrial biogenesis. This was confirmed after a significant increase in protein levels two GTPases, OPA1, and MFN2, both vital for the fusion of mammalian mitochondria. Finally, we found that inhibition of the two GTPases by TNFα abrogated the ability of MOTS-c to prompt GLUT4 translocation and glucose uptake. Similar results were obtained by siRNA KD of MFN2 as well. Our results reveal for the first time a pathway that links mitofusion to MOTS-c-induced GLUT4 translocation.


Assuntos
Transportador de Glucose Tipo 4/antagonistas & inibidores , Proteínas Mitocondriais/química , Adipócitos/citologia , Animais , Linhagem Celular Tumoral , Citometria de Fluxo , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Humanos , Doenças Metabólicas/metabolismo , Camundongos , Microscopia Eletrônica de Transmissão , Mitocôndrias/metabolismo , Peptídeos/química , Transporte Proteico , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Resultado do Tratamento
11.
Antioxidants (Basel) ; 10(2)2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33671990

RESUMO

Spent hens are egg-laying hens reaching the end of their egg-laying cycles, being a major byproduct of the egg industry. Recent studies have been focusing on finding new value-added uses for spent hens. We have previously identified four bioactive peptides from spent hen muscle proteins, including three angiotensin-converting enzyme (ACE) inhibitory (ACEi) peptides (VRP, LKY, and VRY), and one ACE2 upregulating (ACE2u) peptide (VVHPKESF (V-F)). In the current study, we further assessed their antioxidant and cytoprotective activities in two vascular cell lines-vascular smooth muscle A7r5 cells (VSMCs) and endothelial EA.hy926 cells (ECs)-upon stimulation by tumor necrosis factor alpha (TNFα) and angiotensin (Ang) II, respectively. The results from our study revealed that all four peptides attenuated oxidative stress in both cells. None of the investigated peptides altered the expression of TNFα receptors in ECs; however, VRY and V-F downregulated Ang II type 1 receptor (AT1R), while V-F upregulated the Mas receptor (MasR) in VSMCs. Further, we found that the antioxidant effects of VRP, LKY, and VRY were likely through acting as direct radical scavengers, while that of V-F was at least partially ascribed to increased endogenous antioxidant enzymes (GPx4 and SOD2) in both cells. Besides, as an ACE2u peptide, V-F exerted antioxidant effect in a MasR-dependent manner, indicating a possible involvement of the upregulated ACE2-MasR axis underlying its antioxidant action. The antioxidant activities of VRP, LKY, VRY, and V-F in vascular cells indicated their multifunctional properties, in addition to their ACEi or ACE2u activity, which supports their potential use as functional food ingredients against hypertension.

12.
J Agric Food Chem ; 69(5): 1555-1566, 2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33522796

RESUMO

Nicotinamide adenine dinucleotide (NAD+) plays a vital role in cellular processes that govern human health and disease. Nicotinamide phosphoribosyltransferase (NAMPT) is a rate-limiting enzyme in NAD+ biosynthesis. Thus, boosting NAD+ level via an increase in NAMPT levels is an attractive approach for countering the effects of aging and metabolic disease. This study aimed to establish IRW (Ile-Arg-Trp), a small tripeptide derived from ovotransferrin, as a booster of NAMPT levels. Treatment of muscle (L6) cells with IRW increased intracellular NAMPT protein levels (2.2-fold, p < 0.05) and boosted NAD+ (p < 0.01). Both immunoprecipitation and recombinant NAMPT assays indicated the possible NAMPT-activating ability of IRW (p < 0.01). Similarly, IRW increased NAMPT mRNA and protein levels in the liver (2.6-fold, p < 0.01) and muscle tissues (2.3-fold, p < 0.05) of C57BL/6J mice fed with a high-fat diet (HFD). A significantly increased level of circulating NAD+ was also observed following IRW treatment (4.7 fold, p < 0.0001). Dosing of Drosophila melanogaster with IRW elevated both D-NAAM (fly NAMPT) and NAD+ in vivo (p < 0.05). However, IRW treatment did not boost NAMPT levels in SIRT1 KO cells, indicating a possible SIRT1 dependency for the pharmacological effect. Overall, these data indicate that IRW is a novel small peptide booster of the NAMPT pool.


Assuntos
Citocinas/metabolismo , Nicotinamida Fosforribosiltransferase/metabolismo , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Peptídeos/administração & dosagem , Animais , Linhagem Celular , Citocinas/genética , Drosophila melanogaster , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , NAD/metabolismo , Nicotinamida Fosforribosiltransferase/genética , Obesidade/genética
13.
Eur J Pharmacol ; 890: 173661, 2021 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-33098835

RESUMO

COVID-19 (Coronavirus disease 2019) is a global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a positive-sense RNA virus. This virus has emerged as a threat to global health, social stability, and the global economy. This pandemic continues to cause rampant mortality worldwide with the dire urgency to develop novel therapeutic agents. To meet this task, this article discusses advances in the research and potential application of bioactive peptides for possible mitigation of infection by SARS-CoV-2. Growing insight into the molecular biology of SARS-CoV-2 has revealed potential druggable targets for bioactive peptides. Bioactive peptides with unique amino acid sequences can mitigate such targets including, type II transmembrane serine proteases (TMPRSS2) inhibition, furin cleavage, and renin-angiotensin-aldosterone system (RAAS) members. Based on current evidence and structure-function analysis, multiple bioactive peptides present potency to neutralize the virus. To date, no SARS-CoV-2-explicit drug has been reported, but we here introduce bioactive peptides in the perspective of their potential activity against SARS-CoV-2 infection.


Assuntos
Antivirais/uso terapêutico , Tratamento Farmacológico da COVID-19 , Peptídeos/uso terapêutico , SARS-CoV-2 , Animais , Humanos
14.
Molecules ; 25(17)2020 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-32847114

RESUMO

Resveratrol (3,4,5-Trihydroxy-trans-stilbene) is a naturally occurring polyphenol that exhibits beneficial pleiotropic health effects. It is one of the most promising natural molecules in the prevention and treatment of chronic diseases and autoimmune disorders. One of the key limitations in the clinical use of resveratrol is its extensive metabolic processing to its glucuronides and sulfates. It has been estimated that around 75% of this polyphenol is excreted via feces and urine. To possibly alleviate the extensive metabolic processing and improve bioavailability, we have added segments of acetylsalicylic acid to resveratrol in an attempt to maintain the functional properties of both. We initially characterized resveratrol-aspirin derivatives as products that can inhibit cytochrome P450 Family 1 Subfamily A Member 1 (CYP1A1) activity, DNA methyltransferase (DNMT) activity, and cyclooxygenase (COX) activity. In this study, we provide a detailed analysis of how resveratrol and its aspirin derivatives can inhibit nuclear factor kappa B (NFκB) activation, cytokine production, the growth rate of cancer cells, and in vivo alleviate intestinal inflammation and tumor growth. We identified resveratrol derivatives C3 and C11 as closely preserving resveratrol bioactivities of growth inhibition of cancer cells, inhibition of NFκB activation, activation of sirtuin, and 5' adenosine monophosphate-activated protein kinase (AMPK) activity. We speculate that the aspirin derivatives of resveratrol would be more metabolically stable, resulting in increased efficacy for treating immune disorders and as an anti-cancer agent.


Assuntos
Anti-Inflamatórios/farmacologia , Antineoplásicos/farmacologia , Aspirina , Neoplasias do Colo/tratamento farmacológico , Inibidores Enzimáticos , Proteínas de Neoplasias/antagonistas & inibidores , Resveratrol , Animais , Aspirina/análogos & derivados , Aspirina/química , Aspirina/farmacologia , Neoplasias do Colo/enzimologia , Neoplasias do Colo/patologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Células HCT116 , Humanos , Camundongos , Proteínas de Neoplasias/metabolismo , Resveratrol/análogos & derivados , Resveratrol/química , Resveratrol/farmacologia
15.
Food Funct ; 11(8): 7197-7207, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32756709

RESUMO

Osteoporosis is a bone disease affecting more than 2 million people comprising 1 in 3 women and 1 in 5 men in Canada. One possible approach to prevent this disease is to stimulate the activity of osteoblasts (bone-forming cells) using food protein-derived bioactive peptides. In our previous study, an ACE inhibitory tripeptide LRW (Leu-Arg-Trp) was identified from pea protein. This work aims to investigate the effect of tripeptide LRW on promoting osteoblastic activity. The tripeptide LRW treatment (50 µM) in MC3T3-E1 cells increased cell proliferation (4-fold increase) as indicated by BrdU incorporation assay. Moreover, we found that tripeptide LRW stimulated osteoblastic differentiation by increasing the levels of type 1 collagen (COL1A2; 3-fold increase), alkaline phosphatase (ALP; 4-fold increase), and runt-related transcription factor 2 (Runx2; 2-fold increase) and the activation of the protein kinase B (Akt) signaling pathway. Furthermore, tripeptide LRW increased matrix mineralization as evidenced by Alizarin-S red staining and nodule formation, osteoprotegerin levels (OPG; 2-fold increase), and wound healing based on cell migration assay. Overall, pea protein-derived bioactive peptide LRW can positively modulate the activity of osteoblasts probably via the Akt/Runx2 pathway, indicating its potential use for the prevention of osteoporosis.


Assuntos
Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Oligopeptídeos/farmacologia , Osteoblastos/efeitos dos fármacos , Proteínas de Ervilha/química , Proteínas Proto-Oncogênicas c-akt/metabolismo , Células 3T3 , Fosfatase Alcalina/metabolismo , Animais , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Colágeno Tipo I/metabolismo , Camundongos , Osteoporose/prevenção & controle , Transdução de Sinais/efeitos dos fármacos , Cicatrização/efeitos dos fármacos
16.
J Agric Food Chem ; 68(35): 9427-9435, 2020 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-32786820

RESUMO

Ovotransferrin, a major protein in egg white, induces osteoblast proliferation and survival in vitro. However, it is unclear which receptor(s) drive the beneficial activities of this bioactive glycoprotein. We examined the role of the low-density lipoprotein receptor-related protein 1 (LRP1) in the actions of ovotransferrin on osteoblasts. Here, we showed that LRP1 in part regulates osteogenic action of ovotransferrin. Mouse osteoblasts, MC3T3-E1, with LRP1 deletion displayed diminished osteogenic activity. Our findings indicate that the bone-stimulatory impact of ovotransferrin on RUNX2, COL1A2, and Ca2+ signaling is LRP1-dependent. This shows that LRP1 not only acts as a scavenger receptor but also participates in ovotransferrin-mediated gene transcription. However, some of the key bone formatting factors such as ALP synthesis and serine residue phosphorylation of Akt by ovotransferrin remained independent of LRP1. Overall, this study shows that LRP1-ovotransferrin interaction might underline in part the ability of ovotransferrin to promote bone formation.


Assuntos
Conalbumina/metabolismo , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Osteoblastos/citologia , Osteoblastos/metabolismo , Osteogênese , Animais , Linhagem Celular , Galinhas , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Camundongos , Transdução de Sinais
17.
J Agric Food Chem ; 68(13): 3947-3953, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32157879

RESUMO

Vascular oxidative stress, inflammatory response, and proliferation are crucial mediators of vascular dysfunction which contribute to the pathology of hypertension. A tripeptide, LRW (Leu-Arg-Trp), was characterized from pea protein legumin, and its previously studied isomer IRW (Ile-Arg-Trp) was reported to exhibit antihypertensive activity via activation of angiotensin-converting enzyme 2. The objective of the current study was to explore the effects of LRW on vascular stress in vascular smooth muscle cells (VSMCs) under angiotensin II (Ang II)-induced cellular stress. LRW treatment could decrease Ang II-triggered superoxide production, inflammation, and proliferation in VSMCs. The abovementioned advantageous effects appeared to involve the upregulation of the ACE2-Ang-(1-7)-MasR axis and modulation of the nuclear factor-κB pathway. These findings specified the prospective role of LRW as a functional food ingredient or nutraceutical in the prevention of cardiovascular diseases, particularly hypertension and vascular damage.


Assuntos
Angiotensina II/metabolismo , Anti-Hipertensivos/farmacologia , Hipertensão/metabolismo , Músculo Liso Vascular/efeitos dos fármacos , Oligopeptídeos/farmacologia , Pisum sativum/química , Angiotensina II/genética , Animais , Aorta/citologia , Aorta/efeitos dos fármacos , Humanos , Hipertensão/tratamento farmacológico , Hipertensão/genética , Hipertensão/fisiopatologia , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Proto-Oncogene Mas , Ratos , Superóxidos/metabolismo
18.
Biochim Biophys Acta Gen Subj ; 1863(6): 1138-1146, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30980895

RESUMO

BACKGROUND: Osteoblasts maintain the structural integrity of bone via differentiation and mineralization; therefore, their malfunction or reduced activity can cause serious bone disorders. Although studies have demonstrated the association between nutrients and bone, research on food-derived bioactive peptides and bone health are scanty. METHODS: Osteoblasts MC3T3-E1 were treated with IRW (50 and 25 µM). Cell proliferation, cell cycle, osteoblastic differentiation, and mineralization were tested to evaluate the effects of IRW on osteogenesis promotion. The activation of PI3K-Akt-RUNX2 pathway and collagen synthesis were investigated to better understand the functions of IRW. RESULTS: IRW treatment (50 and 25 µM) in MC3T3-E1 cells caused a significant increase in cell proliferation by increasing the percentage of S and G2/M phase. Furthermore, IRW promoted mineralization in MC3T3-E1 cells. Mechanistically, we found that IRW treatment resulted in a 4-fold increase of Akt serine phosphorylation and a 2-fold increase of its downstream target RUNX2. Expression levels of RUNX2 associated proteins were concomitantly altered: ALP (2-fold increase), Col1A2 (2-fold increase), RANKL (2-fold decrease), and OPG (2-fold increase). Meanwhile, a parallel collagen synthesis pathway was found to contribute to IRW-stimulated osteogenesis. CONCLUSIONS: IRW, an egg-derived small bioactive peptide enhances osteoblastic activity and stimulates osteogenesis. The stimulation is primarily due to the activation of PI3K-Akt-RUNX2 pathway and its downstream effectors, accompanied by a secondary collagen synthesis pathway. GENERAL SIGNIFICANCE: Our results revealed the positive effects of tripeptide IRW on regulating osteogenesis and collagen synthesis, indicating its potential for the prevention or treatment of osteoporosis.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Oligopeptídeos/farmacologia , Osteoblastos/metabolismo , Osteogênese/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Animais , Antígenos de Diferenciação/metabolismo , Linhagem Celular , Camundongos , Osteoblastos/citologia
19.
J Pharmacol Exp Ther ; 365(2): 354-367, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29555876

RESUMO

Receptor-interacting protein kinase 2 (RIP2 or RICK, herein referred to as RIPK2) is linked to the pathogen pathway that activates nuclear factor κ-light-chain-enhancer of activated B cells (NFκB) and autophagic activation. Using molecular modeling (docking) and chemoinformatics analyses, we used the RIPK2/ponatinib crystal structure and searched in chemical databases for small molecules exerting binding interactions similar to those exerted by ponatinib. The identified RIPK2 inhibitors potently inhibited the proliferation of cancer cells by > 70% and also inhibited NFκB activity. More importantly, in vivo inhibition of intestinal and lung inflammation rodent models suggests effectiveness to resolve inflammation with low toxicity to the animals. Thus, our identified RIPK2 inhibitor may offer possible therapeutic control of inflammation in diseases such as inflammatory bowel disease, asthma, cystic fibrosis, primary sclerosing cholangitis, and pancreatitis.


Assuntos
Descoberta de Drogas , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Proteína Serina-Treonina Quinase 2 de Interação com Receptor/antagonistas & inibidores , Apoptose/efeitos dos fármacos , Domínio Catalítico , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Colite Ulcerativa/tratamento farmacológico , Humanos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/patologia , Simulação de Acoplamento Molecular , NF-kappa B/metabolismo , Inibidores de Proteínas Quinases/metabolismo , Inibidores de Proteínas Quinases/uso terapêutico , Proteína Serina-Treonina Quinase 2 de Interação com Receptor/química , Proteína Serina-Treonina Quinase 2 de Interação com Receptor/metabolismo
20.
Mol Cancer ; 17(1): 48, 2018 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-29455673

RESUMO

The human genome encodes 538 protein kinases that transfer a γ-phosphate group from ATP to serine, threonine, or tyrosine residues. Many of these kinases are associated with human cancer initiation and progression. The recent development of small-molecule kinase inhibitors for the treatment of diverse types of cancer has proven successful in clinical therapy. Significantly, protein kinases are the second most targeted group of drug targets, after the G-protein-coupled receptors. Since the development of the first protein kinase inhibitor, in the early 1980s, 37 kinase inhibitors have received FDA approval for treatment of malignancies such as breast and lung cancer. Furthermore, about 150 kinase-targeted drugs are in clinical phase trials, and many kinase-specific inhibitors are in the preclinical stage of drug development. Nevertheless, many factors confound the clinical efficacy of these molecules. Specific tumor genetics, tumor microenvironment, drug resistance, and pharmacogenomics determine how useful a compound will be in the treatment of a given cancer. This review provides an overview of kinase-targeted drug discovery and development in relation to oncology and highlights the challenges and future potential for kinase-targeted cancer therapies.


Assuntos
Neoplasias/metabolismo , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Quinases/metabolismo , Animais , Humanos , Estrutura Molecular , Neoplasias/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA