RESUMO
Excessive fructose intake has been associated with the development and progression of pancreatic cancer. This study aimed to elucidate the relationship between fructose utilization and pancreatic cancer progression. Our findings revealed that pancreatic cancer cells have a high capacity to utilize fructose and are capable of converting glucose to fructose via the AKR1B1-mediated polyol pathway, in addition to uptake via the fructose transporter GLUT5. Fructose metabolism exacerbates pancreatic cancer proliferation by enhancing glycolysis and accelerating the production of key metabolites that regulate angiogenesis. However, pharmacological blockade of fructose metabolism has been shown to slow pancreatic cancer progression and synergistically enhance anti-tumor capabilities when combined with anti-angiogenic agents. Overall, targeting fructose metabolism may prove to be a promising therapeutic approach in the treatment of pancreatic cancer.
RESUMO
Carnitine palmitoyltransferase 1C (CPT1C) is an enzyme that regulates tumor cell proliferation and metabolism by modulating mitochondrial function and lipid metabolism. Hypoxia, commonly observed in solid tumors, promotes the proliferation and progression of pancreatic cancer by regulating the metabolic reprogramming of tumor cells. So far, the metabolic regulation of hypoxic tumor cells by CPT1C and the upstream mechanisms of CPT1C remain poorly understood. Yin Yang 1 (YY1) is a crucial oncogene for pancreatic tumorigenesis and acts as a transcription factor that is involved in multiple metabolic processes. This study aimed to elucidate the relationship between YY1 and CPT1C under hypoxic conditions and explore their roles in hypoxia-induced proliferation and metabolic alterations of tumor cells. The results showed enhancements in the proliferation and metabolism of PANC-1 cells under hypoxia, as evidenced by increased cell growth, cellular ATP levels, up-regulation of mitochondrial membrane potential, and decreased lipid content. Interestingly, knockdown of YY1 or CPT1C inhibited hypoxia-induced rapid cell proliferation and vigorous cell metabolism. Importantly, for the first time, we reported that YY1 directly activated the transcription of CPT1C and clarified that CPT1C was a novel target gene of YY1. Moreover, the YY1 and CPT1C were found to synergistically regulate the proliferation and metabolism of hypoxic cells through transfection with YY1 siRNA to CRISPR/Cas9-CPT1C knockout PANC-1 cells. Taken together, these results indicated that the YY1-CPT1C axis could be a new target for the intervention of pancreatic cancer proliferation and metabolism.
Assuntos
Carnitina O-Palmitoiltransferase , Proliferação de Células , Neoplasias Pancreáticas , Transdução de Sinais , Fator de Transcrição YY1 , Fator de Transcrição YY1/metabolismo , Fator de Transcrição YY1/genética , Carnitina O-Palmitoiltransferase/metabolismo , Carnitina O-Palmitoiltransferase/genética , Humanos , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/genética , Proliferação de Células/fisiologia , Linhagem Celular Tumoral , Transdução de Sinais/fisiologia , Hipóxia Celular/fisiologiaRESUMO
Human pregnane X receptor (PXR) is critical for regulating the expression of key drug-metabolizing enzymes such as CYP3A and CYP2C. Our recent study revealed that treatment with rodent-specific PXR agonist pregnenolone-16α-carbonitrile (PCN) significantly induced hepatomegaly and promoted liver regeneration after two-thirds partial hepatectomy (PHx) in mice. However, it remains unclear whether PXR activation induces hepatomegaly and liver regeneration and simultaneously promotes metabolic function of the liver. Here, we investigated the metabolism activity of CYP1A2, CYP3A1/2 and CYP2C6/11 during PXR activation-induced liver enlargement and regeneration in rats after cocktail dosing of CYP probe drugs. For PCN-induced hepatomegaly, a notable increase in the metabolic activity of CYP3A1/2 and CYP2C6/11, as evidenced by the plasma exposure of probe substrates and the AUC ratios of the characteristic metabolites to its corresponding probe substrates. The metabolic activity of CYP1A2, CYP3A1/2 and CYP2C6/11 decreased significantly after PHx. However, PCN treatment obviously enhanced the metabolic activity of CYP2C6/11 and CYP3A1/2 in PHx rats. Furthermore, the protein expression levels of CYP3A1/2 and CYP2C6/11 in liver were up-regulated. Taken together, this study demonstrates that PXR activation not only induces hepatomegaly and liver regeneration in rats, but also promotes the protein expression and metabolic activity of the PXR downstream metabolizing enzymes such as CYP3A1/2 and CYP2C6/11 in the body.
Assuntos
Citocromo P-450 CYP3A , Hepatomegalia , Regeneração Hepática , Fígado , Receptor de Pregnano X , Carbonitrila de Pregnenolona , Animais , Receptor de Pregnano X/metabolismo , Receptor de Pregnano X/genética , Regeneração Hepática/efeitos dos fármacos , Masculino , Citocromo P-450 CYP3A/metabolismo , Carbonitrila de Pregnenolona/farmacologia , Fígado/metabolismo , Fígado/enzimologia , Fígado/efeitos dos fármacos , Ratos , Hepatomegalia/metabolismo , Hepatomegalia/patologia , Hidrocarboneto de Aril Hidroxilases/metabolismo , Hidrocarboneto de Aril Hidroxilases/genética , Família 2 do Citocromo P450/metabolismo , Família 2 do Citocromo P450/genética , Ratos Sprague-Dawley , Citocromo P-450 CYP1A2/metabolismo , Citocromo P-450 CYP1A2/genética , Esteroide 16-alfa-Hidroxilase/metabolismo , Esteroide 16-alfa-Hidroxilase/genética , Esteroide 12-alfa-Hidroxilase/metabolismo , Esteroide 12-alfa-Hidroxilase/genética , HepatectomiaRESUMO
Pregnane X receptor (PXR) has been considered as a promising therapeutic target for cholestasis due to its crucial regulation in bile acid biosynthesis and metabolism. To search promising natural PXR agonists, the PXR agonistic activities of five traditional Chinese medicines (TCMs) with hepatoprotective efficacy were assayed, and Hypericum japonicum as the most active one was selected for subsequent phytochemical investigation, which led to the isolation of eight nonaromatic acylphloroglucinol-terpenoid adducts including seven new compounds (1 - 4, 5a, 5b and 6). Their structures including absolute configurations were determined by comprehensive spectroscopic, computational and X-ray diffraction analysis. Meanwhile, the PXR agonistic activities of aplenty compounds were evaluated via dual-luciferase reporter assay, RT-qPCR and immunofluorescence. Among them, compounds 1 - 4 showed more potent activity than the positive drug rifampicin. Furthermore, the molecular docking revealed that 1 - 4 were docked well on the PXR ligand binding domain and formed hydrogen bonds with amino acid residues Gln285, Ser247 and His409. This investigation revealed that H. japonicum may serve as a rich source of natural PXR agonists.
Assuntos
Hypericum , Simulação de Acoplamento Molecular , Floroglucinol , Receptor de Pregnano X , Hypericum/química , Receptor de Pregnano X/agonistas , Receptor de Pregnano X/metabolismo , Humanos , Floroglucinol/farmacologia , Floroglucinol/química , Floroglucinol/análogos & derivados , Relação Estrutura-Atividade , Estrutura Molecular , Terpenos/farmacologia , Terpenos/química , Terpenos/isolamento & purificação , Relação Dose-Resposta a Droga , Descoberta de Drogas , Células Hep G2RESUMO
Endotoxemia-related acute liver injury has a poor prognosis and high mortality, and macrophage polarization plays a central role in the pathological process. Pregnane X receptor (PXR) serves as a nuclear receptor and xenosensor, safeguarding the liver from toxic stimuli. However, the effect and underlying mechanism of PXR activation on endotoxemic liver injury remain largely unknown. Here, the expression of PXR is reported in human and murine macrophages, and PXR activation modified immunotypes of macrophages. Moreover, PXR activation significantly attenuated endotoxemic liver injury and promoted macrophage M2 polarization. Macrophage depletion by GdCl3 confirmed the essential of macrophages in the beneficial effects observed with PXR activation. The role of PXR in macrophages is further validated using AAV8-F4/80-Pxr shRNA-treated mice; the PXR-mediated hepatoprotection is impaired, and M2 polarization enhancement is blunted. Additionally, treatment with PXR agonists inhibited lipopolysaccharide (LPS)-induced M1 polarization and favored M2 polarization in BMDM, Raw264.7, and THP-1 cells. Further analyses revealed an interaction between PXR and p-STAT6 in vivo and in vitro. Moreover, blocking Pxr or Stat6 abolished the PXR-induced polarization shift. Collectively, macrophage PXR activation attenuated endotoxin-induced liver injury and regulated macrophage polarization through the STAT6 signaling pathway, which provided a potential therapeutic target for managing endotoxemic liver injury.
Assuntos
Endotoxinas , Macrófagos , Receptor de Pregnano X , Animais , Humanos , Masculino , Camundongos , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/genética , Modelos Animais de Doenças , Endotoxemia/metabolismo , Endotoxemia/genética , Lipopolissacarídeos , Fígado/metabolismo , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Receptor de Pregnano X/metabolismo , Receptor de Pregnano X/genética , Transdução de Sinais , FemininoRESUMO
Epigenetic pathways play a critical role in the initiation, progression, and metastasis of cancer. Over the past few decades, significant progress has been made in the development of targeted epigenetic modulators (e.g., inhibitors). However, epigenetic inhibitors have faced multiple challenges, including limited clinical efficacy, toxicities, lack of subtype selectivity, and drug resistance. As a result, the design of new epigenetic modulators (e.g., degraders) such as PROTACs, molecular glue, and hydrophobic tagging (HyT) degraders has garnered significant attention from both academia and pharmaceutical industry, and numerous epigenetic degraders have been discovered in the past decade. In this review, we aim to provide an in-depth illustration of new degrading strategies (2017-2023) targeting epigenetic proteins for cancer therapy, focusing on the rational design, pharmacodynamics, pharmacokinetics, clinical status, and crystal structure information of these degraders. Importantly, we also provide deep insights into the potential challenges and corresponding remedies of this approach to drug design and development. Overall, we hope this review will offer a better mechanistic understanding and serve as a useful guide for the development of emerging epigenetic-targeting degraders.
RESUMO
Pregnane X receptor (PXR) belongs to the nuclear receptor superfamily that plays a crucial role in hepatic physiologic and pathologic conditions. Phase separation is a process in which biomacromolecules aggregate and condense into a dense phase as liquid condensates and coexist with a dilute phase, contributing to various cellular and biologic functions. Until now, whether PXR could undergo phase separation remains unclear. This study aimed to investigate whether PXR undergoes phase separation. Analysis of the intrinsically disordered regions (IDRs) using algorithm tools indicated a low propensity of PXR to undergo phase separation. Experimental assays such as hyperosmotic stress, agonist treatment, and optoDroplets assay demonstrated the absence of phase separation for PXR. OptoDroplets assay revealed the inability of the fusion protein of Cry2 with PXR to form condensates upon blue light stimulation. Moreover, phase separation of PXR did not occur even though the mRNA and protein expression levels of PXR target, cytochrome P450 3A4, changed after sorbitol treatment. In conclusion, for the first time, these findings suggested that exogenous PXR does not undergo phase separation following activation or under hyperosmotic stress in nucleus of cells. SIGNIFICANCE STATEMENT: PXR plays a critical role in hepatic physiological and pathological processes. The present study clearly demonstrated that exogenous PXR does not undergo phase separation after activation by agonist or under hyperosmotic stress in nucleus. These findings may help understand PXR biology.
Assuntos
Núcleo Celular , Receptor de Pregnano X , Receptor de Pregnano X/metabolismo , Receptor de Pregnano X/genética , Humanos , Núcleo Celular/metabolismo , Células Hep G2 , Citocromo P-450 CYP3A/metabolismo , Citocromo P-450 CYP3A/genética , Pressão Osmótica , Separação de FasesRESUMO
During the development of therapeutic microRNAs (miRNAs or miRs), it is essential to define their pharmacological actions. Rather, miRNA research and therapy mainly use miRNA mimics synthesized in vitro. After experimental screening of unique recombinant miRNAs produced in vivo, three lead antiproliferative miRNAs against human NSCLC cells, miR-22-3p, miR-9-5p, and miR-218-5p, were revealed to target folate metabolism by bioinformatic analyses. Recombinant miR-22-3p, miR-9-5p, and miR-218-5p were shown to regulate key folate metabolic enzymes to inhibit folate metabolism and subsequently alter amino acid metabolome in NSCLC A549 and H1975 cells. Isotope tracing studies further confirmed the disruption of one-carbon transfer from serine to folate metabolites by all three miRNAs, inhibition of glucose uptake by miR-22-3p, and reduction of serine biosynthesis from glucose by miR-9-5p and -218-5p in NSCLC cells. With greater activities to interrupt NSCLC cell respiration, glycolysis, and colony formation than miR-9-5p and -218-5p, recombinant miR-22-3p was effective to reduce tumor growth in two NSCLC patient-derived xenograft mouse models without causing any toxicity. These results establish a common antifolate mechanism and differential actions on glucose uptake and metabolism for three lead anticancer miRNAs as well as antitumor efficacy for miR-22-3p nanomedicine, which shall provide insight into developing antimetabolite RNA therapies.
RESUMO
Cellular senescence is a state of proliferative arrest, and the development of carcinoma can be suppressed by conferring tumor cell senescence. Recently, we found that carnitine palmitoyltransferase 1C (CPT1C) controls tumor cell proliferation and senescence via regulating lipid metabolism and mitochondrial function. Here, 13C-metabolic flux analysis (13C-MFA) was performed and the results revealed that CPT1C knockdown in MDA-MB-231 cells significantly induced cellular senescence accompanied by altered fatty acid metabolism. Strikingly, stearate synthesis was decreased while oleate was increased. Furthermore, stearate significantly inhibited proliferation while oleate reversed the senescent phenotype induced by silencing CPT1C in MDA-MB-231 cells as well as PANC-1 cells. A939572, an inhibitor of stearoyl-Coenzyme A desaturase 1, had the same effect as stearate to inhibit cellular proliferation. These results demonstrated that stearate and oleate are involved in CPT1C-mediated tumor cellular senescence, and the regulation of stearate/oleate rate via inhibition of SCD-1 could be an additional strategy with depletion of CPT1C for cancer therapy.
Assuntos
Neoplasias , Ácido Oleico , Humanos , Ácido Oleico/farmacologia , Estearatos , Análise do Fluxo Metabólico , Carnitina O-Palmitoiltransferase/genética , Carnitina O-Palmitoiltransferase/metabolismo , Senescência Celular/genéticaRESUMO
There is an urgent need to identify reliable genetic biomarkers for accurate diagnosis, prognosis, and treatment of different tumor types. Described as a prognostic marker for many tumors is the neuronal protein carnitine palmitoyltransferase 1 C (CPT1C). Several studies report that CPT1C is involved in cancer cell adaptation to nutrient depletion and hypoxia. However, the molecular role played by CPT1C in cancer cells is controversial. Most published studies assume that, like canonical CPT1 isoforms, CPT1C is a mediator of fatty acid transport to mitochondria for beta-oxidation, despite the fact that CPT1C has inefficient catalytic activity and is located in the endoplasmic reticulum. In this review, we collate existing evidence on CPT1C in neurons, showing that CPT1C is a sensor of nutrients that interacts with and regulates other proteins involved in lipid metabolism and transport, lysosome motility, and the secretory pathway. We argue, therefore, that CPT1C expression in cancer cells is not a direct regulator of fat burn, but rather is a regulator of lipid metabolic reprograming and cell adaptation to environmental stressors. We also review the clinical relevance of CPT1C as a prognostic indicator and its contribution to tumor growth, cancer invasiveness, and cell senescence. This new and integrated vision of CPT1C function can help better understand the metabolic plasticity of cancer cells and improve the design of therapeutic strategies.
Assuntos
Carnitina O-Palmitoiltransferase , Neoplasias , Humanos , Carnitina O-Palmitoiltransferase/genética , Carnitina O-Palmitoiltransferase/metabolismo , Hipóxia/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/fisiopatologia , Neurônios/metabolismo , OxirreduçãoRESUMO
The widespread use of triazole fungicides in agricultural production poses a potential risk to human health. This study investigates the interaction of five triazole fungicides, i.e., tebuconazole, triticonazole, hexaconazole, penconazole, and uniconazole with human renal transporters, including OAT1, OAT3, OCT2, OCTN1, OCTN2, MATE1, MATE2-K, MRP2, MDR1, and BCRP, using transgenic cell models. For uptake transporters, triticonazole was the substrate of OAT1 and OAT3 and the inhibitor of OCT2. Tebuconazole and penconazole inhibited OCTN2 (100 µM), while tebuconazole, triticonazole, hexaconazole, penconazole, and uniconazole inhibited MATE1 (100 µM). Tebuconazole and hexaconazole inhibited MATE2-K (100 µM). All five triazole fungicides were not substrates or strong inhibitors of MRP2, MDR1, and BCRP efflux transporters. Penconazole inhibited OCT2 with IC50 = 1.12 µM. Penconazole and uniconazole inhibited MATE1 with IC50 = 0.94 µM and 0.87 µM. Tebuconazole and hexaconazole inhibited MATE2-K with IC50 = 0.96 µM and 1.04 µM, indicating that triazole fungicides may inhibit renal drug transporter activity at low concentrations. Triticonazole was transported by OAT1 and OAT3, and the Km values of triticonazole were 5.81 ± 1.75 and 47.35 ± 14.27, respectively. Tebuconazole and uniconazole were transported by OAT3, and the Km values of tebuconazole and uniconazole were 30.28 ± 7.18 and 87.61 ± 31.70, respectively, which may induce nephrotoxicity.
Assuntos
Fungicidas Industriais , Humanos , Fungicidas Industriais/toxicidade , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Proteínas de Neoplasias , Proteínas de Membrana Transportadoras , Triazóis/toxicidadeRESUMO
Pregnane X receptor (PXR) is highly expressed in the liver and plays a pivotal role in xenobiotic and endobiotic metabolism. We previously reported that PXR activation by its specific mouse agonist pregnenolone 16α-carbonitrile (PCN) significantly induces liver enlargement and lipid accumulation. However, the effect of long-term PCN treatment on PXR and mouse liver is still unknown. This study aimed to explore the influence of long-term administration of PCN on mouse liver and hepatic lipid homeostasis. Male C57BL/6 mice were injected intraperitoneally with PCN (100 mg/kg once a week) for 42 weeks. Serum and liver samples were collected for biochemical and histological analysis. PXR activation was investigated by Western blot. Ultra-high-performance liquid chromatography coupled with electrospray ionization high-resolution mass spectrometry (UHPLC-ESI-HRMS)-based lipidomics analysis was performed to explore the change in different lipid categories. The results showed that long-term treatment with PCN significantly promoted hepatomegaly without hepatocyte proliferation and enlargement. Long-term treatment with PCN did not upregulate PXR target proteins in mice, and there was no significant upregulation of CYP3A11, CYP2B10, UGT1A1, MRP2, or MRP4. Lipidomics analysis showed obvious hepatic lipid accumulation in the PCN-treated mice, and the most significant change was found in triglycerides (TGs). Additionally, long-term treatment with PCN had no risk for carcinogenesis. These findings demonstrated that long-term PCN treatment induces hepatomegaly and lipid accumulation without hepatocyte proliferation or enlargement.
Assuntos
Receptores de Esteroides , Animais , Masculino , Camundongos , Proliferação de Células , Hepatócitos , Hepatomegalia/induzido quimicamente , Hepatomegalia/metabolismo , Lipídeos , Fígado/metabolismo , Camundongos Endogâmicos C57BL , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores de Esteroides/agonistas , Receptores de Esteroides/metabolismoRESUMO
Immunotherapy has led to a paradigm shift in the treatment of cancer. Current cancer immunotherapies are mostly antibody-based, thus possessing advantages in regard to pharmacodynamics (e.g., specificity and efficacy). However, they have limitations in terms of pharmacokinetics including long half-lives, poor tissue/tumor penetration, and little/no oral bioavailability. In addition, therapeutic antibodies are immunogenic, thus may cause unwanted adverse effects. Therefore, researchers have shifted their efforts towards the development of small molecule-based cancer immunotherapy, as small molecules may overcome the above disadvantages associated with antibodies. Further, small molecule-based immunomodulators and therapeutic antibodies are complementary modalities for cancer treatment, and may be combined to elicit synergistic effects. Recent years have witnessed the rapid development of small molecule-based cancer immunotherapy. In this review, we describe the current progress in small molecule-based immunomodulators (inhibitors/agonists/degraders) for cancer therapy, including those targeting PD-1/PD-L1, chemokine receptors, stimulator of interferon genes (STING), Toll-like receptor (TLR), etc. The tumorigenesis mechanism of various targets and their respective modulators that have entered clinical trials are also summarized.
RESUMO
Peroxisome proliferator-activated receptor α (PPARα) is closely related to lipid metabolism and various liver diseases. Previous study has shown that chronic treatment with PPARα agonist WY-14643 can induce liver tumors in rodents, but the implications of this process on lipid metabolism in the liver remain unclear. Thus, this study aimed to explore the influences of chronic treatment with WY-14643 on the liver and hepatic lipid metabolism. Wild-type C57BL/6 mice were treated with WY-14643 (100 mg/kg/week, i.p.) or corn oil, and liver and serum samples were collected for testing after 42 weeks of WY-14643 treatment. The results showed that hepatomegaly, liver tumors with mild liver injury, and hepatocyte proliferation were induced in mice treated with WY-14643. The mRNA and protein expression levels of PPARα downstream targets acyl-CoA oxidase 1 and cytochrome P450 4A were significantly upregulated in the WY-14643-treated group. Lipidomic analysis revealed that chronic treatment with WY-14643 disturbed lipid homeostasis, especially triglycerides (TGs), which were significantly elevated after WY-14643 treatment. Moreover, TG homeostasis-related genes were significantly increased in the WY-14643-treated group. In conclusion, these findings demonstrated that hepatomegaly and liver tumors induced by chronic treatment with WY-14643 in mice are accompanied by hepatocyte proliferation and TG accumulation. SIGNIFICANCE STATEMENT: The present study clearly demonstrated that sustained peroxisome proliferator-activated receptor α (PPARα) activation by chronic treatment with WY-14643 induces hepatomegaly and liver tumors with triglyceride accumulation by regulating lipid homeostasis-related genes in mice. These findings may help to clarify the influences of sustained PPARα activation on liver lipid homeostasis and provide data for the clinically rational use of drugs that can activate PPARα.
Assuntos
Neoplasias Hepáticas , PPAR alfa , Camundongos , Animais , PPAR alfa/genética , PPAR alfa/metabolismo , Triglicerídeos/metabolismo , Hepatomegalia/induzido quimicamente , Hepatomegalia/patologia , Camundongos Knockout , Camundongos Endogâmicos C57BL , Fígado/metabolismo , Neoplasias Hepáticas/metabolismo , Carcinogênese/metabolismo , Carcinogênese/patologiaRESUMO
St. John's wort (SJW) is a medicinal herb remedy for mild depression. However, long-term use of SJW has raised safety concerns in clinical practice because of drug-drug interactions. Excessive use of acetaminophen (APAP) causes severe hepatotoxicity, but whether SJW modulates APAP-induced liver injury remains unclear. In this study, the effect of long-term SJW administration on APAP-induced acute hepatotoxicity and the involved mechanisms were investigated. Morphological and biochemical assessments clearly demonstrated that SJW exacerbates APAP-induced toxicity. Moreover, SJW markedly promoted glutathione depletion and increased the levels of the APAP-cysteine and APAP-N-acetylcysteinyl adducts in mice, which enhanced APAP metabolic activation and aggravated APAP-induced liver injury. To further elucidate APAP metabolic activation in liver injury induced by SJW, the activities and expression levels of CYP2E1 and CYP3A were measured. The results showed that the activities and expression levels of CYP2E1 and CYP3A were increased after SJW treatment. Furthermore, the PXR-CYP signaling pathway was activated by SJW, and its downstream target genes were upregulated. Collectively, this study demonstrated that the long-term administration of SJW extract led to the metabolic activation of APAP and significantly exacerbated APAP-induced liver injury, which may suggest caution for the clinical use of SJW and APAP.
Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas , Hypericum , Camundongos , Animais , Acetaminofen/toxicidade , Acetaminofen/metabolismo , Hypericum/metabolismo , Citocromo P-450 CYP2E1 , Citocromo P-450 CYP3A/metabolismoRESUMO
Nuclear receptor pregnane X receptor (PXR) can induce significant liver enlargement through hepatocyte hypertrophy and proliferation. A previous report showed that during the process of PXR-induced liver enlargement, hepatocyte hypertrophy occurs around the central vein (CV) area while hepatocyte proliferation occurs around the portal vein (PV) area. However, the features of this spatial change remain unclear. Therefore, this study aims to explore the features of the spatial changes in hepatocytes in PXR-induced liver enlargement. PXR-induced spatial changes in hepatocyte hypertrophy and proliferation were confirmed in C57BL/6 mice. The liver was perfused with digitonin to destroy the hepatocytes around the CV or PV areas, and then the regional expression of proteins related to hepatocyte hypertrophy and proliferation was further measured. The results showed that the expression of PXR downstream proteins, such as cytochrome P450 (CYP) 3A11, CYP2B10, P-glycoprotein (P-gp) and organ anion transporting polypeptide 4 (OATP4) was upregulated around the CV area, while the expression of proliferation-related proteins such as cyclin B1 (CCNB1), cyclin D1 (CCND1) and serine/threonine NIMA-related kinase 2 (NEK2) was upregulated around the PV area. At the same time, the expression of cyclin-dependent kinase inhibitors such as retinoblastoma-like protein 2 (RBL2), cyclin-dependent kinase inhibitor 1B (CDKN1B) and CDKN1A was downregulated around the PV area. This study demonstrated that the spatial change in PXR-induced hepatocyte hypertrophy and proliferation is associated with the regional expression of PXR downstream targets and proliferation-related proteins and the regional distribution of triglycerides (TGs). These findings provide new insight into the understanding of PXR-induced hepatomegaly.
Assuntos
Ciclina D1 , Receptores de Esteroides , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Animais , Ânions/metabolismo , Proliferação de Células , Ciclina B1/metabolismo , Ciclina D1/metabolismo , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Quinases Ciclina-Dependentes/metabolismo , Citocromo P-450 CYP3A/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Digitonina/metabolismo , Hepatócitos/metabolismo , Hepatomegalia/induzido quimicamente , Hepatomegalia/metabolismo , Hipertrofia/metabolismo , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Quinases Relacionadas a NIMA/metabolismo , Receptor de Pregnano X/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores de Esteroides/metabolismo , Proteína p130 Retinoblastoma-Like/metabolismo , Serina/metabolismo , Treonina/metabolismo , Triglicerídeos/metabolismoRESUMO
Taxus yunnanensis is a paclitaxel-containing herb with traditional usage in cancer treatment, and its extract possesses great oral bioavailability of paclitaxel. However, it is elusive whether paclitaxel-containing extract (HDS-1) can exert anti-tumor effect through oral administration and how other components contribute to its efficacy. Therefore, we investigate the oral-route anti-tumor effect of HDS-1 in A549-bearing mice. HDS-1-derived flavonoids (HDS-2) and lignoids (HDS-3) are hypothesized to contribute to HDS-1's efficacy, and their effects of enhancing enterocytic absorption and cytotoxicity of paclitaxel are validated in 2 permeability experiments and apoptosis-related assay, respectively. In vivo, A549 growth is significantly inhibited by 86.1 ± 12.94% (P < 0.01) at 600 mg/kg of HDS-1 and 65.7 ± 38.71% (P < 0.01) at 200 mg/kg. HDS-2 and HDS-3 significantly reduce the efflux ratio of paclitaxel to 2.33 and 3.70, respectively, in Caco-2 permeability experiment and reduce paclitaxel reflux in MDCK-MDR1 experiment. Furthermore, HDS-2 and HDS-3 potentiated paclitaxel-induced cytotoxicity by 19.1-22.45% (P < 0.05) and 10.52-18.03% (P < 0.05), respectively, inhibited the expression of cyclinB1, Bcl-2, and pMCL-1, and increased the percentage of necrosis cell in the condition of paclitaxel exposure. Conclusively, paclitaxel-containing extracts exert anti-cancer effects through oral administration, and flavonoid and lignoids contribute to its anti-cancer effect through simultaneously improving enterocytic absorption of paclitaxel and the cytotoxic effect of paclitaxel.
RESUMO
BACKGROUND AND AIMS: Peroxisome proliferator-activated receptor α (PPARα, NR1C1) is a ligand-activated nuclear receptor involved in the regulation of lipid catabolism and energy homeostasis. PPARα activation induces hepatomegaly and plays an important role in liver regeneration, but the underlying mechanisms remain unclear. APPROACH AND RESULTS: In this study, the effect of PPARα activation on liver enlargement and regeneration was investigated in several strains of genetically modified mice. PPARα activation by the specific agonist WY-14643 significantly induced hepatomegaly and accelerated liver regeneration after 70% partial hepatectomy (PHx) in wild-type mice and Pparafl/fl mice, while these effects were abolished in hepatocyte-specific Ppara-deficient (PparaΔHep ) mice. Moreover, PPARα activation promoted hepatocyte hypertrophy around the central vein area and hepatocyte proliferation around the portal vein area. Mechanistically, PPARα activation regulated expression of yes-associated protein (YAP) and its downstream targets (connective tissue growth factor, cysteine-rich angiogenic inducer 61, and ankyrin repeat domain 1) as well as proliferation-related proteins (cyclins A1, D1, and E1). Binding of YAP with the PPARα E domain was critical for the interaction between YAP and PPARα. PPARα activation further induced nuclear translocation of YAP. Disruption of the YAP-transcriptional enhancer factor domain family member (TEAD) association significantly suppressed PPARα-induced hepatomegaly and hepatocyte enlargement and proliferation. In addition, PPARα failed to induce hepatomegaly in adeno-associated virus-Yap short hairpin RNA-treated mice and liver-specific Yap-deficient mice. Blockade of YAP signaling abolished PPARα-induced hepatocyte hypertrophy around the central vein area and hepatocyte proliferation around the portal vein area. CONCLUSIONS: This study revealed a function of PPARα in regulating liver size and liver regeneration through activation of the YAP-TEAD signaling pathway. These findings have implications for understanding the physiological functions of PPARα and suggest its potential for manipulation of liver size and liver regeneration.
Assuntos
Hepatomegalia/genética , Regeneração Hepática/genética , PPAR alfa/metabolismo , Fatores de Transcrição de Domínio TEA/metabolismo , Proteínas de Sinalização YAP/metabolismo , Animais , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Modelos Animais de Doenças , Regulação da Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Hepatectomia/efeitos adversos , Hepatócitos/patologia , Hepatomegalia/patologia , Humanos , Fígado/patologia , Fígado/cirurgia , Regeneração Hepática/efeitos dos fármacos , Masculino , Camundongos , Camundongos Transgênicos , PPAR alfa/agonistas , Pirimidinas/administração & dosagem , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Proteínas de Sinalização YAP/genéticaRESUMO
Lipotoxicity, caused by intracellular lipid accumulation, accelerates the degenerative process of cellular senescence, which has implications in cancer development and therapy. Previously, carnitine palmitoyltransferase 1C (CPT1C), a mitochondrial enzyme that catalyzes carnitinylation of fatty acids, was found to be a critical regulator of cancer cell senescence. However, whether loss of CPT1C could induce senescence as a result of lipotoxicity remains unknown. An LC/MS-based lipidomic analysis of PANC-1, MDA-MB-231, HCT-116 and A549 cancer cells was conducted after siRNA depletion of CPT1C. Cellular lipotoxicity was further confirmed by lipotoxicity assays. Significant changes were found in the lipidome of CPT1C-depleted cells, including major alterations in fatty acid, diacylglycerol, triacylglycerol, oxidative lipids, cardiolipin, phosphatidylglycerol, phosphatidylcholine/phosphatidylethanolamine ratio and sphingomyelin. This was coincident with changes in expressions of mRNAs involved in lipogenesis. Histological and biochemical analyses revealed higher lipid accumulation and increased malondialdehyde and reactive oxygen species, signatures of lipid peroxidation and oxidative stress. Reduction of ATP synthesis, loss of mitochondrial transmembrane potential and down-regulation of expression of mitochondriogenesis gene mRNAs indicated mitochondrial dysfunction induced by lipotoxicity, which could further result in cellular senescence. Taken together, this study demonstrated CPT1C plays a critical role in the regulation of cancer cell lipotoxicity and cell senescence, suggesting that inhibition of CPT1C may serve as a new therapeutic strategy through induction of tumor lipotoxicity and senescence.