Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Development ; 151(20)2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39114943

RESUMO

Vertebrates and tunicates are sister groups that share a common fusogenic factor, Myomaker (Mymk), that drives myoblast fusion and muscle multinucleation. Yet they are divergent in when and where they express Mymk. In vertebrates, all developing skeletal muscles express Mymk and are obligately multinucleated. In tunicates, Mymk is expressed only in post-metamorphic multinucleated muscles, but is absent from mononucleated larval muscles. In this study, we demonstrate that cis-regulatory sequence differences in the promoter region of Mymk underlie the different spatiotemporal patterns of its transcriptional activation in tunicates and vertebrates. Although in vertebrates myogenic regulatory factors (MRFs) such as MyoD1 alone are required and sufficient for Mymk transcription in all skeletal muscles, we show that transcription of Mymk in post-metamorphic muscles of the tunicate Ciona requires the combinatorial activity of MRF, MyoD and Early B-cell Factor (Ebf). This macroevolutionary difference appears to be encoded in cis, likely due to the presence of a putative Ebf-binding site adjacent to predicted MRF binding sites in the Ciona Mymk promoter. We further discuss how Mymk and myoblast fusion might have been regulated in the last common ancestor of tunicates and vertebrates, for which we propose two models.


Assuntos
Regiões Promotoras Genéticas , Animais , Regiões Promotoras Genéticas/genética , Proteína MyoD/metabolismo , Proteína MyoD/genética , Regulação da Expressão Gênica no Desenvolvimento , Músculo Esquelético/metabolismo , Fatores de Regulação Miogênica/metabolismo , Fatores de Regulação Miogênica/genética , Urocordados/genética , Urocordados/embriologia , Desenvolvimento Muscular/genética
2.
bioRxiv ; 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38559144

RESUMO

Vertebrates and tunicates are sister groups that share a common fusogenic factor, Myomaker (Mymk), that drives myoblast fusion and muscle multinucleation. Yet they are divergent in when and where they express Mymk. In vertebrates, all developing skeletal muscles express Mymk and are obligately multinucleated. In tunicates, Mymk is only expressed in post-metamorphic multinucleated muscles, but is absent from mononucleated larval muscles. In this study, we demonstrate that cis-regulatory sequence differences in the promoter region of Mymk underlie the different spatiotemporal patterns of its transcriptional activation in tunicates and vertebrates. While in vertebrates Myogenic Regulatory Factors (MRFs) like MyoD1 alone are required and sufficient for Mymk transcription in all skeletal muscles, we show that transcription of Mymk in post-metamorphic muscles of the tunicate Ciona requires the combinatorial activity of MRF/MyoD and Early B-Cell Factor (Ebf). This macroevolutionary difference appears to be encoded in cis, likely due to the presence of a putative Ebf binding site adjacent to predicted MRF binding sites in the Ciona Mymk promoter. We further discuss how Mymk and myoblast fusion might have been regulated in the last common ancestor of tunicates and vertebrates, for which we propose two models.

3.
Sci Adv ; 8(35): eadd2696, 2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36054355

RESUMO

Vertebrate myoblast fusion allows for multinucleated muscle fibers to compound the size and strength of mononucleated cells, but the evolution of this important process is unknown. We investigated the evolutionary origins and function of membrane-coalescing agents Myomaker and Myomixer in various groups of chordates. Here, we report that Myomaker likely arose through gene duplication in the last common ancestor of tunicates and vertebrates, while Myomixer appears to have evolved de novo in early vertebrates. Functional tests revealed a complex evolutionary history of myoblast fusion. A prevertebrate phase of muscle multinucleation driven by Myomaker was followed by the later emergence of Myomixer that enables the highly efficient fusion system of vertebrates. Evolutionary comparisons between vertebrate and nonvertebrate Myomaker revealed key structural and mechanistic insights into myoblast fusion. Thus, our findings suggest an evolutionary model of chordate fusogens and illustrate how new genes shape the emergence of novel morphogenetic traits and mechanisms.

4.
FASEB J ; 35(11): e21965, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34669999

RESUMO

Obesity and metabolic disorders caused by energy surplus pose an increasing concern within the global population. Brown adipose tissue (BAT) dissipates energy through mitochondrial non-shivering thermogenesis, thus representing a powerful agent against obesity. Here we explore the novel role of a mitochondrial outer membrane protein, LETM1-domain containing 1 (LETMD1), in BAT. We generated a knockout (Letmd1KO ) mouse model and analyzed BAT morphology, function and gene expression under various physiological conditions. While the Letmd1KO mice are born normally and have normal morphology and body weight, they lose multilocular brown adipocytes completely and have diminished mitochondrial abundance, DNA copy number, cristae structure, and thermogenic gene expression in the intrascapular BAT, associated with elevated reactive oxidative stress. In consequence, the Letmd1KO mice fail to maintain body temperature in response to acute cold exposure without food and become hypothermic within 4 h. Although the cold-exposed Letmd1KO mice can maintain body temperature in the presence of food, they cannot upregulate expression of uncoupling protein 1 (UCP1) and convert white to beige adipocytes, nor can they respond to adrenergic stimulation. These results demonstrate that LETMD1 is essential for mitochondrial structure and function, and thermogenesis of brown adipocytes.


Assuntos
Adipócitos Marrons/metabolismo , Tecido Adiposo Marrom/metabolismo , Mitocôndrias/metabolismo , Proteínas Oncogênicas/fisiologia , Receptores de Superfície Celular/fisiologia , Termogênese , Adipócitos Marrons/citologia , Tecido Adiposo Marrom/citologia , Animais , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/metabolismo
5.
Sci Adv ; 6(51)2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33355126

RESUMO

Myoblast fusion is essential for formations of myofibers, the basic cellular and functional units of skeletal muscles. Recent genetic studies in mice identified two long-sought membrane proteins, Myomaker and Myomixer, which cooperatively drive myoblast fusion. It is unknown whether and how human muscles, with myofibers of tremendously larger size, use this mechanism to achieve multinucleations. Here, we report an interesting fusion model of human myoblasts where Myomaker is sufficient to induce low-grade fusion, while Myomixer boosts its efficiency to generate giant myotubes. By CRISPR mutagenesis and biochemical assays, we identified MyoD as the key molecular switch of fusion that is required and sufficient to initiate Myomixer and Myomaker expression. Mechanistically, we defined the E-box motifs on promoters of Myomixer and Myomaker by which MyoD induces their expression for multinucleations of human muscle cells. Together, our study uncovered the key molecular apparatus and the transcriptional control mechanism underlying human myoblast fusion.

6.
Proc Natl Acad Sci U S A ; 115(15): 3864-3869, 2018 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-29581287

RESUMO

Regeneration of skeletal muscle in response to injury occurs through fusion of a population of stem cells, known as satellite cells, with injured myofibers. Myomixer, a muscle-specific membrane micropeptide, cooperates with the transmembrane protein Myomaker to regulate embryonic myoblast fusion and muscle formation. To investigate the role of Myomixer in muscle regeneration, we used CRISPR/Cas9-mediated genome editing to generate conditional knockout Myomixer alleles in mice. We show that genetic deletion of Myomixer in satellite cells using a tamoxifen-regulated Cre recombinase transgene under control of the Pax7 promoter abolishes satellite cell fusion and prevents muscle regeneration, resulting in severe muscle degeneration after injury. Satellite cells devoid of Myomixer maintain expression of Myomaker, demonstrating that Myomaker alone is insufficient to drive myoblast fusion. These findings, together with prior studies demonstrating the essentiality of Myomaker for muscle regeneration, highlight the obligatory partnership of Myomixer and Myomaker for myofiber formation throughout embryogenesis and adulthood.


Assuntos
Proteínas de Membrana/metabolismo , Músculo Esquelético/fisiopatologia , Células Satélites de Músculo Esquelético/metabolismo , Animais , Fusão Celular , Feminino , Masculino , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Músculo Esquelético/crescimento & desenvolvimento , Músculo Esquelético/lesões , Músculo Esquelético/metabolismo , Regeneração , Células Satélites de Músculo Esquelético/citologia
7.
Proc Natl Acad Sci U S A ; 114(45): 11950-11955, 2017 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-29078404

RESUMO

Skeletal muscle formation requires fusion of mononucleated myoblasts to form multinucleated myofibers. The muscle-specific membrane proteins myomaker and myomixer cooperate to drive mammalian myoblast fusion. Whereas myomaker is highly conserved across diverse vertebrate species, myomixer is a micropeptide that shows relatively weak cross-species conservation. To explore the functional conservation of myomixer, we investigated the expression and function of the zebrafish myomixer ortholog. Here we show that myomixer expression during zebrafish embryogenesis coincides with myoblast fusion, and genetic deletion of myomixer using CRISPR/Cas9 mutagenesis abolishes myoblast fusion in vivo. We also identify myomixer orthologs in other species of fish and reptiles, which can cooperate with myomaker and substitute for the fusogenic activity of mammalian myomixer. Sequence comparison of these diverse myomixer orthologs reveals key amino acid residues and a minimal fusogenic peptide motif that is necessary for promoting cell-cell fusion with myomaker. Our findings highlight the evolutionary conservation of the myomaker-myomixer partnership and provide insights into the molecular basis of myoblast fusion.


Assuntos
Proteínas de Membrana/genética , Desenvolvimento Muscular/genética , Fibras Musculares Esqueléticas/citologia , Proteínas Musculares/genética , Mioblastos/metabolismo , Proteínas de Peixe-Zebra/genética , Sequência de Aminoácidos , Animais , Sistemas CRISPR-Cas/genética , Fusão Celular , Linhagem Celular , Elefantes/genética , Desenvolvimento Muscular/fisiologia , Tubarões/genética , Tartarugas/genética , Peixe-Zebra/embriologia , Peixe-Zebra/genética
8.
Science ; 356(6335): 323-327, 2017 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-28386024

RESUMO

Skeletal muscle formation occurs through fusion of myoblasts to form multinucleated myofibers. From a genome-wide clustered regularly interspaced short palindromic repeats (CRISPR) loss-of-function screen for genes required for myoblast fusion and myogenesis, we discovered an 84-amino acid muscle-specific peptide that we call Myomixer. Myomixer expression coincides with myoblast differentiation and is essential for fusion and skeletal muscle formation during embryogenesis. Myomixer localizes to the plasma membrane, where it promotes myoblast fusion and associates with Myomaker, a fusogenic membrane protein. Myomixer together with Myomaker can also induce fibroblast-fibroblast fusion and fibroblast-myoblast fusion. We conclude that the Myomixer-Myomaker pair controls the critical step in myofiber formation during muscle development.


Assuntos
Fusão Celular , Proteínas de Membrana/metabolismo , Desenvolvimento Muscular/fisiologia , Fibras Musculares Esqueléticas/fisiologia , Proteínas Musculares/metabolismo , Músculo Esquelético/crescimento & desenvolvimento , Mioblastos/fisiologia , Animais , Diferenciação Celular , Linhagem Celular , Membrana Celular/metabolismo , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Fibroblastos/metabolismo , Fibroblastos/fisiologia , Masculino , Camundongos Knockout , Desenvolvimento Muscular/genética , Fibras Musculares Esqueléticas/metabolismo , Mioblastos/metabolismo , Peptídeos/genética , Peptídeos/metabolismo
9.
Nat Commun ; 8: 14328, 2017 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-28094257

RESUMO

Satellite cells (SCs) are myogenic stem cells required for regeneration of adult skeletal muscles. A proper balance among quiescence, activation and differentiation is essential for long-term maintenance of SCs and their regenerative function. Here we show a function of Pten (phosphatase and tensin homologue) in quiescent SCs. Deletion of Pten in quiescent SCs leads to their spontaneous activation and premature differentiation without proliferation, resulting in depletion of SC pool and regenerative failure. However, prior to depletion, Pten-null activated SCs can transiently proliferate upon injury and regenerate injured muscles, but continually decline during regeneration, suggesting an inability to return to quiescence. Mechanistically, Pten deletion increases Akt phosphorylation, which induces cytoplasmic translocation of FoxO1 and suppression of Notch signalling. Accordingly, constitutive activation of Notch1 prevents SC depletion despite Pten deletion. Our findings delineate a critical function of Pten in maintaining SC quiescence and reveal an interaction between Pten and Notch signalling.


Assuntos
Células-Tronco Adultas/enzimologia , Senescência Celular , PTEN Fosfo-Hidrolase/metabolismo , Células Satélites de Músculo Esquelético/enzimologia , Células-Tronco Adultas/citologia , Células-Tronco Adultas/metabolismo , Animais , Feminino , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O1/metabolismo , Masculino , Camundongos , Camundongos Knockout , Desenvolvimento Muscular , PTEN Fosfo-Hidrolase/genética , Fosforilação , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Células Satélites de Músculo Esquelético/citologia , Células Satélites de Músculo Esquelético/metabolismo
10.
Cell Rep ; 17(9): 2340-2353, 2016 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-27880908

RESUMO

Skeletal muscle stem cells (satellite cells [SCs]) are normally maintained in a quiescent (G0) state. Muscle injury not only activates SCs locally, but also alerts SCs in distant uninjured muscles via circulating factors. The resulting GAlert SCs are adapted to regenerative cues and regenerate injured muscles more efficiently, but whether they provide any long-term benefits to SCs is unknown. Here, we report that embryonic myogenic progenitors lacking the phosphatase and tensin homolog (Pten) exhibit enhanced proliferation and differentiation, resulting in muscle hypertrophy but fewer SCs in adult muscles. Interestingly, Pten null SCs are predominantly in the GAlert state, even in the absence of an injury. The GAlert SCs are deficient in self-renewal and subjected to accelerated depletion during regeneration and aging and fail to repair muscle injury in old mice. Our findings demonstrate a key requirement of Pten in G0 entry of SCs and provide functional evidence that prolonged GAlert leads to stem cell depletion and regenerative failure.


Assuntos
Envelhecimento/patologia , Desenvolvimento Muscular , Músculo Esquelético/patologia , PTEN Fosfo-Hidrolase/deficiência , Células Satélites de Músculo Esquelético/patologia , Células-Tronco/metabolismo , Animais , Animais Recém-Nascidos , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Denervação , Deleção de Genes , Hipertrofia , Camundongos Knockout , Músculo Esquelético/inervação , Músculo Esquelético/fisiopatologia , Atrofia Muscular/patologia , Proteína MyoD , PTEN Fosfo-Hidrolase/metabolismo , Regeneração , Células Satélites de Músculo Esquelético/metabolismo
11.
J Exp Med ; 213(10): 2019-37, 2016 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-27573812

RESUMO

Liposarcomas (LPSs) are the most common soft-tissue cancer. Because of the lack of animal models, the cellular origin and molecular regulation of LPS remain unclear. Here, we report that mice with adipocyte-specific activation of Notch signaling (Ad/N1ICD) develop LPS with complete penetrance. Lineage tracing confirms the adipocyte origin of Ad/N1ICD LPS. The Ad/N1ICD LPS resembles human dedifferentiated LPS in histological appearance, anatomical localization, and gene expression signature. Before transformation, Ad/N1ICD adipocytes undergo dedifferentiation that leads to lipodystrophy and metabolic dysfunction. Although concomitant Pten deletion normalizes the glucose metabolism of Ad/N1ICD mice, it dramatically accelerates the LPS prognosis and malignancy. Transcriptomes and lipidomics analyses indicate that Notch activation suppresses lipid metabolism pathways that supply ligands to Pparγ, the master regulator of adipocyte homeostasis. Accordingly, synthetic Pparγ ligand supplementation induces redifferentiation of Ad/N1ICD adipocytes and tumor cells, and prevents LPS development in Ad/N1ICD mice. Importantly, the Notch target HES1 is abundantly expressed in human LPS, and Notch inhibition suppresses the growth of human dedifferentiated LPS xenografts. Collectively, ectopic Notch activation is sufficient to induce dedifferentiation and tumorigenic transformation of mature adipocytes in mouse.


Assuntos
Adipócitos/metabolismo , Adipócitos/patologia , Diferenciação Celular , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Receptores Notch/metabolismo , Adipócitos/efeitos dos fármacos , Animais , Biomarcadores Tumorais/metabolismo , Desdiferenciação Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Linhagem da Célula/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Transformação Celular Neoplásica/genética , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/patologia , Diaminas/farmacologia , Dibenzazepinas/farmacologia , Deleção de Genes , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Ligantes , Metabolismo dos Lipídeos/efeitos dos fármacos , Lipossarcoma/complicações , Lipossarcoma/genética , Lipossarcoma/patologia , Síndrome Metabólica/patologia , Camundongos Endogâmicos C57BL , PPAR gama/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , Lesões Pré-Cancerosas/patologia , Rosiglitazona , Transdução de Sinais/efeitos dos fármacos , Tiazóis/farmacologia , Tiazolidinedionas/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Mol Cell Biol ; 34(19): 3642-61, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-25047839

RESUMO

One outcome of activation of the phosphatidylinositol 3-kinase (PI3K) pathway is increased aerobic glycolysis, but the upstream signaling events that regulate the PI3K pathway, and thus the Warburg effect, are elusive. Increasing evidence suggests that Plk1, a cell cycle regulator, is also involved in cellular events in addition to mitosis. To test whether Plk1 contributes to activation of the PI3K pathway, and thus aerobic glycolysis, we examined potential targets of Plk1 and identified PTEN as a Plk1 substrate. We hypothesize that Plk1 phosphorylation of PTEN leads to its inactivation, activation of the PI3K pathway, and the Warburg effect. Our data show that overexpression of Plk1 leads to activation of the PI3K pathway and enhanced aerobic glycolysis. In contrast, inhibition of Plk1 causes markedly reduced glucose metabolism in mice. Mechanistically, we show that Plk1 phosphorylation of PTEN and Nedd4-1, an E3 ubiquitin ligase of PTEN, results in PTEN inactivation. Finally, we show that Plk1 phosphorylation of PTEN promotes tumorigenesis in both its phosphatase-dependent and -independent pathways, revealing potentially new drug targets to arrest tumor cell growth.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Transformação Celular Neoplásica/metabolismo , Glucose/metabolismo , Ácido Láctico/metabolismo , Fígado/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Animais , Antineoplásicos/farmacologia , Benzamidas/farmacologia , Linhagem Celular Tumoral , Complexos Endossomais de Distribuição Requeridos para Transporte , Regulação da Expressão Gênica , Glicólise/fisiologia , Células HEK293 , Compostos Heterocíclicos com 2 Anéis/farmacologia , Humanos , Camundongos , Camundongos Nus , Ubiquitina-Proteína Ligases Nedd4 , Neoplasias Experimentais , Nocodazol/farmacologia , Fosfatidilinositol 3-Quinase , Fosforilação , Pteridinas , Transdução de Sinais , Ubiquitina-Proteína Ligases , Quinase 1 Polo-Like
13.
Stem Cells ; 32(11): 2893-907, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25069613

RESUMO

Serine/threonine kinase 11, commonly known as liver kinase b1 (Lkb1), is a tumor suppressor that regulates cellular energy metabolism and stem cell function. Satellite cells are skeletal muscle resident stem cells that maintain postnatal muscle growth and repair. Here, we used MyoD(Cre)/Lkb1(flox/flox) mice (called MyoD-Lkb1) to delete Lkb1 in embryonic myogenic progenitors and their descendant satellite cells and myofibers. The MyoD-Lkb1 mice exhibit a severe myopathy characterized by central nucleated myofibers, reduced mobility, growth retardation, and premature death. Although tamoxifen-induced postnatal deletion of Lkb1 in satellite cells using Pax7(CreER) mice bypasses the developmental defects and early death, Lkb1 null satellite cells lose their regenerative capacity cell-autonomously. Strikingly, Lkb1 null satellite cells fail to maintain quiescence in noninjured resting muscles and exhibit accelerated proliferation but reduced differentiation kinetics. At the molecular level, Lkb1 limits satellite cell proliferation through the canonical AMP-activated protein kinase/mammalian target of rapamycin pathway, but facilitates differentiation through phosphorylation of GSK-3ß, a key component of the WNT signaling pathway. Together, these results establish a central role of Lkb1 in muscle stem cell homeostasis, muscle development, and regeneration.


Assuntos
Homeostase/fisiologia , Desenvolvimento Muscular/fisiologia , Fibras Musculares Esqueléticas/fisiologia , Mioblastos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Regeneração , Células Satélites de Músculo Esquelético/citologia , Proteínas Quinases Ativadas por AMP , Animais , Diferenciação Celular/fisiologia , Proliferação de Células/fisiologia , Células Cultivadas , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Fígado/metabolismo , Camundongos , Regeneração/fisiologia
14.
Adipocyte ; 3(4): 280-9, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-26317052

RESUMO

The prevalence of obesity has risen to an unprecedented level. According to World Health Organization, over 500 million adults, equivalent to 10%-14% of the world population, were obese with a body mass index (BMI) of 30 kg/m(2) or greater in 2008.(1) This rising prevalence and earlier onset of obesity is believed to be resulted from an interplay of genetic factors, over-nutrition and physical inactivity in modern lifestyles. Obesity also increases the susceptibility to metabolic syndromes, hypertension, cardiovascular diseases, Type 2 diabetes mellitus (T2DM) and cancer.(2-4) The global obesity epidemic has sparked substantial interests in the biology of adipose tissue (fat). In addition, the skeletal muscle and its secretive factors (myokines) have also been shown to play a critical role in controlling body energy balance, adipose homeostasis and inflammation status.(5) Interestingly, skeletal muscle cells share a common developmental origin with brown adipocytes,(6,7) which breaks down lipids to generate heat - thus reducing obesity. Here, we provide a brief overview of the basics and recent progress in muscle-fat crosstalk in the context of body energy metabolism, obesity, and diabetes. We summarize the different types of adipocytes, their developmental origins and implications in body composition. We highlight the role of several novel myokines in regulating fat mass and systemic energy balance, and evaluate the potential of skeletal muscles as a therapeutic target to treat obesity.

15.
J Lipid Res ; 54(8): 2214-2224, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23740968

RESUMO

Brown adipose tissues (BAT) are derived from a myogenic factor 5 (Myf5)-expressing cell lineage and white adipose tissues (WAT) predominantly arise from non-Myf5 lineages, although a subpopulation of adipocytes in some WAT depots can be derived from the Myf5 lineage. However, the functional implication of the Myf5- and non-Myf5-lineage cells in WAT is unclear. We found that the Myf5-lineage constitution in subcutaneous WAT depots is negatively correlated to the expression of classical BAT and newly defined beige/brite adipocyte-specific genes. Consistently, fluorescent-activated cell sorting (FACS)-purified Myf5-lineage adipo-progenitors give rise to adipocytes expressing lower levels of BAT-specific Ucp1, Prdm16, Cidea, and Ppargc1a genes and beige adipocyte-specific CD137, Tmem26, and Tbx1 genes compared with the non-Myf5-lineage adipocytes from the same depots. Ablation of the Myf5-lineage progenitors in WAT stromal vascular cell (SVC) cultures leads to increased expression of BAT and beige cell signature genes. Strikingly, the Myf5-lineage cells in WAT are heterogeneous and contain distinct adipogenic [stem cell antigen 1(Sca1)-positive] and myogenic (Sca1-negative) progenitors. The latter differentiate robustly into myofibers in vitro and in vivo, and they restore dystrophin expression after transplantation into mdx mouse, a model for Duchenne muscular dystrophy. These results demonstrate the heterogeneity and functional differences of the Myf5- and non-Myf5-lineage cells in the white adipose tissue.


Assuntos
Adipócitos/química , Tecido Adiposo Branco/química , Mioblastos/química , Fator Regulador Miogênico 5/química , Adipócitos/citologia , Adipócitos/metabolismo , Tecido Adiposo Branco/citologia , Tecido Adiposo Branco/metabolismo , Animais , Células Cultivadas , Camundongos , Camundongos Endogâmicos mdx , Mioblastos/citologia , Mioblastos/metabolismo , Fator Regulador Miogênico 5/genética , Fator Regulador Miogênico 5/metabolismo
16.
Development ; 139(16): 2857-65, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22764051

RESUMO

Microenvironmental oxygen (O(2)) regulates stem cell activity, and a hypoxic niche with low oxygen levels has been reported in multiple stem cell types. Satellite cells are muscle-resident stem cells that maintain the homeostasis and mediate the regeneration of skeletal muscles. We demonstrate here that hypoxic culture conditions favor the quiescence of satellite cell-derived primary myoblasts by upregulating Pax7, a key regulator of satellite cell self-renewal, and downregulating MyoD and myogenin. During myoblast division, hypoxia promotes asymmetric self-renewal divisions and inhibits asymmetric differentiation divisions without affecting the overall rate of proliferation. Mechanistic studies reveal that hypoxia activates the Notch signaling pathway, which subsequently represses the expression of miR-1 and miR-206 through canonical Hes/Hey proteins, leading to increased levels of Pax7. More importantly, hypoxia conditioning enhances the efficiency of myoblast transplantation and the self-renewal of implanted cells. Given the robust effects of hypoxia on maintaining the quiescence and promoting the self-renewal of cultured myoblasts, we predict that oxygen levels in the satellite cell niche play a central role in precisely balancing quiescence versus activation, and self-renewal versus differentiation, in muscle stem cells in vivo.


Assuntos
Hipóxia Celular/fisiologia , Mioblastos Esqueléticos/transplante , Células Satélites de Músculo Esquelético/citologia , Células Satélites de Músculo Esquelético/fisiologia , Animais , Proliferação de Células , Células Cultivadas , Camundongos , Camundongos Endogâmicos mdx , Camundongos Transgênicos , MicroRNAs/genética , MicroRNAs/metabolismo , Proteína MyoD/metabolismo , Mioblastos Esqueléticos/citologia , Mioblastos Esqueléticos/fisiologia , Miogenina/metabolismo , Fator de Transcrição PAX7/metabolismo , Receptores Notch/metabolismo , Fase de Repouso do Ciclo Celular , Transdução de Sinais , Nicho de Células-Tronco/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA