Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Acta Pharmacol Sin ; 42(5): 735-743, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-32770172

RESUMO

Insulin resistance (IR) is a major metabolic risk factor even before the onset of hyperglycemia. Recently, berberine (BBR) is found to improve hyperglycemia and IR. In this study, we investigated whether BBR could improve IR independent of hyperglycemia. Acute insulin-resistant state was induced in rats by systemic infusion of intralipid (6.6%). BBR was administered via different delivery routes before or after the beginning of a 2-h euglycemic-hyperinsulinemic clamp. At the end of experiment, rats were sacrificed, gastrocnemius muscle was collected for detecting mitochondrial swelling, phosphorylation of Akt and AMPK, as well as the mitochondrial permeability regulator cyclophilin D (CypD) protein expression. We showed that BBR administration markedly ameliorated intralipid-induced IR without affecting blood glucose, which was accompanied by alleviated mitochondrial swelling in skeletal muscle. We used human skeletal muscle cells (HSMCs), AML12 hepatocytes, human umbilical vein endothelial cells, and CypD knockout mice to investigate metabolic and molecular alternations. In either HSMCs or AML12 hepatocytes, BBR (5 µM) abolished palmitate acid (PA)-induced increase of CypD protein levels. In CypD-deficient mice, intralipid-induced IR was greatly attenuated and the beneficial effect of BBR was diminished. Furthermore, we demonstrated that the inhibitory effect of BBR on intralipid-induced IR was mainly mediated by skeletal muscle, but not by intestine, liver, or microvasculature; BBR administration suppressed intralipid-induced upregulation of CypD expression in skeletal muscle. These results suggest that BBR alleviates intralipid-induced IR, which is related to the inhibition of CypD protein expression in skeletal muscle.


Assuntos
Berberina/uso terapêutico , Hiperinsulinismo/tratamento farmacológico , Hipoglicemiantes/uso terapêutico , Resistência à Insulina/fisiologia , Animais , Linhagem Celular , Ciclofilinas/metabolismo , Emulsões , Humanos , Hiperinsulinismo/induzido quimicamente , Hiperinsulinismo/metabolismo , Masculino , Camundongos , Células Musculares/efeitos dos fármacos , Células Musculares/metabolismo , Fosfolipídeos , Ratos Sprague-Dawley , Óleo de Soja
2.
Acta Pharmacol Sin ; 41(8): 1033-1040, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32203083

RESUMO

Alteration in reproductive hormones profile is associated with the increasing risk of menopausal depression in women. Serum follicle-stimulating hormone (FSH) level is changed during the menopause transition, while the effect of FSH on menopausal depression has remained undefined. In this study we investigated whether or how FSH affected menopausal depression in postmenopausal (ovariectomized) FSHR knockout mice (Fshr-/-). We found that Fshr-/- mice displayed aggravated depression-like behaviors, accompanied by severe oxidative stress in the whole brain, resulted from significantly reduced glutamate cysteine ligase modifier subunit (GCLm) in glutathione synthesis and glucose-6-phosphate dehydrogenase (G6PD) in NADP/NADPH transition. Importantly, administration of ROS scavenger N-acetyl cysteine (NAC, 150 mg · kg-1 · d-1, i.p. for 12 weeks) attenuated the depression-like behaviors of Fshr-/- mice. Consistent with these in vivo experiment results, we found that pretreatment with FSH (50, 100 ng/mL) dose-dependently increased protein levels of GCLm and G6PD, and decreased the ROS production in N2a mouse neuroblastoma cells. These findings demonstrate that FSH signaling is involved in pathogenesis of menopausal depression, and likely to maintain the redox-optimized ROS balance in neurons.


Assuntos
Depressão/metabolismo , Menopausa/metabolismo , Receptores do FSH/deficiência , Acetilcisteína/farmacologia , Animais , Linhagem Celular Tumoral , Depressão/genética , Feminino , Menopausa/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Via de Pentose Fosfato/fisiologia , Receptores do FSH/genética
3.
J Endocrinol ; 214(2): 177-89, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22582096

RESUMO

Adiponectin secreted from adipose tissues plays a role in the regulation of energy homeostasis, food intake, and reproduction in the hypothalamus. We have previously demonstrated that adiponectin significantly inhibited GNRH secretion from GT1-7 hypothalamic GNRH neuron cells. In this study, we further investigated the effect of adiponectin on hypothalamic KISS1 gene transcription, which is the upstream signal of GNRH. We found that globular adiponectin (gAd) or AICAR, an artificial AMPK activator, decreased KISS1 mRNA transcription and promoter activity. Conversely, inhibition of AMPK by Compound C or AMPKα1-SiRNA augmented KISS1 mRNA transcription and promoter activity. Additionally, gAd and AICAR decreased the translocation of specificity protein-1 (SP1) from cytoplasm to nucleus; however, Compound C and AMPKα1-siRNA played an inverse role. Our experiments in vivo demonstrated that the expression of Kiss1 mRNA was stimulated twofold in the Compound C-treated rats and decreased about 60-70% in gAd- or AICAR-treated rats compared with control group. The numbers of kisspeptin immunopositive neurons in the arcuate nucleus region of Sprague Dawley rats mimicked the same trend seen in Kiss1 mRNA levels in animal groups with different treatments. In conclusion, our results provide the first evidence that adiponectin reduces Kiss1 gene transcription in GT1-7 cells through activation of AMPK and subsequently decreased translocation of SP1.


Assuntos
Adenilato Quinase/fisiologia , Adiponectina/farmacologia , Hipotálamo/efeitos dos fármacos , Kisspeptinas/genética , Neurônios/efeitos dos fármacos , Fator de Transcrição Sp1/fisiologia , Adenilato Quinase/metabolismo , Adiponectina/fisiologia , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/farmacologia , Animais , Células Cultivadas , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Feminino , Hipotálamo/citologia , Hipotálamo/metabolismo , Kisspeptinas/metabolismo , Neurônios/metabolismo , Fosforilação/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Transporte Proteico/genética , Transporte Proteico/fisiologia , Ratos , Ratos Sprague-Dawley , Ribonucleotídeos/farmacologia , Fator de Transcrição Sp1/metabolismo , Transcrição Gênica/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA