Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 4160, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38755128

RESUMO

The regeneration of critical-size bone defects, especially those with irregular shapes, remains a clinical challenge. Various biomaterials have been developed to enhance bone regeneration, but the limitations on the shape-adaptive capacity, the complexity of clinical operation, and the unsatisfied osteogenic bioactivity have greatly restricted their clinical application. In this work, we construct a mechanically robust, tailorable and water-responsive shape-memory silk fibroin/magnesium (SF/MgO) composite scaffold, which is able to quickly match irregular defects by simple trimming, thus leading to good interface integration. We demonstrate that the SF/MgO scaffold exhibits excellent mechanical stability and structure retention during the degradative process with the potential for supporting ability in defective areas. This scaffold further promotes the proliferation, adhesion and migration of osteoblasts and the osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) in vitro. With suitable MgO content, the scaffold exhibits good histocompatibility, low foreign-body reactions (FBRs), significant ectopic mineralisation and angiogenesis. Skull defect experiments on male rats demonstrate that the cell-free SF/MgO scaffold markedly enhances bone regeneration of cranial defects. Taken together, the mechanically robust, personalised and bioactive scaffold with water-responsive shape-memory may be a promising biomaterial for clinical-size and irregular bone defect regeneration.


Assuntos
Materiais Biocompatíveis , Regeneração Óssea , Fibroínas , Magnésio , Células-Tronco Mesenquimais , Osteogênese , Alicerces Teciduais , Fibroínas/química , Fibroínas/farmacologia , Regeneração Óssea/efeitos dos fármacos , Animais , Alicerces Teciduais/química , Masculino , Osteogênese/efeitos dos fármacos , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/citologia , Ratos , Magnésio/química , Magnésio/farmacologia , Materiais Biocompatíveis/química , Osteoblastos/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Ratos Sprague-Dawley , Água/química , Proliferação de Células/efeitos dos fármacos , Engenharia Tecidual/métodos , Crânio/efeitos dos fármacos , Adesão Celular/efeitos dos fármacos , Bombyx
2.
Oxid Med Cell Longev ; 2022: 2818433, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35571241

RESUMO

Background: Human umbilical cord mesenchymal stem cells- (HuMSCs-) based therapy has shown promising results in the treatment of intrauterine adhesions (IUA). In this study, we aimed to construct a HuMSCs-seeded silk fibroin small-intestinal submucosa (SF-SIS) scaffold and evaluate its ability to repair the damaged endometrium in an IUA mouse model. Methods: To identify the functional effect of HuMSCs-SF-SIS scaffolds on the repair of damaged endometrium, a mouse IUA model was established. Uterine morphology and fibrosis were evaluated by hematoxylin-eosin staining and Masson staining. CircRNA sequencing, real-time PCR, and RNA fluorescence in situ hybridization were used to screen and verify the potential circRNAs involved in the repair of damaged endometrium by HuMSCs. Real-time integrated cellular measurement of oxygen consumption rate was performed using the Seahorse XF24 Extracellular Flux Analyzer. The potential downstream miRNAs and proteins of circRNAs were analyzed by dual-luciferase reporter assay and western blot. Results: HuMSCs-SF-SIS not only increased the number of glands but also reduced the ulcer area in the IUA model. circPTP4A2 was elevated in the HuMSCs seeded on the SF-SIS scaffolds and was targeted by miR-330-5p-PDK2. It also stabilized the mitochondrial metabolism of HuMSCs. Moreover, miR-330-5p was found to inhibit PDK2 expression through the 3' UTR target region. A rescue experiment further showed that circPTP4A2-miR-330-5p-PDK2 signaling was critical to HuMSCs-SF-SIS in decreasing the fibrosis area and increasing the number of glands in the IUA model. Conclusion: We demonstrated that circPTP4A2 was elevated in HuMSCs-seeded on SF-SIS scaffolds and stabilized the mitochondrial metabolism through miR-330-5p-PDK2 signaling, which contributes to endometrial repair progression. These findings demonstrate that HuMSCs-seeded SF-SIS scaffolds have potential for the treatment of IUA.


Assuntos
MicroRNAs , Doenças Uterinas , Animais , Modelos Animais de Doenças , Endométrio , Feminino , Humanos , Hibridização in Situ Fluorescente , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Circular/genética , Aderências Teciduais/metabolismo , Doenças Uterinas/metabolismo , Doenças Uterinas/patologia , Doenças Uterinas/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA