Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Huan Jing Ke Xue ; 43(2): 887-895, 2022 Feb 08.
Artigo em Chinês | MEDLINE | ID: mdl-35075862

RESUMO

The main function of quartz sand in drinking water treatment has been to remove turbidity, while the microbial effect of its solid-liquid interface has been ignored. In order to solve the limitations of control of the disinfection by-products (DBPs) and opportunistic pathogens (OPs) in common quartz sand, the common quartz sand was modified to iron sand. The maximum DBPs formation potential of typical nitrogenous disinfection by-products (N-DBPs) and carbonaceous disinfection by-products was determined using gas chromatography-ECD. Compared with those of sand, the inhibition effects of halonitromethanes, haloacetamides, and haloacetonitriles by the Fe-sand were increased by 51.51%, 43.66%, and 90.6%, respectively. In addition, the gene copy numbers of Hartmanella vermiformis, Legionella spp., Mycobacterium spp., M. avium, and Naegleria spp. were detected via quantitative qPCR, and the results indicated that the Fe-sand did have a similar significant inhibitory effect on OPs. The Fe-sand had limited ability to enhance the removal of NOM. However, the Fe-sand effectively inhibited the continuous contribution of biofilm to N-DBPs and opportunistic pathogens. The distribution of biofilms on the surface of the Fe-sand filter media was uniform, not likely to fall off, and more stable; however, the suspended biofilms in the effluent were more difficult to aggregate. In addition, the α-helix of the secondary structure in the extracellular protein disappeared in the effluent of the Fe-sand. Therefore, the whole suspended biofilm was easily penetrated by chlorine. The Fe-sand solid-liquid interface did significantly change the microbial community structure and suspended biofilm characteristics, which provides a new concept to ensure the safety of drinking water quality and plays a good theoretical supporting role in the improvement and transformation of the existing process in drinking water treatment plants.


Assuntos
Desinfetantes , Água Potável , Poluentes Químicos da Água , Purificação da Água , Desinfecção , Ferro , Nitrogênio , Quartzo , Poluentes Químicos da Água/análise
2.
Chemosphere ; 286(Pt 2): 131686, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34333184

RESUMO

Change in water quality was investigated with laboratory-scale ozone-biological activated carbon filters using copper-modified granular activated carbon (Cu/GAC) and unmodified granular activated carbon (GAC). In the first seven days of the experimental period, Cu/GAC removed organic matter more efficiently owing to its enhanced adsorption capacity. As the running time increased, the amount of disinfection by-products (DBPs), dissolved organic carbon, and extracellular polymeric substances (EPS) increased sharply in the effluent of the Cu/GAC filter (CCW). More importantly, the EPS suspended in the CCW exhibited weaker flocculating efficiency and hydrophobicity, causing more active chemical reactions between chlorine and EPS substances. The copper species significantly limited the microbial biomass (0.01 nmol/L adenosine triphosphate) but stimulated the secretion of significant amounts of EPS by microorganisms for self-protection. Furthermore, the microbial community in the bulk water was successfully shaped by Cu/GAC, resulting in a continuous supply of EPS-derived DBP precursors and a sharp rise in chlorine consumption in the downstream drinking water distribution. Therefore, use of modified GAC materials, similar to Cu/GAC, as carrier materials for biological activated carbon (BAC) treatment remains controversial, despite enhanced pollutant adsorption capacity. This is the first study to reveal the mechanism of BAC-modified materials for water quality stability. The study potentially contributes to a comprehensive understanding of the effects of biofilm transformation and microbial community succession on drinking water quality. These results showed that tap water safety risks could be reduced by improving BAC pretreatment in drinking water treatment plants.


Assuntos
Água Potável , Microbiota , Poluentes Químicos da Água , Purificação da Água , Carvão Vegetal , Desinfecção , Matriz Extracelular de Substâncias Poliméricas/química , Filtração , Poluentes Químicos da Água/análise , Qualidade da Água
3.
Chemosphere ; 292: 133364, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34933025

RESUMO

The effects of cast iron pipe corrosion on nitrogenous disinfection by-products formation (N-DBPs) in drinking water distribution systems (DWDSs) were investigated. The results verified that in the effluent of corroded DWDSs simulated by annular reactors with corroded cast iron coupons, typical N-DBPs, including haloacetamides, halonitromethanes, and haloacetonitriles, increased significantly compared with the influent of DWDSs. In addition, more dissolved organic carbon, adenosine triphosphate, and iron particles were simultaneously detected in the bulk water of corroded DWDSs, thereby indicating that abundant iron particles acted as a "protective umbrella" for microorganisms. Under the condition of corroded DWDSs, the extracellular polymeric substances gradually exhibited distinct characteristics, including a higher content and lower flocculation efficiency, thereby resulting in a large supply of N-DBPs precursors. Corroded cast iron pipes, equivalent to a unique microbial interface, induced completely distinct microbial community structures and metabolic functions in DWDSs, thereby enhancing the formation of N-DBPs. This is the first study to successfully reveal the interactions among iron particles, biofilms, and chlorine in DWDSs, which may help to fully understand the biofilm transformation and microbial community succession in DWDSs.


Assuntos
Água Potável , Purificação da Água , Biofilmes , Cloro , Corrosão , Desinfecção , Ferro , Nitrogênio , Abastecimento de Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA