Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Epilepsia ; 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39008349

RESUMO

For >30 years, the Eilat Conference on New Antiepileptic Drugs and Devices has provided a forum for the discussion of advances in the development of new therapies for seizures and epilepsy. The EILAT XVII conference took place in Madrid, Spain, on May 5-8, 2024. Participants included basic scientists and clinical investigators from industry and academia, other health care professionals, and representatives from lay organizations. We summarize in this article information on treatments in preclinical and in early clinical development discussed at the conference. These include AMT-260, a gene therapy designed to downregulate the expression of Glu2K subunits of kainate receptors, in development for the treatment of drug-resistant seizures associated with mesial temporal sclerosis; BHV-7000, a selective activator of heteromeric Kv7.2/7.3 potassium channels, in development for the treatment of focal epilepsy; ETX101, a recombinant adeno-associated virus serotype 9 designed to increase NaV1.1 channel density in inhibitory γ-aminobutyric acidergic (GABAergic) neurons, in development for the treatment of SCN1A-positive Dravet syndrome; GAO-3-02, a compound structurally related to synaptamide, which exerts antiseizure activity at least in part through an action on cannabinoid type 2 receptors; LRP-661, a structural analogue of cannabidiol, in development for the treatment of seizures associated with Lennox-Gastaut syndrome, Dravet syndrome, and tuberous sclerosis complex; OV329, a selective inactivator of GABA aminotransferase, in development for the treatment of drug-resistant seizures; PRAX-628, a functionally selective potent sodium channel modulator with preference for the hyperexcitable state of sodium channels, in development for the treatment of focal seizures; RAP-219, a selective negative allosteric modulator of transmembrane α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor regulatory protein γ-8, in development for the treatment of focal seizures; and rozanolixizumab, a humanized anti-neonatal Fc receptor monoclonal antibody, in development for the treatment of LGI1 autoimmune encephalitis. Treatments in more advanced development are summarized in Part II of this report.

2.
CNS Drugs ; 37(9): 781-795, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37603261

RESUMO

The inhibitory neurotransmitter γ-aminobutyric acid (GABA) plays an important role in the modulation of neuronal excitability, and a disruption of GABAergic transmission contributes to the pathogenesis of some seizure disorders. Although many currently available antiseizure medications do act at least in part by potentiating GABAergic transmission, there is an opportunity for further research aimed at developing more innovative GABA-targeting therapies. The present article summarises available evidence on a number of such treatments in clinical development. These can be broadly divided into three groups. The first group consists of positive allosteric modulators of GABAA receptors and includes Staccato® alprazolam (an already marketed benzodiazepine being repurposed in epilepsy as a potential rescue inhalation treatment for prolonged and repetitive seizures), the α2/3/5 subtype-selective agents darigabat and ENX-101, and the orally active neurosteroids ETX155 and LPCN 2101. A second group comprises two drugs already marketed for non-neurological indications, which could be repurposed as treatments for seizure disorders. These include bumetanide, a diuretic agent that has undergone clinical trials in phenobarbital-resistant neonatal seizures and for which the rationale for further development in this indication is under debate, and ivermectin, an antiparasitic drug currently investigated in a randomised double-blind trial in focal epilepsy. The last group comprises a series of highly innovative therapies, namely GABAergic interneurons (NRTX-001) delivered via stereotactic cerebral implantation as a treatment for mesial temporal lobe epilepsy, an antisense oligonucleotide (STK-001) aimed at upregulating NaV1.1 currents and restoring the function of GABAergic interneurons, currently tested in a trial in patients with Dravet syndrome, and an adenoviral vector-based gene therapy (ETX-101) scheduled for investigation in Dravet syndrome. Another agent, a subcutaneously administered neuroactive peptide (NRP2945) that reportedly upregulates the expression of GABAA receptor α and ß subunits is being investigated, with Lennox-Gastaut syndrome and other epilepsies as proposed indications. The diversity of the current pipeline underscores a strong interest in the GABA system as a target for new treatment development in epilepsy. To date, limited clinical data are available for these investigational treatments and further studies are required to assess their potential value in addressing unmet needs in epilepsy management.


Assuntos
Epilepsias Mioclônicas , Epilepsias Parciais , Epilepsia , Síndrome de Lennox-Gastaut , Recém-Nascido , Humanos , Epilepsia/tratamento farmacológico , Ácido gama-Aminobutírico/uso terapêutico , Ensaios Clínicos Controlados Aleatórios como Assunto
3.
CNS Drugs ; 36(2): 113-122, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35094259

RESUMO

Lorcaserin, a selective serotonin 5-HT2C receptor agonist, was developed as an appetite suppressant with the rationale of minimizing the risk of cardiovascular toxicity associated with non-selective serotoninergic agents such as fenfluramine. Eight years after FDA approval, however, it was withdrawn from the market, when a large safety study suggested a potential cancer risk. Following in the fenfluramine footsteps and utilizing the repurposing approach coupled with the regulatory orphan drug designation, lorcaserin is currently in clinical development for the treatment of epilepsy. This potential novel indication builds on the evidence that 5-HT2C receptor stimulation can protect against seizures, and accounts at least in part for fenfluramine's antiseizure effects in Dravet syndrome models. In animal models, lorcaserin shows a narrower range of antiseizure activity than fenfluramine. In particular, lorcaserin is inactive in classical acute seizure tests such as maximal electroshock and subcutaneous pentylenetetrazole in mice and rats, and the 6-Hz stimulation model in mice. However, it is active in the GAERS absence seizure model, and in mutant zebrafish models of Dravet syndrome. Preliminary uncontrolled studies in patients with Dravet syndrome have yielded promising results, and a phase III, double-blind, placebo-controlled, parallel group trial is currently ongoing to assess its efficacy and safety in children and adults with Dravet syndrome.


Assuntos
Benzazepinas , Desenvolvimento de Medicamentos/métodos , Epilepsias Mioclônicas/tratamento farmacológico , Animais , Anticonvulsivantes/farmacocinética , Anticonvulsivantes/uso terapêutico , Benzazepinas/farmacocinética , Benzazepinas/uso terapêutico , Modelos Animais de Doenças , Humanos , Medição de Risco , Agonistas do Receptor 5-HT2 de Serotonina/farmacocinética , Agonistas do Receptor 5-HT2 de Serotonina/uso terapêutico
4.
Neuropharmacology ; 185: 108442, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33347884

RESUMO

The therapeutic potential of cannabidiol (CBD) in seizure disorders has been known for many years, but it is only in the last decade that major progress has been made in characterizing its preclinical and clinical properties as an antiseizure medication. The mechanisms responsible for protection against seizures are not fully understood, but they are likely to be multifactorial and to include, among others, antagonism of G protein-coupled receptor, desensitization of transient receptor potential vanilloid type 1 channels, potentiation of adenosine-mediated signaling, and enhancement of GABAergic transmission. CBD has a low and highly variable oral bioavailability, and can be a victim and perpetrator of many drug-drug interactions. A pharmaceutical-grade formulation of purified CBD derived from Cannabis sativa has been evaluated in several randomized placebo-controlled adjunctive-therapy trials, which resulted in its regulatory approval for the treatment of seizures associated with Dravet syndrome, Lennox-Gastaut syndrome and tuberous sclerosis complex. Interpretation of results of these trials, however, has been complicated by the occurrence of an interaction with clobazam, which leads to a prominent increase in the plasma concentration of the active metabolite N-desmethylclobazam in CBD-treated patients. Despite impressive advances, significant gaps in knowledge still remain. Areas that require further investigation include the mechanisms underlying the antiseizure activity of CBD in different syndromes, its pharmacokinetic profile in infants and children, potential relationships between plasma drug concentration and clinical response, interactions with other co-administered medications, potential efficacy in other epilepsy syndromes, and magnitude of antiseizure effects independent from interactions with clobazam. This article is part of the special issue on 'Cannabinoids'.


Assuntos
Anticonvulsivantes/uso terapêutico , Pesquisa Biomédica/tendências , Canabidiol/uso terapêutico , Epilepsia/tratamento farmacológico , Medicina Baseada em Evidências/tendências , Animais , Pesquisa Biomédica/métodos , Interações Medicamentosas/fisiologia , Epilepsia/diagnóstico , Epilepsia/fisiopatologia , Medicina Baseada em Evidências/métodos , Fadiga/induzido quimicamente , Humanos , Ensaios Clínicos Controlados Aleatórios como Assunto/métodos
5.
Epilepsia ; 61(8): 1543-1552, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32614073

RESUMO

The success rate from first time in man to regulatory approval of central nervous system (CNS) drugs is lower than the overall success rate across all therapeutic indications (eg, cardiovascular, infectious diseases). To understand the reasons for drug-candidate failure and to capture trends in antiseizure drug (ASD) design, we have analyzed the physicochemical and biopharmaceutical properties of marketed ASDs in comparison with new ASDs in development. Our comparative analysis included molecular weight (MW), logP, polar surface area (PSA), the "Lipinski rule of five," and the CNS Multiparameter Optimization (MPO) score. LogP is the logarithm of a drug-partition coefficient (P) between n-octanol and water. PSA is the molecule's surface sum of its polar atoms. ASDs' biopharmaceutical properties were classified according to their water solubility, permeability, and route of elimination as outlined by the Biopharmaceutics Classification System (BCS) and Biopharmaceutics Drug Disposition Classification System (BDDCS). For old ASDs (1912-1990), logP, PSA, and CNS MPO values ranged between 0.4 and 2.8, 37 and 87 Å2 , and 4.4 and 6.0, respectively. For second-generation ASDs (1990-2008), PSA values ranged between 39 and 116 Å2 . However, logP values showed a difference between the lipophilic (logP = 0.3-3.21) and hydrophilic (logP = -0.6 to -2.16) ASDs. For third-generation ASDs (2008-2020), logP and PSA ranged between 0.3 and 3.5 and between 57 and 76 Å2 , respectively. The mean CNS MPO scores of all marketed ASDs were similar, ranging between 4.9 and 5.4, and were similar to those of the ASDs in development (3.5-5.8). Most ASDs belong to BCS and BDDCS classes 1 and 2. MW, logP, CNS MPO score, and PSA assess lipophilicity and correlate with antiseizure activity. To succeed, a new small-molecule ASD must have MW < 375 and PSA < 140Å2 , belong to BCS and/or BDDCS class 1 or 2, and obey the Lipinski rule of five: logP < 5, MW < 500, and <5 and <10 of hydrogen-bond donors and acceptors, respectively. The similarity in the MW, logP, and PSA values of marketed and new drugs in development indicates a conservative trend in ASD design.


Assuntos
Anticonvulsivantes/química , Desenho de Fármacos , Desenvolvimento de Medicamentos , Anticonvulsivantes/farmacologia , Fenômenos Químicos , Aprovação de Drogas , Humanos , Peso Molecular
6.
Birth Defects Res ; 111(14): 1013-1023, 2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-30325584

RESUMO

OBJECTIVES: The anticonvulsant valproic acid (VPA) has a known teratogenic effect capable of inducing major congenital malformations and developmental disorders. A comparative teratogenicity study of VPA and its analog valnoctamide (VCD), which is a new generation candidate antiepileptic drug, was carried out using Swiss Vancouver (SWV) mice. METHODS: Pregnant SWV dams were treated with either a single intraperitoneal injection of VPA (1.8 and 2.7 mmol/kg), VCD (1.8 and 2.7 mmol/kg), or vehicle on E8:12 (gestational day:hour). The numbers of implantation and resorption, viable and dead fetuses, and the presence of gross fetal visceral and skeletal abnormalities were determined (E18). Real-time Polymerase chain reaction (RT-PCR) arrays were used to analyze the expression of 84 genes related to the processes of neurogenesis and neural stem cell differentiation. RESULTS: Significant decreases in pregnancy weight gain and the number of live fetuses were observed when VPA was administered at the high dose, whereas the percentage of exencephalic fetuses was significantly increased in VPA treated compared with an equivalent VCD dosage group. There was a dose-related increase in visceral defects in the VPA-exposed fetuses. Missing skull bones and fused vertebrae in fetuses occurred at the high dose of VPA. Three genes (Mtap2, Bmp8b, and Stat3) were significantly upregulated and one (Heyl) was downregulated in samples from VPA-treated dams. CONCLUSIONS: The study demonstrates that the teratogenicity of VPA was significantly greater than that of an equimolar dose of VCD. Four genes (Mtap2, Bmp8b, Stat3, and Heyl) represent candidate target genes for the underlying teratogenic mechanism responsible for VPA-induced malformations.


Assuntos
Amidas/efeitos adversos , Teratogênese/efeitos dos fármacos , Ácido Valproico/efeitos adversos , Anormalidades Induzidas por Medicamentos/etiologia , Anormalidades Induzidas por Medicamentos/fisiopatologia , Amidas/farmacologia , Animais , Anticonvulsivantes/efeitos adversos , Feminino , Morte Fetal , Feto/efeitos dos fármacos , Camundongos , Defeitos do Tubo Neural/induzido quimicamente , Gravidez , Teratogênicos/metabolismo , Teratoma/etiologia , Ácido Valproico/análogos & derivados , Ácido Valproico/farmacologia
7.
Epilepsia ; 59(10): 1811-1841, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30368792

RESUMO

The Fourteenth Eilat Conference on New Antiepileptic Drugs and Devices (EILAT XIV) took place in Madrid, Spain, on May 13-16, 2018 and was attended by 168 delegates from 28 countries. The conference provided a forum for professionals involved in basic science, clinical research, regulatory affairs, and clinical care to meet and discuss the latest advances related to discovery and development of drugs and devices aimed at improving the management of people with epilepsy. This progress report provides a summary of findings on investigational compounds for which data from preclinical or early (phase I) clinical studies were presented. The compounds reviewed include adenosine and adenosine kinase inhibitors, BIS-001 (huperzine A), 2-deoxy-d-glucose, FV-082, FV-137, JNJ-40411813, JNJ-55511118 and analogs, ketone-enhanced antiepileptic drugs, oxynytones, OV329, TAK-935 (OV935), XEN901, and XEN1101. Many innovative approaches to drug development were presented. For example, some compounds are being combined with traditional antiepileptic drugs based on evidence of synergism in seizure models, some act as inhibitors of enzymes involved in modulation of neuronal activity, and some interact in novel ways with excitatory receptors or ion channels. Some of the compounds in development target the etiology of specific epilepsy syndromes (including orphan conditions) through precision medicine, and some offer hope of producing disease-modifying effects rather than symptomatic seizure suppression. Overall, the results summarized in the report indicate that important advances are being made in the effort to develop compounds with potentially improved efficacy and safety profiles compared with existing agents.


Assuntos
Anticonvulsivantes/uso terapêutico , Ensaios Clínicos como Assunto , Congressos como Assunto , Modelos Animais de Doenças , Epilepsia/tratamento farmacológico , Animais , Anticonvulsivantes/química , Anticonvulsivantes/farmacologia , Desenvolvimento de Medicamentos , Drogas em Investigação , Humanos , Espanha
8.
Neurochem Res ; 42(7): 1972-1982, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28275953

RESUMO

Epilepsy is one of the most common neurological diseases, with between 34 and 76 per 100,000 people developing epilepsy annually. Epilepsy therapy for the past 100+ years is based on the use of antiepileptic drugs (AEDs). Despite the availability of more than twenty old and new AEDs, approximately 30% of patients with epilepsy are not seizure-free with the existing medications. In addition, the clinical use of the existing AEDs is restricted by their side-effects, including the teratogenicity associated with valproic acid that restricts its use in women of child-bearing age. Thus, there is an unmet clinical need to develop new, effective AEDs. In the present study, a novel class of carbamates incorporating phenethyl or branched aliphatic chains with 6-9 carbons in their side-chain, and 4-benzenesulfonamide-carbamate moieties were synthesized and evaluated for their anticonvulsant activity, teratogenicity and carbonic anhydrase (CA) inhibition. Three of the ten newly synthesized carbamates showed anticonvulsant activity in the maximal-electroshock (MES) and 6 Hz tests in rodents. In mice, 3-methyl-2-propylpentyl(4-sulfamoylphenyl)carbamate(1), 3-methyl-pentan-2-yl-(4-sulfamoylphenyl)carbamate (9) and 3-methylpentyl, (4-sulfamoylphenyl)carbamate (10) had ED50 values of 136, 31 and 14 mg/kg (MES) and 74, 53, and 80 mg/kg (6 Hz), respectively. Compound (10) had rat-MES-ED50 = 13 mg/kg and ED50 of 59 mg/kg at the mouse-corneal-kindling test. These potent carbamates (1,9,10) induced neural tube defects only at doses markedly exceeding their anticonvuslnat-ED50 values. None of these compounds were potent inhibitors of CA IV, but inhibited CA isoforms I, II and VII. The anticonvulsant properties of these compounds and particularly compound 10 make them potential candidates for further evaluation and development as new AEDs.


Assuntos
Anticonvulsivantes/uso terapêutico , Carbamatos/uso terapêutico , Anidrases Carbônicas/uso terapêutico , Ácidos Carboxílicos/uso terapêutico , Convulsões/tratamento farmacológico , Sulfanilamidas/uso terapêutico , Animais , Anticonvulsivantes/química , Anticonvulsivantes/toxicidade , Carbamatos/química , Carbamatos/toxicidade , Anidrases Carbônicas/química , Anidrases Carbônicas/toxicidade , Ácidos Carboxílicos/química , Ácidos Carboxílicos/toxicidade , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos/métodos , Excitação Neurológica/efeitos dos fármacos , Excitação Neurológica/fisiologia , Masculino , Camundongos , Defeitos do Tubo Neural/induzido quimicamente , Ratos , Ratos Sprague-Dawley , Convulsões/induzido quimicamente , Relação Estrutura-Atividade , Sulfanilamida , Sulfanilamidas/química , Sulfanilamidas/toxicidade , Teratogênicos/química , Teratogênicos/toxicidade
9.
Epilepsia ; 58(2): 181-221, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28111749

RESUMO

The Thirteenth Eilat Conference on New Antiepileptic Drugs and Devices (EILAT XIII) took place in Madrid, Spain, on June 26-29, 2016, and was attended by >200 delegates from 31 countries. The present Progress Report provides an update on experimental and clinical results for drugs presented at the Conference. Compounds for which summary data are presented include an AED approved in 2016 (brivaracetam), 12 drugs in phase I-III clinical development (adenosine, allopregnanolone, bumetanide, cannabidiol, cannabidivarin, 2-deoxy-d-glucose, everolimus, fenfluramine, huperzine A, minocycline, SAGE-217, and valnoctamide) and 6 compounds or classes of compounds for which only preclinical data are available (bumetanide derivatives, sec-butylpropylacetamide, FV-082, 1OP-2198, NAX 810-2, and SAGE-689). Overall, the results presented at the Conference show that considerable efforts are ongoing into discovery and development of AEDs with potentially improved therapeutic profiles compared with existing agents. Many of the drugs discussed in this report show innovative mechanisms of action and many have shown promising results in patients with pharmacoresistant epilepsies, including previously neglected rare and severe epilepsy syndromes.


Assuntos
Anticonvulsivantes/uso terapêutico , Drogas em Investigação/uso terapêutico , Epilepsia/tratamento farmacológico , Animais , Ensaios Clínicos como Assunto , Congressos como Assunto , Descoberta de Drogas , Drogas em Investigação/farmacologia , Humanos , Relatório de Pesquisa
10.
Cephalalgia ; 36(10): 924-35, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26568161

RESUMO

BACKGROUND: Though migraine is disabling and affects 12%-15% of the population, there are few drugs that have been developed specifically for migraine prevention. Valproic acid (VPA) is a broad-spectrum antiepileptic drug (AED) that is also used for migraine prophylaxis, but its clinical use is limited by its side effect profile. sec-Butylpropylacetamide (SPD) is a novel VPA derivative, designed to be more potent and tolerable than VPA, that has shown efficacy in animal seizure and pain models. METHODS: We evaluated SPD's antimigraine potential in the cortical spreading depression (CSD) and nitroglycerin (NTG) models of migraine. To evaluate SPD's mechanism of action, we performed whole-cell recordings on cultured cortical neurons and neuroblastoma cells. RESULTS: In the CSD model, the SPD-treated group showed a significantly lower median number of CSDs compared to controls. In the NTG-induced mechanical allodynia model, SPD dose-dependently reduced mechanical sensitivity compared to controls. SPD showed both a significant potentiation of GABA-mediated currents and a smaller but significant decrease in NMDA currents in cultured cortical neurons. Kainic acid-evoked currents and voltage-dependent sodium channel currents were not changed by SPD. CONCLUSIONS: These results demonstrate SPD's potential as a promising novel antimigraine compound, and suggest a GABAergic mechanism of action.


Assuntos
Amidas/uso terapêutico , Anticonvulsivantes/uso terapêutico , Transtornos de Enxaqueca/prevenção & controle , Transtornos de Enxaqueca/fisiopatologia , Ácido Valproico/análogos & derivados , Amidas/farmacologia , Animais , Anticonvulsivantes/farmacologia , Linhagem Celular Tumoral , Células Cultivadas , Córtex Cerebral/citologia , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/fisiologia , Depressão Alastrante da Atividade Elétrica Cortical/efeitos dos fármacos , Depressão Alastrante da Atividade Elétrica Cortical/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ácido Valproico/farmacologia , Ácido Valproico/uso terapêutico
11.
Epilepsy Res ; 111: 85-141, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25769377

RESUMO

The Twelfth Eilat Conference on New Antiepileptic Drugs (AEDs) - EILAT XII, took place in Madrid, Spain from August 31st to September 3rd 2014. About 130 basic scientists, clinical pharmacologists and neurologists from 22 countries attended the conference, whose main themes included "Conquering pharmacoresistant epilepsy", "Innovative emergency treatments", "Progress report on second-generation treatment" and "New methods and formulations". Consistent with previous formats of this conference, a large part of the program was devoted to a review of AEDs in development, as well as updates on AEDs introduced since 2004. Like the EILAT X and EILAT XI reports, the current article focuses on the preclinical and clinical pharmacology of AEDs that are currently in development. These include adenosine-releasing silk, allopregnanolone (SAGE-547), AMP-X-0079, brivaracetam, bumetanide, cannabidiol, cannabidivarin, 2-deoxy-glucose, everolimus, ganaxolone, huperzine A, imepitoin, minocycline, NAX 801-2, pitolisant, PRX 0023, SAGE-217, valnoctamide and its homologue sec-butyl-propylacetamide (SPD), and VLB-01. Since the previous Eilat conference, perampanel has been introduced into the market and twelve novel potential epilepsy treatments are presented for the first time.


Assuntos
Anticonvulsivantes/farmacologia , Anticonvulsivantes/uso terapêutico , Epilepsia/tratamento farmacológico , Animais , Anticonvulsivantes/efeitos adversos , Anticonvulsivantes/farmacocinética , Ensaios Clínicos como Assunto , Congressos como Assunto , Preparações de Ação Retardada/efeitos adversos , Preparações de Ação Retardada/farmacocinética , Preparações de Ação Retardada/farmacologia , Preparações de Ação Retardada/uso terapêutico , Descoberta de Drogas , Drogas em Investigação/efeitos adversos , Drogas em Investigação/farmacocinética , Drogas em Investigação/farmacologia , Drogas em Investigação/uso terapêutico , Humanos , Relatório de Pesquisa
12.
Epilepsia ; 55(12): 1944-52, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25442425

RESUMO

OBJECTIVE: 2-Ethyl-3-methylbutyl-carbamate (EMC) and 2-isopropylpentyl-carbamate (IPC) are among the most potent anticonvulsant carbamate derivatives of valproic acid. EMC and IPC are chiral compounds. Consequently, the aim of the current study was to comparatively evaluate the pharmacokinetic (PK) and pharmacodynamic (PD anticonvulsant activity) profile of EMC and IPC individual enantiomers. METHODS: The anticonvulsant activity of EMC and IPC individual enantiomers was evaluated in several anticonvulsant rodent models including maximal electroshock (MES), 6 Hz psychomotor, subcutaneous (pentylenetetrazole) (scMet), and the pilocarpine-induced and soman-induced status epilepticus (SE). The PK-PD relationship of EMC and IPC individual enantiomers was evaluated following intraperitoneal administration (50 mg/kg) to rats. Induction of neural tube defects (NTDs) was evaluated in a mouse strain that was highly susceptible to teratogen-induced NTDs. RESULTS: In mice and rats, (2S)-EMC exhibited anticonvulsant activity similar to that of racemic EMC in the MES and scMet tests, whereas in the 6 Hz test, racemic EMC was more potent than its two individual enantiomers. Racemic EMC exhibited a potent activity in the soman-induced SE model when administered 5 and 20 min after seizure onset with median effective dose (ED50 ) values of 33 and 48 mg/kg, respectively. (2R)-IPC and (2S)-IPC exhibited ED50 values similar to those of racemic IPC in the mouse and rat MES and scMet models. (2R)-IPC had similar ED50 values on the 6 Hz tests. Racemic IPC had an ED50 value of 107 mg/kg in the pilocarpine-induced SE model when given 30 min after seizure onset. Racemic EMC and IPC and their enantiomers had similar clearance (3.8-5.5 L/h/kg) and short half-life (<1 h). EMC and its enantiomers did not cause NTDs at doses 3-10 times higher than their anticonvulsant ED50 values. SIGNIFICANCE: EMC and IPC did not exhibit enantioselective PK, a fact that may contribute to their nonenantioselective activity in any of the anticonvulsant models. The nonsignificant difference between racemic EMC and racemic IPC and their enantiomers, suggests that their wide spectrum of anticonvulsant activity is likely to be caused by multiple mechanisms of action.


Assuntos
Anticonvulsivantes/química , Anticonvulsivantes/farmacocinética , Carbamatos/química , Carbamatos/farmacocinética , Epilepsia/tratamento farmacológico , Defeitos do Tubo Neural/induzido quimicamente , Animais , Anticonvulsivantes/sangue , Anticonvulsivantes/uso terapêutico , Área Sob a Curva , Carbamatos/efeitos adversos , Carbamatos/sangue , Sistema Nervoso Central/efeitos dos fármacos , Convulsivantes/toxicidade , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Eletrochoque/efeitos adversos , Epilepsia/sangue , Epilepsia/etiologia , Cromatografia Gasosa-Espectrometria de Massas , Masculino , Camundongos , Pentilenotetrazol/toxicidade , Ratos , Ratos Sprague-Dawley , Soman/toxicidade , Relação Estrutura-Atividade
13.
Epilepsia ; 55(2): 353-61, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24313671

RESUMO

OBJECTIVE: Valnoctamide (VCD), a central nervous system (CNS)-active chiral constitutional isomer of valpromide, the corresponding amide of valproic acid (VPA), is currently undergoing phase IIb clinical trials in acute mania. VCD exhibits stereoselective pharmacokinetics (PK) in animals and humans. The current study comparatively evaluated the pharmacodynamics (PD; anticonvulsant activity and teratogenicity) and PK of the four individual stereoisomers of VCD. METHODS: The anticonvulsant activity of VCD individual stereoisomers was evaluated in several rodent anticonvulsant models including maximal electroshock, 6 Hz psychomotor, subcutaneous metrazol, and the pilocarpine-induced and soman-induced status epilepticus (SE). The PK-PD (anticonvulsant activity) relationship of VCD stereoisomers was evaluated following intraperitoneal administration (70 mg/kg) to rats. Induction of neural tube defects (NTDs) by VCD stereoisomers was evaluated in a mouse strain that was highly susceptible to teratogen-induced NTDs. RESULTS: VCD had a stereoselective PK, with (2S,3S)-VCD exhibiting the lowest clearance, and consequently a twice-higher plasma exposure than all other stereoisomers. Nervertheless, there was less stereoselectivity in VCD anticonvulsant activity and each stereoisomer had similar median effective dose (ED)50 values in most models. VCD stereoisomers (258 or 389 mg/kg) did not cause NTDs. These doses are 3-12 times higher than VCD anticonvulsant ED50 values. SIGNIFICANCE: VCD displayed stereoselective PK that did not lead to significant stereoselective activity in various anticonvulsant rodent models. If VCD exerted its broad-spectrum anticonvulsant activity using a single mechanism of action (MOA), it is likely that it would exhibit a stereoselective PD. The fact that there was no significant difference between racemic VCD and its individual stereoisomers suggests that VCD's anticonvulsant activity is due to multiple MOAs.


Assuntos
Amidas/farmacocinética , Anticonvulsivantes/farmacocinética , Estimulantes do Sistema Nervoso Central/farmacocinética , Teratogênicos/farmacocinética , Ácido Valproico/farmacocinética , Amidas/química , Amidas/toxicidade , Animais , Anticonvulsivantes/química , Anticonvulsivantes/toxicidade , Estimulantes do Sistema Nervoso Central/química , Estimulantes do Sistema Nervoso Central/toxicidade , Masculino , Camundongos , Defeitos do Tubo Neural/induzido quimicamente , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Estado Epiléptico/induzido quimicamente , Estado Epiléptico/prevenção & controle , Estereoisomerismo , Teratogênicos/química , Teratogênicos/toxicidade , Ácido Valproico/química , Ácido Valproico/toxicidade
14.
Birth Defects Res B Dev Reprod Toxicol ; 98(4): 318-27, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24039104

RESUMO

BACKGROUND: Valproic acid (VPA), widely used to treat epilepsy, bipolar disorders, and migraine prophylaxis, is known to cause neural tube and skeletal defects in humans and animals. Aminobenzensulfonamide derivatives of VPA with branched aliphatic carboxylic acids, namely 2-methyl-N-(4-sulfamoyl-phenyl)-pentanamide (MSP), 2-ethyl-N-(4-sulfamoyl-phenyl)-butyramide (ESB), 2-ethyl-4-methyl-N-(4-sulfamoyl-phenyl)-pentanamide (EMSP), and 2-ethyl-N-(4-sulfamoyl-benzyl)-butyramide (ESBB), have shown more potent anticonvulsant activity than VPA in preclinical testing. Here, we investigated the teratogenic effects of these analogous compounds of VPA in NMRI mice. METHODS: Pregnant NMRI mice were given a single subcutaneous injection of either VPA at 1.8 or 3.6 mmol/kg, or MSP, ESB, EMSP, or ESBB at 1.8, 3.6, or 4.8 mmol/kg on gestation day (GD) 8. Cesarean section was performed on GD 18, and the live fetuses were examined for external and skeletal malformations. RESULTS: Compared with VPA, which induced neural tube defects (NTDs) in fetuses at 1.8 and 3.6 mmol/kg, the analog derivatives induced no NTDs at dose levels up to 4.8 mmol/kg (except for a single case of exencephaly at 4.8 mmol/kg MSP). Skeletal examination showed several abnormalities mainly at the axial skeletal level with VPA at 1.8 mmol/kg. Fused vertebrae and/or fused ribs were also observed with MSP, ESB, EMSP, and ESBB, they were less severe and seen at a lower incidence that those induced by VPA at the same dose level. CONCLUSIONS: In addition to exerting more potent preclinical antiepileptic activity, teratology comparison indicates that aminobenzensulfonamide analogs are generally more weakly teratogenic than VPA.


Assuntos
Ácidos Carboxílicos/toxicidade , Anormalidades Congênitas/patologia , Ácidos Graxos/toxicidade , Sulfanilamidas/toxicidade , Sulfonamidas/toxicidade , Animais , Peso Corporal/efeitos dos fármacos , Osso e Ossos/anormalidades , Osso e Ossos/efeitos dos fármacos , Osso e Ossos/patologia , Ácidos Carboxílicos/química , Anormalidades Congênitas/embriologia , Embrião de Mamíferos/anormalidades , Embrião de Mamíferos/efeitos dos fármacos , Ácidos Graxos/química , Feminino , Camundongos , Defeitos do Tubo Neural/induzido quimicamente , Defeitos do Tubo Neural/embriologia , Defeitos do Tubo Neural/patologia , Gravidez , Sulfanilamida , Sulfanilamidas/química , Sulfonamidas/química , Teratologia , Ácido Valproico/análogos & derivados , Ácido Valproico/química , Ácido Valproico/toxicidade
15.
Clin Biochem ; 46(15): 1532-7, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23868021

RESUMO

PURPOSE: To determine the cytotoxicity of valproic acid (VPA) and its derivatives in human hepatoblastoma (HepG2) cells, and to study the possible toxicity of these compounds in human lymphocytes from patients with known hypersensitivity syndrome reactions (HSRs) to other medication. METHODS: Cells were exposed to physiological doses of VPA, valnoctamide (VCD) and its one carbon homologue sec-Butyl-propyl-acetamide (SPD) for 2h and for 24h. Cell viability was measured using succinate dehydrogenase activity for hepatocytes and lymphocyte toxicity assay (LTA) for lymphocytes. Cytokines and apoptosis [cytokeratine 18 (cCK18-M30)] markers were quantitated by ELISA. RESULTS: VCD and SPD presented lower cytotoxicity compared to VPA in cultured HepG2 cells. SPD led to cytotoxicity in lymphocytes. VPA and its derivatives increased the release of interferon (IFN)-γ and tumor necrosis factor (TNF)-α in media, but had no influence on the release of either interleukin (IL)-1 or IL-6. Significant increases in the release of IFN-γ and TNF-α were observed in lymphocytes exposed to high doses of VPA, and this increased further with exposure time. SIGNIFICANCE: HepG2 cells exposed to VCD and SPD experienced lower direct cytotoxicity than those treated with VPA. Lymphocytes from patients that experienced HSR to other medication have shown cytotoxicity to VPA and its VPA derivatives-induced. High levels of pro-inflammatory cytokines were released in the cell culture media, suggesting that inflammation plays a key role in VPA-derivatives induced lymphocyte toxicity.


Assuntos
Amidas/farmacologia , Apoptose/efeitos dos fármacos , Reparo do DNA/efeitos dos fármacos , Ácido Valproico/análogos & derivados , Ácido Valproico/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Síndrome de Hipersensibilidade a Medicamentos/imunologia , Síndrome de Hipersensibilidade a Medicamentos/metabolismo , Síndrome de Hipersensibilidade a Medicamentos/patologia , Expressão Gênica , Hepatócitos/citologia , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Inflamação/imunologia , Inflamação/metabolismo , Inflamação/patologia , Interferon gama/biossíntese , Interferon gama/metabolismo , Interleucina-1/biossíntese , Interleucina-1/metabolismo , Interleucina-6/biossíntese , Interleucina-6/metabolismo , Queratina-18/genética , Queratina-18/metabolismo , Linfócitos/efeitos dos fármacos , Linfócitos/imunologia , Linfócitos/patologia , Transdução de Sinais , Fator de Necrose Tumoral alfa/biossíntese , Fator de Necrose Tumoral alfa/metabolismo
16.
Adv Drug Deliv Rev ; 64(10): 887-95, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22210279

RESUMO

Between 1990 and 2011 the following fifteen new antiepileptic drugs (AEDs) were approved: eslicarbazepine acetate, felbamate, gabapentin, lacosamide, lamotrigine, levetiracetam, oxcarbazepine, pregabalin, retigabine, rufinamide, stiripentol, tiagabine, topiramate, vigabatrin, and zonisamide. These AEDs (except felbamate) offer appreciable advantages in terms of their favorable pharmacokinetics, improved tolerability and lower potential for drug interactions. All AEDs introduced after 1990 that are not second generation drugs (with the exception of vigabatrin and tiagabine) were developed empirically (sometimes serendipitously) utilizing mechanism-unbiased anticonvulsant animal models. The empirical nature of the discovery of new AEDs in the last three decades coupled with their multiple mechanisms of action explains their diverse chemical structures. The availability of old and new AEDs with various activity spectra and different tolerability profiles enables clinicians to better tailor drug choice to the characteristics of individual patients. With fifteen new AEDs having entered the market in the past 20years the antiepileptic market is crowded. Consequently, epilepsy alone is not attractive in 2011 to the pharmaceutical industry even though the clinical need of refractory epilepsy remains unmet. Due to this situation, future design of new AEDs must also have a potential in non-epileptic CNS disorders such as neuropathic pain, migraine prophylaxis and bipolar disorder or fibromyalgia as demonstrated by the sales revenues of pregabalin, topiramate and valproic acid. This review analyzes the effect that the emerging knowledge on the chemical properties of the old AEDs starting from phenobarbital (1912) has had on the design of subsequent AEDs and new therapeutics as well as the current approach to AED discovery.


Assuntos
Anticonvulsivantes/química , Animais , Anticonvulsivantes/uso terapêutico , Epilepsia/tratamento farmacológico , Humanos , Relação Estrutura-Atividade
17.
Epilepsy Behav ; 22(3): 461-8, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21959082

RESUMO

A series of glycinamide conjugates and N-methoxy amide derivatives of valproic acid (VPA) analogs and constitutional isomers were synthesized and evaluated for anticonvulsant activity. Of all compounds synthesized and tested, only N-methoxy-valnoctamide (N-methoxy-VCD) possessed better activity than VPA in the following anticonvulsant tests: maximal electroshock, subcutaneous metrazol, and 6-Hz (32-mA) seizure tests. In mice, the ED(50) values of N-methoxy-VCD were 142 mg/kg (maximal electroshock test), 70 mg/kg (subcutaneous metrazol test), and 35 mg/kg (6-Hz test), and its neurotoxicity TD(50) was 118 mg/kg. In rats, the ED(50) of N-methoxy-VCD in the subcutaneous metrazol test was 36 mg/kg and its protective index (PI=TD(50)/ED(50)) was >5.5. In the rat pilocarpine-induced status epilepticus model, N-methoxy-VCD demonstrated full protection at 200mg/kg, without any neurotoxicity. N-Methoxy-VCD was tested for its ability to induce teratogenicity in a mouse strain susceptible to VPA-induced teratogenicity and was found to be nonteratogenic, although it caused some resorptions. Nevertheless, a safety margin was still maintained between the ED(50) values of N-methoxy-VCD in the mouse subcutaneous metrazol test and the doses that caused the resorptions. On the basis of these results, N-methoxy-VCD is a good candidate for further evaluation as a new anticonvulsant and central nervous system drug.


Assuntos
Amidas , Anticonvulsivantes/química , Anticonvulsivantes/uso terapêutico , Convulsões/tratamento farmacológico , Ácido Valproico , Amidas/química , Amidas/uso terapêutico , Animais , Convulsivantes/toxicidade , Modelos Animais de Doenças , Eletrochoque/efeitos adversos , Feminino , Isomerismo , Masculino , Camundongos , Defeitos do Tubo Neural/induzido quimicamente , Pentilenotetrazol/toxicidade , Ratos , Ratos Sprague-Dawley , Convulsões/etiologia , Relação Estrutura-Atividade , Ácido Valproico/análogos & derivados , Ácido Valproico/química , Ácido Valproico/uso terapêutico
18.
Epilepsia ; 51(10): 1944-53, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20738383

RESUMO

PURPOSE: α-Fluoro-2,2,3,3-tetramethylcyclopropanecarboxamide (α-F-TMCD) and α-Cl-TMCD, are α-halo derivatives of TMCD, the corresponding amide of a cyclopropane analog of valproic acid (VPA). This study aimed to comparatively evaluate the pharmacodynamics and pharmacokinetics of α-F-TMCD and α-Cl-TMCD in rodent models of epilepsy and for antiepileptic drug (AED)-induced teratogenicity. The potential of α-F-TMCD as an antiallodynic and antinociceptive compound was also evaluated. METHODS: α-F-TMCD and α-Cl-TMCD were synthesized. α-Cl-TMCD anticonvulsant activity was evaluated in comparison to VPA in the mouse maximal-electroshock-seizure (MES), Metrazol (scMet), and 6-Hz psychomotor-seizure tests. Neurotoxicity was assessed by the Rotorod-ataxia test. Induction of neural tube defects (NTDs) by α-Cl-TMCD and α-F-TMCD was evaluated after intraperitoneal administration to a mouse strain highly susceptible to VPA-induced teratogenicity. The ability of α-F-TMCD to reduce pain was evaluated in the rat spinal nerve ligation (SNL) model for neuropathic pain and in the formalin test. α-F-TMCD and α-Cl-TMCD pharmacokinetics was evaluated following intraperitoneal (40 mg/kg) and oral (60 mg/kg) administration to rats. RESULTS: α-F-TMCD and α-Cl-TMCD had similar potencies in the 6-Hz test and were more potent than VPA in this model and in the scMet test. Neither induced NTDs, and both exhibited wide safety margins. α-F-TMCD was active in the two pain models, and was found to be equipotent to gabapentin in the SNL model (ED(50) = 37 and 32 mg/kg, respectively). Comparative pharmacokinetic analysis showed that α-Cl-TMCD is less susceptible to liver first-pass effect than α-F-TMCD because of lower total (metabolic) clearance and liver extraction ratio. CONCLUSIONS: Based on their potent anticonvulsant activity and lack of teratogenicity, α-F-TMCD and α-Cl-TMCD have the potential for development as new antiepileptics and central nervous system (CNS) drugs.


Assuntos
Amidas/farmacologia , Amidas/farmacocinética , Anticonvulsivantes/farmacologia , Anticonvulsivantes/farmacocinética , Ciclopropanos/farmacologia , Ciclopropanos/farmacocinética , Epilepsia/prevenção & controle , Ácido Valproico/análogos & derivados , Anormalidades Induzidas por Medicamentos/etiologia , Anormalidades Induzidas por Medicamentos/prevenção & controle , Amidas/efeitos adversos , Analgésicos/farmacocinética , Analgésicos/farmacologia , Animais , Ciclopropanos/efeitos adversos , Modelos Animais de Doenças , Humanos , Camundongos , Defeitos do Tubo Neural/induzido quimicamente , Defeitos do Tubo Neural/prevenção & controle , Dor/prevenção & controle , Pentilenotetrazol/farmacologia , Ratos , Ácido Valproico/farmacocinética , Ácido Valproico/farmacologia
19.
J Med Chem ; 53(10): 4177-86, 2010 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-20420384

RESUMO

Despite the availability of 14 new antiepileptic drugs (AEDs), about 30% of epileptic patients are not seizure-free. Consequently there is substantial need to develop new effective AEDs. A novel class of aromatic amides composed of phenylacetic acid or branched aliphatic carboxylic acids, with five to nine carbons in their carboxylic moiety, and aminobenzenesulfonamide were synthesized and evaluated in the anticonvulsant rat-maximal electroshock (MES) and subcutaneous metrazol seizure (scMet) tests. Fourteen of the synthesized amides had an anticonvulsant ED(50) of <50 mg/kg in the rat-MES test. The amides 2-methyl-N-(4-sulfamoylphenyl)butyramide (10), 2-ethyl-N-(4-sulfamoylphenyl)butyramide (11), and 3,3-dimethyl-N-(4-sulfamoylphenyl)butyramide (15) were the most potent compounds possessing MES-ED(50) values of 7.6, 9.9, and 9.4 mg/kg and remarkable protective index (PI = TD(50)/ED(50)) values of 65.7, 50.5, and 53.2, respectively. These potent sulfanylamides caused neural tube defects only at doses markedly exceeding their effective dose. The anticonvulsant properties of these compounds make them potential candidates for further development as new, potent, and safe AEDs.


Assuntos
Anilidas/síntese química , Anticonvulsivantes/síntese química , Defeitos do Tubo Neural/induzido quimicamente , Convulsões/tratamento farmacológico , Sulfonamidas/síntese química , Anilidas/farmacologia , Anilidas/toxicidade , Animais , Anticonvulsivantes/farmacologia , Anticonvulsivantes/toxicidade , Convulsivantes , Eletrochoque , Camundongos , Pentilenotetrazol , Ratos , Ratos Sprague-Dawley , Convulsões/etiologia , Relação Estrutura-Atividade , Sulfonamidas/farmacologia , Sulfonamidas/toxicidade
20.
Neuropharmacology ; 58(8): 1228-36, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20230843

RESUMO

The purpose of this study was to evaluate the stereoselective pain relieving (antiallodynic) activity, antiallodynic-anticonvulsant correlation, teratogenicity and pharmacokinetic profile of two stereoisomers of valnoctamide (VCD), a CNS-active amide derivative of a chiral isomer of valproic acid (VPA). The individual stereoisomers (diastereomers), (2R,3S)-VCD and (2S,3S)-VCD were synthesized and their antiallodynic activity was evaluated in rats using the spinal nerve ligation model of neuropathic pain. The pharmacokinetic profile of the two stereoisomers was evaluated in rats following: 1) i.p. administration of racemic-VCD, 2) i.p. administration of the individual stereoisomers (2R,3S)-VCD and (2S,3S)-VCD. Teratogenicity of racemic-VCD and its two individual stereoisomers was evaluated in a SWV mouse strain known to be highly susceptible to VPA-induced teratogenicity. Racemic-VCD, (2R,3S)-VCD and (2S,3S)-VCD showed a dose-related reversal of tactile allodynia with ED(50) values of 52, 61 and 39 mg/kg, respectively. (2S,3S)-VCD was significantly more potent than (2R,3S)-VCD but the opposite is true for its anticonvulsant-effect. In the teratogenicity evaluation racemic-VCD and its two individual stereoisomers showed mild embryotoxicity at doses 7-10 times higher than their antiallodynic-ED(50) values, while (2S,3S)-VCD was significantly less embryotoxic than (2R,3S)-VCD and racemic-VCD. Following administration of the racemic-VCD there was an increase in the primary pharmacokinetic parameters of (2S,3S)-VCD but not of (2R,3S)-VCD. This study demonstrates that both racemic-VCD and its stereoisomers show high potency as antiallodynic compounds and possess a wide safety margin. (2S,3S)-VCD is more potent and less embryotoxic than (2R,3S)-VCD and thus, has a potential to become a candidate for development as a new drug for treating neuropathic pain.


Assuntos
Amidas/farmacologia , Analgésicos/farmacologia , Anticonvulsivantes/farmacologia , Perda do Embrião/induzido quimicamente , Defeitos do Tubo Neural/induzido quimicamente , Amidas/farmacocinética , Amidas/toxicidade , Analgésicos/farmacocinética , Analgésicos/toxicidade , Animais , Anticonvulsivantes/farmacocinética , Anticonvulsivantes/toxicidade , Masculino , Camundongos , Dor/tratamento farmacológico , Dor/fisiopatologia , Medição da Dor , Doenças do Sistema Nervoso Periférico/tratamento farmacológico , Doenças do Sistema Nervoso Periférico/fisiopatologia , Ratos , Ratos Sprague-Dawley , Estereoisomerismo , Relação Estrutura-Atividade , Tato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA