Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Mater ; 23(6): 803-809, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38191632

RESUMO

High-sensitivity radiation detectors for energetic particles are essential for advanced applications in particle physics, astronomy and cancer therapy. Current particle detectors use bulk crystals, and thin-film organic scintillators have low light yields and limited radiation tolerance. Here we present transmissive thin scintillators made from CsPbBr3 nanocrystals, designed for real-time single-proton counting. These perovskite scintillators exhibit exceptional sensitivity, with a high light yield (~100,000 photons per MeV) when subjected to proton beams. This enhanced sensitivity is attributed to radiative emission from biexcitons generated through proton-induced upconversion and impact ionization. These scintillators can detect as few as seven protons per second, a sensitivity level far below the rates encountered in clinical settings. The combination of rapid response (~336 ps) and pronounced ionostability enables diverse applications, including single-proton tracing, patterned irradiation and super-resolution proton imaging. These advancements have the potential to improve proton dosimetry in proton therapy and radiography.

2.
Nature ; 590(7846): 410-415, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33597760

RESUMO

Current X-ray imaging technologies involving flat-panel detectors have difficulty in imaging three-dimensional objects because fabrication of large-area, flexible, silicon-based photodetectors on highly curved surfaces remains a challenge1-3. Here we demonstrate ultralong-lived X-ray trapping for flat-panel-free, high-resolution, three-dimensional imaging using a series of solution-processable, lanthanide-doped nanoscintillators. Corroborated by quantum mechanical simulations of defect formation and electronic structures, our experimental characterizations reveal that slow hopping of trapped electrons due to radiation-triggered anionic migration in host lattices can induce more than 30 days of persistent radioluminescence. We further demonstrate X-ray luminescence extension imaging with resolution greater than 20 line pairs per millimetre and optical memory longer than 15 days. These findings provide insight into mechanisms underlying X-ray energy conversion through enduring electron trapping and offer a paradigm to motivate future research in wearable X-ray detectors for patient-centred radiography and mammography, imaging-guided therapeutics, high-energy physics and deep learning in radiology.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA