Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Death Discov ; 10(1): 314, 2024 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-38972937

RESUMO

Kidney fibrosis is considered to be the ultimate aggregation pathway of chronic kidney disease (CKD), but its underlying mechanism remains elusive. Protein kinase C-delta (PKC-δ) plays critical roles in the control of growth, differentiation, and apoptosis. In this study, we found that PKC-δ was highly upregulated in human biopsy samples and mouse kidneys with fibrosis. Rottlerin, a PKC-δ inhibitor, alleviated unilateral ureteral ligation (UUO)-induced kidney fibrosis, inflammation, VDAC1 expression, and cGAS-STING signaling pathway activation. Adeno-associated virus 9 (AAV9)-mediated VDAC1 silencing or VBIT-12, a VDAC1 inhibitor, attenuated renal injury, inflammation, and activation of cGAS-STING signaling pathway in UUO mouse model. Genetic and pharmacologic inhibition of STING relieved renal fibrosis and inflammation in UUO mice. In vitro, hypoxia resulted in PKC-δ phosphorylation, VDAC1 oligomerization, and activation of cGAS-STING signaling pathway in HK-2 cells. Inhibition of PKC-δ, VDAC1 or STING alleviated hypoxia-induced fibrotic and inflammatory responses in HK-2 cells, respectively. Mechanistically, PKC-δ activation induced mitochondrial membrane VDAC1 oligomerization via direct binding VDAC1, followed by the mitochondrial DNA (mtDNA) release into the cytoplasm, and subsequent activated cGAS-STING signaling pathway, which contributed to the inflammation leading to fibrosis. In conclusion, this study has indicated for the first time that PKC-δ is an important regulator in kidney fibrosis by promoting cGAS-STING signaling pathway which mediated by VDAC1. PKC-δ may be useful for treating renal fibrosis and subsequent CKD.

2.
Int J Surg Pathol ; 32(3): 486-495, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-37545327

RESUMO

Current treatments for gastric cancer (GC) are suboptimal. Potential therapeutic targets for GC were screened using next-generation sequencing. We examined many mutation genes linked to GC, including TP53 (60%), PIK3CA (19%), LRP1B (13%), and ERBB2 (12%), ARID1A (9%), KMT2C (9%), and KRAS (7%). The KMT2C, KRAS, CDK6, and ARID1A wild-type genes were dominant in diffuse-type GC (P < .05), but mutations did not influence prognosis. Patients with APC (6%) and CDH1 (8%) wild-type GC presented with vascular invasion (P < .05). Patients with ATR (2%) wild-type GC were prone to lymph node metastasis (P < .05). Patients with ARID1A (9%) wild-type GC had reduced programmed death ligand 1 expression (<1, P < .05). We found that patients who received chemotherapy had a better prognosis than those who did not (although there was no statistical difference), with platinum-based group having better prognosis and uracil combined with paclitaxel group having worse prognosis.


Assuntos
Neoplasias Gástricas , Humanos , Neoplasias Gástricas/diagnóstico , Neoplasias Gástricas/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Prognóstico , Mutação
3.
Cell Signal ; 108: 110712, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37196773

RESUMO

OBJECTIVE: Diabetic nephropathy (DN) is one of the main complications of diabetes, and inflammation and fibrosis play an important role in its progression. NAD(P)H: quinone oxidoreductase 1 (NQO1) protects cells from oxidative stress and damage caused by toxic quinones. In the present study, we aimed to investigate the protective effects of NQO1 against diabetes-induced renal inflammation and fibrosis and the underlying mechanisms. METHODS: In vivo, the kidneys of type 2 diabetes model db/db mice were infected with adeno-associated virus vectors to induce NQO1 overexpression. In vitro, human renal tubular epithelial (HK-2) cells transfected with NQO1 pcDNA3.1(+) were cultured under high-glucose (HG) conditions. Gene and protein expression was assessed by quantitative real-time PCR, Western blotting, immunofluorescence, and immunohistochemical staining. Mitochondrial reactive oxygen species (ROS) were detected with MitoSOX Red. RESULT: Our study revealed that the expression of NQO1 was markedly downregulated and that Toll-like receptor (TLR)4 and TGF-ß1 expression was upregulated in vivo and in vitro under diabetic conditions. Overexpression of NQO1 suppressed proinflammatory cytokine (IL-6, TNF-α, MCP-1) secretion, extracellular matrix (ECM) (collagen IV, fibronectin) accumulation and epithelial-mesenchymal transition (EMT) (α-SMA, E-cadherin) in the db/db mouse kidneys and HG-cultured HK-2 cells. Furthermore, NQO1 overexpression ameliorated HG-induced TLR4/NF-κB and TGF-ß/Smad pathways activation. Mechanistic studies demonstrated that a TLR4 inhibitor (TAK-242) suppressed the TLR4/NF-κB signaling pathway, proinflammatory cytokine secretion, EMT and ECM-related protein expression in HG-exposed HK-2 cells. In addition, we found that the antioxidants N-acetylcysteine (NAC) and tempol increased the expression of NQO1 and decreased the expression of TLR4, TGF-ß1, Nox1, and Nox4 and ROS production in HK-2 cells cultured under HG conditions. CONCLUSIONS: These data suggest that NQO1 alleviates diabetes-induced renal inflammation and fibrosis by regulating the TLR4/NF-κB and TGF-ß/Smad signaling pathways.


Assuntos
Diabetes Mellitus Tipo 2 , Nefropatias Diabéticas , NAD(P)H Desidrogenase (Quinona) , Transdução de Sinais , Animais , Humanos , Camundongos , Citocinas , Nefropatias Diabéticas/metabolismo , Transição Epitelial-Mesenquimal , Fibrose , Inflamação/metabolismo , NAD(P)H Desidrogenase (Quinona)/metabolismo , NF-kappa B/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Receptor 4 Toll-Like/metabolismo , Fator de Crescimento Transformador beta1/metabolismo
4.
J Transl Med ; 20(1): 44, 2022 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-35090502

RESUMO

BACKGROUND: Diabetic nephropathy (DN) is one of the main complications of diabetes, and oxidative stress plays an important role in its progression. NAD(P)H: quinone oxidoreductase 1 (NQO1) protects cells from oxidative stress and toxic quinone damage. In the present study, we aimed to investigate the protective effects and underlying mechanisms of NQO1 on diabetes-induced renal tubular epithelial cell oxidative stress and apoptosis. METHODS: In vivo, the kidneys of db/db mice, which are a type 2 diabetes model, were infected with adeno-associated virus to induce NQO1 overexpression. In vitro, human renal tubular epithelial cells (HK-2 cells) were transfected with NQO1 pcDNA3.1(+) and cultured in high glucose (HG). Gene and protein expression was assessed by quantitative real-time PCR, western blotting, immunofluorescence analysis, and immunohistochemical staining. Reactive oxygen species (ROS) were examined by MitoSox red and flow cytometry. TUNEL assays were used to measure apoptosis. RESULT: In vivo, NQO1 overexpression reduced the urinary albumin/creatinine ratio (UACR) and blood urea nitrogen (BUN) level in db/db mice. Our results revealed that NQO1 overexpression could significantly increase the ratio of NAD+/NADH and silencing information regulator 1 (Sirt1) expression and block tubular oxidative stress and apoptosis in diabetic kidneys. In vitro, NQO1 overexpression reduced the generation of ROS, NADPH oxidase 1 (Nox1) and Nox4, the Bax/Bcl-2 ratio and the expression of Cleaved Caspase-3 and increased NAD+/NADH levels and Sirt1 expression in HK-2 cells under HG conditions. However, these effects were reversed by the Sirt1 inhibitor EX527. CONCLUSIONS: All these data suggest that NQO1 has a protective effect against oxidative stress and apoptosis in DN, which may be mediated by the regulation of Sirt1 through increasing intracellular NAD+/NADH levels. Therefore, NQO1 may be a new therapeutic target for DN.


Assuntos
Diabetes Mellitus Tipo 2 , Nefropatias Diabéticas , NAD(P)H Desidrogenase (Quinona) , Sirtuína 1 , Animais , Apoptose , Nefropatias Diabéticas/genética , Camundongos , NAD(P)H Desidrogenase (Quinona)/genética , Estresse Oxidativo , Sirtuína 1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA