Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Neuroimage Clin ; 40: 103524, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37839194

RESUMO

OBJECTIVE: To investigate the metabolic pattern of different types of iron accumulation in multiple sclerosis (MS) lesions, and compare metabolic alterations within and at the periphery of lesions and newly emerging lesions in vivo according to iron deposition. METHODS: 7 T MR spectroscopic imaging and susceptibility-weighted imaging was performed in 31 patients with relapsing-remitting MS (16 female/15 male; mean age, 36.9 ± 10.3 years). Mean metabolic ratios of four neuro-metabolites were calculated for regions of interest (ROI) of normal appearing white matter (NAWM), "non-iron" (lesion without iron accumulation on SWI), and three distinct types of iron-laden lesions ("rim": distinct rim-shaped iron accumulation; "area": iron deposition across the entire lesions; "transition": transition between "area" and "rim" accumulation shape), and for lesion layers of "non-iron" and "rim" lesions. Furthermore, newly emerging "non-iron" and "iron" lesions were compared longitudinally, as measured before their appearance and one year later. RESULTS: Thirty-nine of 75 iron-containing lesions showed no distinct paramagnetic rim. Of these, "area" lesions exhibited a 65% higher mIns/tNAA (p = 0.035) than "rim" lesions. Comparing lesion layers of both "non-iron" and "rim" lesions, a steeper metabolic gradient of mIns/tNAA ("non-iron" +15%, "rim" +40%) and tNAA/tCr ("non-iron" -15%, "rim" -35%) was found in "iron" lesions, with the lesion core showing +22% higher mIns/tNAA (p = 0.005) and -23% lower tNAA/tCr (p = 0.048) in "iron" compared to "non-iron" lesions. In newly emerging lesions, 18 of 39 showed iron accumulation, with the drop in tNAA/tCr after lesion formation remaining significantly lower compared to pre-lesional tissue over time in "iron" lesions (year 0: p = 0.013, year 1: p = 0.041) as opposed to "non-iron" lesions (year 0: p = 0.022, year 1: p = 0.231). CONCLUSION: 7 T MRSI allows in vivo characterization of different iron accumulation types each presenting with a distinct metabolic profile. Furthermore, the larger extent of neuronal damage in lesions with a distinct iron rim was reconfirmed via reduced tNAA/tCr concentrations, but with metabolic differences in lesion development between (non)-iron-containing lesions. This highlights the ability of MRSI to further investigate different types of iron accumulation and suggests possible implications for disease monitoring.


Assuntos
Esclerose Múltipla Recidivante-Remitente , Esclerose Múltipla , Humanos , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Esclerose Múltipla Recidivante-Remitente/diagnóstico por imagem , Esclerose Múltipla Recidivante-Remitente/patologia , Esclerose Múltipla/patologia , Encéfalo/patologia , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética/métodos , Ferro/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo
2.
Acta Neuropathol ; 146(5): 707-724, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37715818

RESUMO

In multiple sclerosis (MS), sustained inflammatory activity can be visualized by iron-sensitive magnetic resonance imaging (MRI) at the edges of chronic lesions. These paramagnetic rim lesions (PRLs) are associated with clinical worsening, although the cell type-specific and molecular pathways of iron uptake and metabolism are not well known. We studied two postmortem cohorts: an exploratory formalin-fixed paraffin-embedded (FFPE) tissue cohort of 18 controls and 24 MS cases and a confirmatory snap-frozen cohort of 6 controls and 14 MS cases. Besides myelin and non-heme iron imaging, the haptoglobin-hemoglobin scavenger receptor CD163, the iron-metabolizing markers HMOX1 and HAMP as well as immune-related markers P2RY12, CD68, C1QA and IL10 were visualized in myeloid cell (MC) subtypes at RNA and protein levels across different MS lesion areas. In addition, we studied PRLs in vivo in a cohort of 98 people with MS (pwMS) via iron-sensitive 3 T MRI and haptoglobin genotyping by PCR. CSF samples were available from 38 pwMS for soluble CD163 (sCD163) protein level measurements by ELISA. In postmortem tissues, we observed that iron uptake was linked to rim-associated C1QA-expressing MC subtypes, characterized by upregulation of CD163, HMOX1, HAMP and, conversely, downregulation of P2RY12. We found that pwMS with [Formula: see text] 4 PRLs had higher sCD163 levels in the CSF than pwMS with [Formula: see text] 3 PRLs with sCD163 correlating with the number of PRLs. The number of PRLs was associated with clinical worsening but not with age, sex or haptoglobin genotype of pwMS. However, pwMS with Hp2-1/Hp2-2 haplotypes had higher clinical disability scores than pwMS with Hp1-1. In summary, we observed upregulation of the CD163-HMOX1-HAMP axis in MC subtypes at chronic active lesion rims, suggesting haptoglobin-bound hemoglobin but not transferrin-bound iron as a critical source for MC-associated iron uptake in MS. The correlation of CSF-associated sCD163 with PRL counts in MS highlights the relevance of CD163-mediated iron uptake via haptoglobin-bound hemoglobin. Also, while Hp haplotypes had no noticeable influence on PRL counts, pwMS carriers of a Hp2 allele might have a higher risk to experience clinical worsening.


Assuntos
Esclerose Múltipla , Humanos , Esclerose Múltipla/patologia , Ferro/metabolismo , Haptoglobinas/genética , Haptoglobinas/metabolismo , Biomarcadores , Hemoglobinas/metabolismo , Células Mieloides/patologia , Imageamento por Ressonância Magnética
3.
Radiologie (Heidelb) ; 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37584681

RESUMO

BACKGROUND: Currently, two major magnetic resonance (MR) vendors provide commercial 7­T scanners that are approved by the Food and Drug Administration (FDA) for clinical application. There is growing interest in ultrahigh-field MRI because of the improved clinical results in terms of morphological detail, as well as functional and metabolic imaging capabilities. MATERIALS AND METHODS: The 7­T systems benefit from a higher signal-to-noise ratio, which scales supralinearly with field strength, a supralinear increase in the blood oxygenation level dependent (BOLD) contrast for functional MRI and susceptibility weighted imaging (SWI), and the chemical shift increases linearly with field strength with consequently higher spectral resolution. RESULTS: In multiple sclerosis (MS), 7­T imaging enables visualization of cortical lesions, the central vein sign, and paramagnetic rim lesions, which may be beneficial for the differential diagnosis between MS and other neuroinflammatory diseases in challenging and inconclusive clinical presentations and are seen as promising biomarkers for prognosis and treatment monitoring. The recent development of high-resolution proton MR spectroscopic imaging in clinically reasonable scan times has provided new insights into tumor metabolism and tumor grading as well as into early metabolic changes that may precede inflammatory processes in MS. This technique also improves the detection of epileptogenic foci in the brain. Multi-nuclear clinical applications, such as sodium imaging, have shown great potential for the evaluation of repair tissue quality after cartilage transplantation and in the monitoring of newly developed cartilage regenerative drugs for osteoarthritis. CONCLUSION: For special clinical applications, such as SWI in MS, MR spectroscopic imaging in tumors, MS and epilepsy, and sodium imaging in cartilage repair, 7T may become a new standard.

4.
Biomaterials ; 292: 121930, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36493716

RESUMO

Current available treatments of Multiple Sclerosis (MS) reduce neuroinflammation acting on different targets on the immune system, but potentially lead to severe side effects and have a limited efficacy in slowing the progression of the disease. Here, we evaluated in vitro the immunomodulatory potential of a new class of nanoparticles - liposomes, constituted by a double-layer of phosphatidylserine (PSCho/PS), and double-faced, with an outer layer of phosphatidylserine and an inner layer of phosphatidic acid (PSCho/PA), either alone or in the presence of the myelin basic protein (MBP) peptide (residues 85-99) (PSCho/PS-MBP and PSCho/PA-MBP). Results showed that PSCho/PS are equally and efficiently internalized by pro- and anti-inflammatory macrophages (M1 and M2 respectively), while PSCho/PA were internalized better by M2 than M1. PSCho/PS liposomes were able to inhibit the secretion of innate pro-inflammatory cytokine IL-1ß. PSCho/PS liposomes expanded Tregs, reducing Th1 and Th17 cells, while PSCho/PA liposomes were unable to dampen pro-inflammatory T cells and to promote immune-regulatory phenotype (Treg). The ability of PSCho/PS liposomes to up-regulate Treg cells was more pronounced in MS patients with high basal expression of M2 markers. PSCho/PS liposomes were more effective in decreasing Th1 (but not Th17) cells in MS patients with a disease duration >3 months. On the other hand, down-modulation of Th17 cells was evident in MS patients with active, Gadolinium enhancing lesions at MRI and in MS patients with a high basal expression of M1-associated markers in the monocytes. The same findings were observed for the modulation of MBP-driven Th1/Th17/Treg responses. These observations suggest that early MS associate to a hard-wired pro-Th1 phenotype of M1 that is lost later during disease course. On the other hand, acute inflammatory events reflect a temporary decrease of M2 phenotype that however is amenable to restauration upon treatment with PSCho/PS liposomes. Thus, together these data indicate that monocytes/macrophages may play an important regulatory function during MS course and suggest a role for PSCho/PS and PSCho/PS-MBP as new therapeutic tools to dampen the pro-inflammatory immune responses and to promote its regulatory branch.


Assuntos
Esclerose Múltipla , Nanopartículas , Humanos , Esclerose Múltipla/tratamento farmacológico , Lipossomos/metabolismo , Fosfatidilserinas , Macrófagos/metabolismo , Fenótipo
5.
Transl Neurosci ; 13(1): 191-197, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-35959214

RESUMO

Neurosarcoidosis is an uncommon and multiform clinical entity. Its presentation as an isolated longitudinal extensive transverse myelitis (LETM) is rare and challenging to identify. We report a case of LETM in a 60-year-old patient with no significant systemic symptoms nor relevant medical history. The peculiar spinal magnetic resonance imaging finding characterized by a posterior and central canal subpial contrast enhancement, the so-called "trident sign," together with chest computed tomography scan and lymph node biopsy led to the diagnosis of sarcoidosis. We also discuss the main differential diagnoses of LETM and therapeutic options for sarcoidosis-related myelitis.

6.
Front Neurol ; 13: 928582, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35865643

RESUMO

Background: Iron rim lesions (IRLs) represent chronic lesion activity and are associated with a more severe disease course in multiple sclerosis (MS). How the iron rims around the lesions arise in patients with MS (pwMS), and whether peripheral hemolysis may be a source of iron in rim associated macrophages, is unclear. Objective: To determine a potential correlation between peripheral hemolysis parameters and IRL presence in pwMS. Methods: This retrospective study included pwMS, who underwent a 3T brain MRI between 2015 and 2020 and had a blood sample drawn at ± 2 weeks. Patients with vertigo served as a control group. Results: We analyzed 75 pwMS (mean age 37.0 years [SD 9.0], 53.3% female) and 43 controls (mean age 38.3 years [SD 9.8], 51.2% female). Median number of IRLs was 1 (IQR 4), 28 (37.3%) pwMS had no IRLs. IRL patients showed significantly higher Expanded Disability Status Scale (EDSS) compared to non-IRL patients (median EDSS 2.3 [IQR 2.9] vs. 1.3 [IQR 2.9], p = 0.017). Number of IRLs correlated significantly with disease duration (r s = 0.239, p = 0.039), EDSS (r s = 0.387, p < 0.001) and Multiple Sclerosis Severity Scale (MSSS) (r s = 0.289, p = 0.014). There was no significant difference in hemolysis parameters between non-IRL, IRL patients (regardless of gender and/or disease type) and controls, nor between hemolysis parameters and the number of IRLs. Total brain volume was associated with fibrinogen (ß= -0.34, 95% CI -1.32 to -0.145, p = 0.016), and absolute cortical and total gray matter volumes were associated with hemoglobin (ß = 0.34, 95% CI 3.39-24.68, p = 0.011; ß = 0.33, 95% CI 3.29-28.95, p = 0.015; respectively). Conclusion: Our data do not suggest an association between hemolysis parameters and IRL presence despite a significant association between these parameters and markers for neurodegeneration.

7.
J Neuroimmunol ; 353: 577525, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33647875

RESUMO

Tumour Necrosis Factor alpha (TNFα) blockers are common and effective treatments for several autoimmune diseases but can be associated with neuroinflammatory events. We describe the disease course of ten patients who developed CNS demyelinating events while exposed to TNFα blockers. We divided them into two groups: eight patients with Relapsing Multiple Sclerosis and two isolated optic neuritis. In our cohort, TNFα blockers-associated Multiple Sclerosis does not seem to be associated with a more aggressive course and can be managed with MS-specific DMTs, chosen considering the clinical course and the concomitant autoimmune disease. Our findings need confirmation in larger cohorts to further characterize the disease course of TNFα blockers-associated Multiple Sclerosis.


Assuntos
Doenças Autoimunes/tratamento farmacológico , Fatores Imunológicos/efeitos adversos , Esclerose Múltipla Recidivante-Remitente/induzido quimicamente , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Neurite Óptica/induzido quimicamente , Estudos Retrospectivos
8.
Brain ; 144(3): 833-847, 2021 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-33484118

RESUMO

Recent data suggest that multiple sclerosis white matter lesions surrounded by a rim of iron containing microglia, termed iron rim lesions, signify patients with more severe disease course and a propensity to develop progressive multiple sclerosis. So far, however, little is known regarding the dynamics of iron rim lesions over long-time follow-up. In a prospective longitudinal cohort study in 33 patients (17 females; 30 relapsing-remitting, three secondary progressive multiple sclerosis; median age 36.6 years (18.6-62.6), we characterized the evolution of iron rim lesions by MRI at 7 T with annual scanning. The longest follow-up was 7 years in a subgroup of eight patients. Median and mean observation period were 1 (0-7) and 2.9 (±2.6) years, respectively. Images were acquired using a fluid-attenuated inversion recovery sequence fused with iron-sensitive MRI phase data, termed FLAIR-SWI, as well as a magnetization prepared two rapid acquisition gradient echoes, termed MP2RAGE. Volumes and T1 relaxation times of lesions with and without iron rims were assessed by manual segmentation. The pathological substrates of periplaque signal changes outside the iron rims were corroborated by targeted histological analysis on 17 post-mortem cases (10 females; two relapsing-remitting, 13 secondary progressive and two primary progressive multiple sclerosis; median age 66 years (34-88), four of them with available post-mortem 7 T MRI data. We observed 16 nascent iron rim lesions, which mainly formed in relapsing-remitting multiple sclerosis. Iron rim lesion fraction was significantly higher in relapsing-remitting than progressive disease (17.8 versus 7.2%; P < 0.001). In secondary progressive multiple sclerosis only, iron rim lesions showed significantly different volume dynamics (P < 0.034) compared with non-rim lesions, which significantly shrank with time in both relapsing-remitting (P < 0.001) and secondary progressive multiple sclerosis (P < 0.004). The iron rims themselves gradually diminished with time (P < 0.008). Compared with relapsing-remitting multiple sclerosis, iron rim lesions in secondary progressive multiple sclerosis were significantly more destructive than non-iron rim lesions (P < 0.001), reflected by prolonged lesional T1 relaxation times and by progressively increasing changes ascribed to secondary axonal degeneration in the periplaque white matter. Our study for the first time shows that chronic active lesions in multiple sclerosis patients evolve over many years after their initial formation. The dynamics of iron rim lesions thus provide one explanation for progressive brain damage and disability accrual in patients. Their systematic recording might become useful as a tool for predicting disease progression and monitoring treatment in progressive multiple sclerosis.


Assuntos
Encéfalo/patologia , Esclerose Múltipla/patologia , Adolescente , Adulto , Encéfalo/diagnóstico por imagem , Estudos de Coortes , Progressão da Doença , Feminino , Humanos , Ferro , Estudos Longitudinais , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla/diagnóstico por imagem , Adulto Jovem
10.
Brain Pathol ; 28(5): 743-749, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30020556

RESUMO

Iron accumulates with age in the normal human brain. This process is altered at several levels in the brain of multiple sclerosis (MS) patients. Since iron is mainly stored in oligodendrocytes and myelin in the normal brain, its liberation in demyelinating lesions may amplify tissue damage in demyelinating lesions and its uptake in macrophages and microglia may help to more precisely define activity stages of the lesions. In addition, glia cells change their iron import, export and storage properties in MS lesions, which is reflected by alterations in the expression of iron transport molecules. Changes of iron distribution in the brain can be reliably detected by MRI, particularly upon application of Ultra-high magnetic field (7 Tesla). Iron-sensitive MRI allows to more accurately distinguish the lesions in MS from those in other inflammatory brain diseases, to visualize a subset of slowly expanding lesions in the progressive stage of MS and to increase the sensitivity for lesion detection in the gray matter, such as the cerebral cortex or deep gray matter nuclei.


Assuntos
Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Ferro/metabolismo , Imageamento por Ressonância Magnética , Esclerose Múltipla/diagnóstico por imagem , Esclerose Múltipla/metabolismo , Animais , Humanos , Imageamento por Ressonância Magnética/instrumentação
11.
Acta Neuropathol ; 133(1): 25-42, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27796537

RESUMO

In multiple sclerosis (MS), iron accumulates inside activated microglia/macrophages at edges of some chronic demyelinated lesions, forming rims. In susceptibility-based magnetic resonance imaging at 7 T, iron-laden microglia/macrophages induce a rim of decreased signal at lesion edges and have been associated with slowly expanding lesions. We aimed to determine (1) what lesion types and stages are associated with iron accumulation at their edges, (2) what cells at the lesion edges accumulate iron and what is their activation status, (3) how reliably can iron accumulation at the lesion edge be detected by 7 T magnetic resonance imaging (MRI), and (4) if lesions with rims enlarge over time in vivo, when compared to lesions without rims. Double-hemispheric brain sections of 28 MS cases were stained for iron, myelin, and microglia/macrophages. Prior to histology, 4 of these 28 cases were imaged at 7 T using post-mortem susceptibility-weighted imaging. In vivo, seven MS patients underwent annual neurological examinations and 7 T MRI for 3.5 years, using a fluid attenuated inversion recovery/susceptibility-weighted imaging fusion sequence. Pathologically, we found iron rims around slowly expanding and some inactive lesions but hardly around remyelinated shadow plaques. Iron in rims was mainly present in microglia/macrophages with a pro-inflammatory activation status, but only very rarely in astrocytes. Histological validation of post-mortem susceptibility-weighted imaging revealed a quantitative threshold of iron-laden microglia when a rim was visible. Slowly expanding lesions significantly exceeded this threshold, when compared with inactive lesions (p = 0.003). We show for the first time that rim lesions significantly expanded in vivo after 3.5 years, compared to lesions without rims (p = 0.003). Thus, slow expansion of MS lesions with rims, which reflects chronic lesion activity, may, in the future, become an MRI marker for disease activity in MS.


Assuntos
Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Ferro/metabolismo , Esclerose Múltipla/diagnóstico por imagem , Esclerose Múltipla/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Encéfalo/metabolismo , Progressão da Doença , Feminino , Humanos , Imuno-Histoquímica , Macrófagos/metabolismo , Macrófagos/patologia , Imageamento por Ressonância Magnética , Masculino , Microglia/metabolismo , Microglia/patologia , Pessoa de Meia-Idade , Esclerose Múltipla/metabolismo , Adulto Jovem
12.
Wien Klin Wochenschr ; 128(9-10): 384-6, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26919852

RESUMO

UNLABELLED: Neurologic complications after allogeneic hematopoietic stem cell transplantation (HSCT) are rare but poorly understood. We present a case report of a 57-year-old-male patient who was diagnosed in 2009 with acute myeloid leukemia (AML). He received two standard induction chemotherapies, as well as a following consolidation. Six months later, an allogeneic HSCT was performed. Shortly after HSCT the patient developed progressive polyneuropathy of the lower legs and hypoesthesia. Five months later a severe dementia followed. All images of the brain and spine showed no specific pathologies. High dose corticosteroids and immunoglobulins did not improve the neurologic symptoms. Due to severe worsening of the neuropsychiatric status and the clinical presentation, chronic inflammatory demyelinating polyneuropathy (CIDP) was suspected. Therefore, the patient received ten cycles of plasmapheresis. The patient showed a significant improvement of the neuropsychiatric symptoms and cognitive status. CONCLUSIONS: Immune mediated neuropathies after allogeneic HSCT, such as CIDP, have great variability in symptoms and presentation and are challenging to diagnose and treat. Plasmapheresis is a safe and efficient treatment for patients with unclear persisting autoimmune neuropathy after HSCT.


Assuntos
Transtornos Cognitivos/prevenção & controle , Demência/prevenção & controle , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Plasmaferese/métodos , Polirradiculoneuropatia Desmielinizante Inflamatória Crônica/diagnóstico , Polirradiculoneuropatia Desmielinizante Inflamatória Crônica/terapia , Transtornos Cognitivos/diagnóstico , Transtornos Cognitivos/etiologia , Demência/diagnóstico , Demência/etiologia , Humanos , Leucemia Mieloide Aguda/complicações , Leucemia Mieloide Aguda/terapia , Masculino , Pessoa de Meia-Idade , Transplante Homólogo/efeitos adversos , Resultado do Tratamento
15.
J Neurooncol ; 94(1): 141-4, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19214706

RESUMO

Cerebral tumor and multiple sclerosis (MS) relapses can show overlapping clinical and magnetic resonance imaging features. In a previous study we observed in relapsing MS patients increased T-bet, pSTAT1, and pSTAT3 expressions in circulating mononuclear cells. During the data analysis we observed that T-bet, pSTAT1, and pSTAT3 expression was not increased in circulating mononuclear cells from a relapsing-remitting (RR)MS patient with recent onset of new neurological signs due to glioblastoma multiforme. In conclusion, our patient represents an exemplary case which suggests that T-bet, pSTAT1, and pSTAT3 expression in peripheral blood mononuclear cells (PBMCs) might be useful to differentiate MS relapses from other noninflammatory diseases.


Assuntos
Neoplasias Encefálicas/complicações , Glioblastoma/complicações , Esclerose Múltipla/complicações , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/patologia , Glioblastoma/imunologia , Glioblastoma/patologia , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla/imunologia , Esclerose Múltipla/patologia , Fator de Transcrição STAT1 , Fator de Transcrição STAT3/metabolismo , Linfócitos T Reguladores
16.
J Leukoc Biol ; 84(5): 1248-55, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18644848

RESUMO

Multiple sclerosis (MS) is a chronic, inflammatory, demyelinating disease of the CNS, most frequently starting with a series of bouts, each followed by complete remission and then a secondary, progressive phase during which the neurological deficit increases steadily. The underlying molecular mechanisms responsible for disease progression are still unclear. Herein, we demonstrate that high mobility group box chromosomal protein 1 (HMGB1), a DNA-binding protein with proinflammatory properties, is evident in active lesions of MS and experimental autoimmune encephalomyelitis (EAE) and that HMGB1 levels correlate with active inflammation. Furthermore, the expression of the innate HMGB1 receptors--receptor for advanced glycation end products, TLR2, and TLR4--was also highly increased in MS and rodent EAE. Additionally, in vitro activation of rodent CNS-derived microglia and bone marrow-derived macrophages demonstrated that microglia were equally as capable as macrophages of translocating HMGB1 following LPS/IFN-gamma stimulation. Significant expression of HMGB1 and its receptors on accumulating activated macrophages and resident microglia may thus provide a positive feedback loop that amplifies the inflammatory response during MS and EAE pathogenesis.


Assuntos
Proteína HMGB1/genética , Esclerose Múltipla/genética , Animais , Células da Medula Óssea/citologia , Células da Medula Óssea/fisiologia , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/genética , Encefalomielite Autoimune Experimental/patologia , Feminino , Humanos , Hibridização In Situ , Macrófagos/citologia , Microglia/citologia , RNA Mensageiro/genética , Ratos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Medula Espinal/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA