Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Nanotechnology ; 35(25)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38461552

RESUMO

Bi-functional materials provide an opportunity for the development of high-performance devices. Up till now, bi-functional performance of NiCo2O4@SnS2nanosheets is rarely investigated. In this work, NiCo2O4@SnS2nanosheets were synthesized on carbon cloth by utilizing a simple hydrothermal technique. The developed electrode (NiCo2O4@SnS2/CC) was investigated for the detection of L-Cysteine and supercapacitors applications. As a non-enzymatic sensor, the electrode proved to be highly sensitive for the detection of L-cysteine. The electrode exhibits a reproducible sensitivity of 4645.82µA mM-1cm-2in a wide linear range from 0.5 to 5 mM with a low limit of detection (0.005µM). Moreover, the electrode shows an excellent selectivity and long-time stability. The high specific surface area, enhanced kinetics, good synergy and distinct architecture of NiCo2O4@SnS2nanosheets produce a large number of active sites with substantial energy storage potential. As a supercapacitor, the electrode exhibits improve capacitance of 655.7 F g-1at a current density of 2 A g-1as compare to NiCo2O4/CC (560 F g-1). Moreover, the electrode achieves 95.3% of its preliminary capacitance after 10 000 cycles at 2 A g-1. Our results show that NiCo2O4@SnS2/CC nanosheets possess binary features could be attractive electrode material for the development of non-enzymatic biosensors as well as supercapacitors.

2.
Heliyon ; 9(11): e21636, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38027746

RESUMO

Globally, there is an increase in a number of bone disorders including osteoarthritis (OA), osteomyelitis, bone cancer, and etc., which has led to a demand for bone tissue regeneration. In order to take use of the osteogenic potential of natural herbs, mesoporous bioactive glass nanoparticles (MBGNs) have the ability to deliver therapeutically active chemicals locally. MBGNs influence bioactivity and osteointegration of materials making them suitable for bone tissue engineering (BTE). In the present study, we developed Peganum Harmala (P. harmala) loaded MBGNs (PH-MBGNs) synthesized via modified Stöber process. The MBGNs were analyzed in terms of surface morphology, chemical make-up, amorphous nature, chemical interaction, pore size, and surface area before and after loading with P. harmala. A burst release of drug from PH-MBGNs was observed within 8 h immersion in phosphate buffer saline (PBS). PH-MBGNs effectively prevented Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) from spreading. Furthermore, PH-MBGNs developed a hydroxyapatite (HA) layer in the presence of simulated body fluid (SBF) after 21 days, which confirmed the in-vitro bioactivity of MBGNs. In conclusion, PH-MBGNs synthesized in this work are potential candidate for scaffolding or a constituent in the coatings for BTE applications.

3.
Int J Mol Sci ; 24(15)2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37569638

RESUMO

Aedes aegypti, also known as the dengue mosquito or the yellow fewer mosquito, is the vector of dengue, chikungunya, Zika, Mayaro and yellow fever viruses. The A. aegypti genome contains an array of gustatory receptor (GR) proteins that are related to the recognition of taste. In this study, we performed in silico molecular characterization of all 72 A. aegypti GRs reported in the latest version of A. aegypti genome AaegL5. Phylogenetic analysis classified the receptors into three major clads. Multiple GRs were found to encode multiple transcripts. Physicochemical attributes such as the aliphatic index, hydropathicity index and isoelectric point indicated that A. aegypti gustatory receptors are highly stable and are tailored to perform under a variety of cellular environments. Analysis for subcellular localization indicated that all the GRs are located either in the extracellular matrix or the plasma membrane. Results also indicated that the GRs are distributed mainly on chromosomes 2 and 3, which house 22 and 49 GRs, respectively, whereas chromosome 1 houses only one GR. NCBI-CDD analysis showed the presence of a highly conserved 7tm_7 chemosensory receptor protein superfamily that includes gustatory and odorant receptors from insect species Anopheles gambiae and Drosophila melanogaster. Further, three significantly enriched ungapped motifs in the protein sequence of all 72 A. aegypti gustatory receptors were found. High-quality 3D models for the tertiary structures were predicted with significantly higher confidence, along with ligand-binding residues. Prediction of S-nitrosylation sites indicated the presence of target cysteines in all the GRs with close proximity to the ligand-bindings sites within the 3D structure of the receptors. In addition, two highly conserved motifs inside the GR proteins were discovered that house a tyrosine (Y) and a cysteine (C) residue which may serve as targets for NO-mediated tyrosine nitration and S-nitrosylation, respectively. This study will help devise strategies for functional genomic studies of these important receptor molecules in A. aegypti and other mosquito species through in vitro and in vivo studies.


Assuntos
Aedes , Dengue , Proteínas de Drosophila , Infecção por Zika virus , Zika virus , Animais , Drosophila melanogaster/genética , Paladar , Aedes/genética , Ligantes , Filogenia , Mosquitos Vetores , Receptores de Superfície Celular/genética , Proteínas de Drosophila/genética
4.
Oxid Med Cell Longev ; 2021: 9955717, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34650666

RESUMO

Dynamic cytoskeletal rearrangements underlie the changes that occur during cell division in proliferating cells. MICAL2 has been reported to possess reactive oxygen species- (ROS-) generating properties and act as an important regulator of cytoskeletal dynamics. However, whether it plays a role in gastric cancer cell proliferation is not known. In the present study, we found that MICAL2 was highly expressed in gastric cancer tissues, and this high expression level was associated with carcinogenesis and poor overall survival in gastric cancer patients. The knockdown of MICAL2 led to cell cycle arrest in the S phase and attenuated cell proliferation. Concomitant with S-phase arrest, a decrease in CDK6 and cyclin D protein levels was observed. Furthermore, MICAL2 knockdown attenuated intracellular ROS generation, while MICAL2 overexpression led to a decrease in the p-YAP/YAP ratio and promoted YAP nuclear localization and cell proliferation, effects that were reversed by pretreatment with the ROS scavenger N-acetyl-L-cysteine (NAC) and SOD-mimetic drug tempol. We further found that MICAL2 induced Cdc42 activation, and activated Cdc42 mediated the effect of MICAL2 on YAP dephosphorylation and nuclear translocation. Collectively, our results showed that MICAL2 has a promotive effect on gastric cancer cell proliferation through ROS generation and Cdc42 activation, both of which independently contribute to YAP dephosphorylation and its nuclear translocation.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proliferação de Células/fisiologia , Proteínas dos Microfilamentos/metabolismo , Oxirredutases/metabolismo , Neoplasias Gástricas/metabolismo , Fatores de Transcrição/metabolismo , Carcinogênese/metabolismo , Pontos de Checagem do Ciclo Celular/fisiologia , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Regulação Neoplásica da Expressão Gênica/fisiologia , Humanos
5.
Front Cell Dev Biol ; 8: 575903, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33520979

RESUMO

Objectives: MICAL-L2, a member of the molecules interacting with the CasL (MICAL) family, was reported to be highly expressed in several types of cancers, however, the roles of MICAL-L2 in NSCLC pathogenesis remain to be explored. This study is designed to clarify the mechanisms by which MICAL-L2 participates in NSCLC cell proliferation. Materials and Methods: The expression levels of MICAL-L2 in human lung cancer samples were assessed by immunohistochemical staining. Cells were transfected with siRNA or plasmids to regulate MICAL-L2 expression. Cell proliferation was measured by EdU staining and CCK-8 assays. MICAL-L2 and phosphorylated/total c-Myc expression were examined by Western blotting analysis. Interaction between MICAL-L2 and c-Myc was assessed by immunofluorescence staining, Western blotting and co-immunoprecipitation assays. Western blotting, polyubiquitylation detection and protein stability assays were used to assess whether MICAL-L2 exerts its oncogenic effect via c-Myc. Results: We found that MICAL-L2 was highly expressed in human NSCLC. While overexpressing MICAL-L2 increased NSCLC cell proliferation, MICAL-L2 depletion decreased the proliferation of NSCLC cells, an effect that was linked to cell cycle arrest. MICAL-L2 physically interacted with the c-Myc protein and functioned to maintain nuclear c-Myc levels and prolonged its half-life. Knockdown of MICAL-L2 expression led to decreased c-Myc protein stability through accelerating polyubiquitylation of c-Myc and gave rise to c-Myc degradation. We further found that MICAL-L2 deubiquitinated c-Myc and blocked its degradation, presumably by inhibiting c-Myc phosphorylation at threonine residue 58. Conclusions: These results indicate that MICAL-L2 is a key regulator of c-Myc deubiquitination and stability in the nucleus, and this activity may be involved in promoting NSCLC cell proliferation.

6.
Cell Mol Biol Lett ; 24: 55, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31462898

RESUMO

BACKGROUND: Hypoxia, a major condition associated with the tumor microenvironment, stimulates the migration of cancer cells. SOX2 is a powerful transcription factor that shows higher expression in several cancers, however, its role in hypoxia-induced breast cancer cell migration remains largely elusive. METHODS: The human breast cancer cell lines MDA-MB-231 and MDA-MB-468 were cultured under hypoxic conditions. The cell migration rate was determined using the wound-healing and transwell assays. The protein levels of SOX2, NEDD9 and HIF-1α were evaluated via western blotting analysis. The NEDD9 mRNA levels were evaluated using qPCR. The activation of Rac1 was detected with the pulldown assay. The binding of SOX2 to the NEDD9 promoter was checked using the luciferase reporter assay. We also transfected breast cancer cells with specific siRNA for SOX2, NEDD9 or the Rac1 inactive mutant (T17 N) to investigate the role of SOX2, NEDD9 and Rac1 in the response to hypoxia. RESULTS: Hypoxia markedly increased SOX2 protein levels in a time-dependent manner. SiRNA-mediated disruption of SOX2 inhibited cell migration under hypoxic conditions. Hypoxia also significantly augmented the NEDD9 mRNA and protein levels. Interestingly, SOX2 is a positive transcriptional regulator of NEDD9. Knockdown of SOX2 inhibited hypoxia-induced NEDD9 mRNA and protein expressions. Furthermore, hypoxia-induced upregulation of Rac1 activity and HIF-1α expression was attenuated by SOX2 or NEDD9 silencing, and Rac1-T17 N abolished HIF-1α expression as well as cell migration in cells subjected to hypoxia. CONCLUSIONS: Our results highlight the essential role of SOX2 in breast cancer cell motility. The upregulation of SOX2 under hypoxic conditions may facilitate NEDD9 transcription and expression, and subsequent activation of Rac1 and HIF-1α expression. This could accelerate breast cancer cell migration.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Neoplasias da Mama/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Fatores de Transcrição SOXB1/genética , Proteínas rac1 de Ligação ao GTP/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Fatores de Transcrição SOXB1/metabolismo , Transdução de Sinais , Hipóxia Tumoral , Proteínas rac1 de Ligação ao GTP/metabolismo
7.
BMC Res Notes ; 11(1): 188, 2018 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-29566743

RESUMO

OBJECTIVE: The manufacturers of electronic cigarettes (e-cigarettes) are actively marketing their product through electronic and social media. Undergraduate medical students are expected to have better knowledge and awareness as they directly interact with patients in their training, The purpose of this study is therefore, to determine knowledge, use and perception regarding e-cigarettes among medical students from Sindh, Pakistan. RESULTS: A cross-sectional study was conducted between 1st July and 30th September 2016 at five different medical colleges situated in the second largest province of Sindh, Pakistan. The data was collected through a structured, self-administered questionnaire. Of the 500 students, the mean age was 21.5 ± 1.7 years and 58% were females. Over (65.6%) students were aware of e-cigarettes, 31 (6.2%) reported having used e-cigarettes, of whom 6 (1.2%) self-reported daily use. Users of conventional tobacco products were significantly more likely to have heard of e-cigarettes (87.6% vs 51.6%, p < 0.001) and having used them (13.9% vs 1.3%, p < 0.001). On multivariable logistic regression analysis we found a strong association of e-cigarette use with consumption of conventional cigarettes [OR: 10.6, 95% CI 3.6-30.8, p < 0.001], use of smokeless tobacco products [OR: 7.9, 95% CI 2.7-23.4, p < 0.001] however a weak association was observed for Shisha use [OR: 3.05, 95% CI 0.9-9.6, p = 0.05].


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Conhecimentos, Atitudes e Prática em Saúde , Estudantes de Medicina/estatística & dados numéricos , Inquéritos e Questionários , Conscientização , Estudos Transversais , Feminino , Humanos , Modelos Logísticos , Masculino , Análise Multivariada , Paquistão , Percepção , Estudantes de Medicina/psicologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA