RESUMO
Zoonotic pathogens, such as COVID-19, reside in animal hosts before jumping species to infect humans. The Carnivora, like mink, carry many zoonoses, yet how diversity in host immune genes across species affect pathogen carriage is poorly understood. Here, we describe a progressive evolutionary downregulation of pathogen-sensing inflammasome pathways in Carnivora. This includes the loss of nucleotide-oligomerization domain leucine-rich repeat receptors (NLRs), acquisition of a unique caspase-1/-4 effector fusion protein that processes gasdermin D pore formation without inducing rapid lytic cell death, and the formation of a caspase-8 containing inflammasome that inefficiently processes interleukin-1ß. Inflammasomes regulate gut immunity, but the carnivorous diet has antimicrobial properties that could compensate for the loss of these immune pathways. We speculate that the consequences of systemic inflammasome downregulation, however, can impair host sensing of specific pathogens such that they can reside undetected in the Carnivora.
Assuntos
Carnívoros/metabolismo , Evolução Molecular , Inflamassomos/metabolismo , Zoonoses/patologia , Animais , Caspase 1/genética , Caspase 1/metabolismo , Caspase 8/metabolismo , Caspases Iniciadoras/genética , Caspases Iniciadoras/metabolismo , Morte Celular , Linhagem Celular , Humanos , Interleucina-1beta/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteínas NLR/genética , Proteínas NLR/metabolismo , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Salmonella typhi/patogenicidade , Zoonoses/imunologia , Zoonoses/parasitologiaRESUMO
Pyroptosis is the caspase-dependent inflammatory cell death mechanism that underpins the innate immune response against pathogens and is dysregulated in inflammatory disorders. Pyroptosis occurs via two pathways: the canonical pathway, signaled by caspase-1, and the noncanonical pathway, regulated by mouse caspase-11 and human caspase-4/5. All inflammatory caspases activate the pyroptosis effector protein gasdermin D, but caspase-1 mostly activates the inflammatory cytokine precursors prointerleukin-18 and prointerleukin-1ß (pro-IL18/pro-IL1ß). Here, in vitro cleavage assays with recombinant proteins confirmed that caspase-11 prefers cleaving gasdermin D over the pro-ILs. However, we found that caspase-11 recognizes protein substrates through a mechanism that is different from that of most caspases. Results of kinetics analysis with synthetic fluorogenic peptides indicated that P1'-P4', the C-terminal gasdermin D region adjacent to the cleavage site, influences gasdermin D recognition by caspase-11. Furthermore, introducing the gasdermin D P1'-P4' region into pro-IL18 enhanced catalysis by caspase-11 to levels comparable with that of gasdermin D cleavage. Pro-IL1ß cleavage was only moderately enhanced by similar substitutions. We conclude that caspase-11 specificity is mediated by the P1'-P4' region in its substrate gasdermin D, and similar experiments confirmed that the substrate specificities of the human orthologs of caspase-11, i.e. caspase-4 and caspase-5, are ruled by the same mechanism. We propose that P1'-P4'-based inhibitors could be exploited to specifically target inflammatory caspases.
Assuntos
Caspases/metabolismo , Inflamação/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Proteínas de Ligação a Fosfato/fisiologia , Piroptose , Animais , Catálise , Humanos , Imunidade Inata , Peptídeos e Proteínas de Sinalização Intracelular/química , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Camundongos , Proteínas de Ligação a Fosfato/química , Proteínas de Ligação a Fosfato/metabolismo , Proteólise , Especificidade por SubstratoRESUMO
Trichomoniasis is a sexually transmitted disease with hundreds of millions of annual cases worldwide. Approved treatment options are limited to two related nitro-heterocyclic compounds, yet resistance to these drugs is an increasing concern. New antimicrobials against the causative agent, Trichomonas vaginalis, are urgently needed. We show here that clinically approved anticancer drugs that inhibit the proteasome, a large protease complex with a critical role in degrading intracellular proteins in eukaryotes, have submicromolar activity against the parasite in vitro and on-target activity against the enriched T. vaginalis proteasome in cell-free assays. Proteomic analysis confirmed that the parasite has all seven α and seven ß subunits of the eukaryotic proteasome although they have only modest sequence identities, ranging from 28 to 52%, relative to the respective human proteasome subunits. A screen of proteasome inhibitors derived from a marine natural product, carmaphycin, revealed one derivative, carmaphycin-17, with greater activity against T. vaginalis than the reference drug metronidazole, the ability to overcome metronidazole resistance, and reduced human cytotoxicity compared to that of the anticancer proteasome inhibitors. The increased selectivity of carmaphycin-17 for T. vaginalis was related to its >5-fold greater potency against the ß1 and ß5 catalytic subunits of the T. vaginalis proteasome than against the human proteasome subunits. In a murine model of vaginal trichomonad infection, proteasome inhibitors eliminated or significantly reduced parasite burden upon topical treatment without any apparent adverse effects. Together, these findings validate the proteasome of T. vaginalis as a therapeutic target for development of a novel class of trichomonacidal agents.
Assuntos
Antitricômonas/farmacologia , Complexo de Endopeptidases do Proteassoma/efeitos dos fármacos , Complexo de Endopeptidases do Proteassoma/genética , Vaginite por Trichomonas/tratamento farmacológico , Trichomonas vaginalis/efeitos dos fármacos , Trichomonas vaginalis/genética , Sequência de Aminoácidos , Animais , Anti-Infecciosos/farmacologia , Citoplasma/parasitologia , Resistência a Medicamentos/efeitos dos fármacos , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Testes de Sensibilidade Parasitária/métodos , Proteômica/métodos , Infecções Sexualmente Transmissíveis/tratamento farmacológico , Infecções Sexualmente Transmissíveis/parasitologia , Tricomoníase/tratamento farmacológico , Tricomoníase/parasitologia , Vaginite por Trichomonas/parasitologiaRESUMO
Proteases are fundamental to successful parasitism, including that of the schistosome flatworm parasite, which causes the disease schistosomiasis in 200 million people worldwide. The proteasome is receiving attention as a potential drug target for treatment of a variety of infectious parasitic diseases, but it has been understudied in the schistosome. Adult Schistosoma mansoni were incubated with 1 µM concentrations of the proteasome inhibitors bortezomib, carfilzomib, and MG132. After 24 h, bortezomib and carfilzomib decreased worm motility by more than 85% and endogenous proteasome activity by >75%, and after 72 h, they increased caspase activity by >4.5-fold. The association between the engagement of the proteasome target and the phenotypic and biochemical effects recorded encouraged the chromatographic enrichment of the S. mansoni proteasome (Sm20S). Activity assays with fluorogenic proteasome substrates revealed that Sm20S contains caspase-type (ß1), trypsin-type (ß2), and chymotrypsin-type (ß5) activities. Sm20S was screened with 11 peptide epoxyketone inhibitors derived from the marine natural product carmaphycin B. Analogue 17 was 27.4-fold less cytotoxic to HepG2 cells than carmaphycin B and showed equal potency for the ß5 subunits of Sm20S, human constitutive proteasome, and human immunoproteasome. However, this analogue was 13.2-fold more potent at targeting Sm20S ß2 than it was at targeting the equivalent subunits of the human enzymes. Furthermore, 1 µM 17 decreased both worm motility and endogenous Sm20S activity by more than 90% after 24 h. We provide direct evidence of the proteasome's importance to schistosome viability and identify a lead for which future studies will aim to improve the potency, selectivity, and safety.
Assuntos
Sistemas de Liberação de Medicamentos/métodos , Complexo de Endopeptidases do Proteassoma/efeitos dos fármacos , Inibidores de Proteassoma/farmacologia , Schistosoma mansoni/efeitos dos fármacos , Animais , Antineoplásicos/farmacologia , Bortezomib/farmacologia , Caspases/metabolismo , Inibidores de Cisteína Proteinase/farmacologia , Células Hep G2 , Humanos , Leupeptinas , Oligopeptídeos/farmacologiaRESUMO
Naturally derived chemical compounds are the foundation of much of our pharmacopeia, especially in antiproliferative and anti-infective drug classes. Here, we report that a naturally derived molecule called carmaphycin B is a potent inhibitor against both the asexual and sexual blood stages of malaria infection. Using a combination of in silico molecular docking and in vitro directed evolution in a well-characterized drug-sensitive yeast model, we determined that these compounds target the ß5 subunit of the proteasome. These studies were validated using in vitro inhibition assays with proteasomes isolated from Plasmodium falciparum. As carmaphycin B is toxic to mammalian cells, we synthesized a series of chemical analogs that reduce host cell toxicity while maintaining blood-stage and gametocytocidal antimalarial activity and proteasome inhibition. This study describes a promising new class of antimalarial compound based on the carmaphycin B scaffold, as well as several chemical structural features that serve to enhance antimalarial specificity.
Assuntos
Antimaláricos/farmacologia , Dipeptídeos/farmacologia , Oligopeptídeos/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Inibidores de Proteassoma/farmacologia , Antimaláricos/síntese química , Artemisininas/farmacologia , Dipeptídeos/síntese química , Desenho de Fármacos , Ensaios Enzimáticos , Células Hep G2 , Humanos , Simulação de Acoplamento Molecular , Oligopeptídeos/síntese química , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteassoma/síntese química , Saccharomyces cerevisiae/efeitos dos fármacosRESUMO
Proteasomes are multisubunit, energy-dependent, proteolytic complexes that play an essential role in intracellular protein turnover. They are present in eukaryotes, archaea, and in some actinobacteria species. Inhibition of proteasome activity has emerged as a powerful strategy for anticancer therapy and three drugs have been approved for treatment of multiple myeloma. These compounds react covalently with a threonine residue located in the active site of a proteasome subunit to block protein degradation. Proteasomes in pathogenic organisms such as Mycobacterium tuberculosis and Plasmodium falciparum also have a nucleophilic threonine residue in the proteasome active site and are therefore sensitive to these anticancer drugs. This review summarizes efforts to validate the proteasome in pathogenic organisms as a therapeutic target. We describe several strategies that have been used to develop inhibitors with increased potency and selectivity for the pathogen proteasome relative to the human proteasome. In addition, we highlight a cell-based chemical screening approach that identified a potent, allosteric inhibitor of proteasomes found in Leishmania and Trypanosoma species. Finally, we discuss the development of proteasome inhibitors as anti-infective agents.
Assuntos
Complexo de Endopeptidases do Proteassoma/metabolismo , Animais , Anti-Infecciosos/farmacologia , Humanos , Mycobacterium/efeitos dos fármacos , Mycobacterium/metabolismo , Mycobacterium/patogenicidade , Plasmodium/efeitos dos fármacos , Plasmodium/metabolismo , Plasmodium/patogenicidade , Complexo de Endopeptidases do Proteassoma/efeitos dos fármacos , Schistosoma/efeitos dos fármacos , Schistosoma/metabolismo , Schistosoma/patogenicidadeRESUMO
Crustaceans are a diverse group, distributed in widely variable environmental conditions for which they show an equally extensive range of biochemical adaptations. Some digestive enzymes have been studied by purification/characterization approaches. However, global analysis is crucial to understand how digestive enzymes interplay. Here, we present the first proteomic analysis of the digestive fluid from a crustacean (Homarus americanus) and identify glycosidases and peptidases as the most abundant classes of hydrolytic enzymes. The digestion pathway of complex carbohydrates was predicted by comparing the lobster enzymes to similar enzymes from other crustaceans. A novel and unbiased substrate profiling approach was used to uncover the global proteolytic specificity of gastric juice and determine the contribution of cysteine and aspartic acid peptidases. These enzymes were separated by gel electrophoresis and their individual substrate specificities uncovered from the resulting gel bands. This new technique is called zymoMSP. Each cysteine peptidase cleaves a set of unique peptide bonds and the S2 pocket determines their substrate specificity. Finally, affinity chromatography was used to enrich for a digestive cathepsin D1 to compare its substrate specificity and cold-adapted enzymatic properties to mammalian enzymes. We conclude that the H. americanus digestive peptidases may have useful therapeutic applications, due to their cold-adaptation properties and ability to hydrolyze collagen.