Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Muscle Nerve ; 57(1): E52-E59, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28561923

RESUMO

INTRODUCTION: Myofiber type grouping is a histological hallmark of age-related motor unit remodeling. Despite the accepted concept that denervation-reinnervation events lead to myofiber type grouping, the completeness of those conversions remains unknown. METHODS: Type I myofiber grouping was assessed in vastus lateralis biopsies from Young (26 ± 4 years; n = 27) and Older (66 ± 4 years; n = 91) adults. Grouped and ungrouped type I myofibers were evaluated for phenotypic differences. RESULTS: Higher type I grouping in Older versus Young was driven by more myofibers per group (i.e., larger group size) (P < 0.05). In Older only, grouped type I myofibers displayed larger cross-sectional area, more myonuclei, lower capillary supply, and more sarco(endo)plasmic reticulum calcium ATPase I (SERCA I) expression (P < 0.05) than ungrouped type I myofibers. DISCUSSION: Grouped type I myofibers retain type II characteristics suggesting that conversion during denervation-reinnervation events is either progressive or incomplete. Muscle Nerve 57: E52-E59, 2018.


Assuntos
Envelhecimento/fisiologia , Fibras Musculares de Contração Lenta/fisiologia , Adulto , Idoso , Anatomia Transversal , Biópsia , Capilares/fisiologia , Contagem de Células , Denervação , Feminino , Humanos , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade , Neurônios Motores/fisiologia , Fibras Musculares de Contração Rápida/fisiologia , Regeneração Nervosa/fisiologia , Músculo Quadríceps/irrigação sanguínea , Músculo Quadríceps/inervação , Músculo Quadríceps/fisiologia , Fluxo Sanguíneo Regional/fisiologia , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Células Satélites Perineuronais/fisiologia , Adulto Jovem
2.
Am J Physiol Endocrinol Metab ; 310(9): E754-61, 2016 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-26931128

RESUMO

Individuals with long-standing spinal cord injury (SCI) often present with extreme muscle atrophy and impaired glucose metabolism at both the skeletal muscle and whole body level. Persistent inflammation and increased levels of proinflammatory cytokines in the skeletal muscle are potential contributors to dysregulation of glucose metabolism and atrophy; however, to date no study has assessed the effects of long-standing SCI on their expression or intracellular signaling in the paralyzed muscle. In the present study, we assessed the expression of genes (TNFαR, TNFα, IL-6R, IL-6, TWEAK, TWEAK R, atrogin-1, and MuRF1) and abundance of intracellular signaling proteins (TWEAK, TWEAK R, NF-κB, and p-p65/p-50/105) that are known to mediate inflammation and atrophy in skeletal muscle. In addition, based on the effects of muscle inflammation on promotion of skeletal muscle fibrosis, we assessed the degree of fibrosis between myofibers and fascicles in both groups. For further insight into the distribution and variability of muscle fiber size, we also analyzed the frequency distribution of SCI fiber size. Resting vastus lateralis (VL) muscle biopsy samples were taken from 11 men with long-standing SCI (≈22 yr) and compared with VL samples from 11 able-bodied men of similar age. Our results demonstrated that chronic SCI muscle has heightened TNFαR and TWEAK R gene expression and NF-κB signaling (higher TWEAK R and phospho-NF-κB p65) and fibrosis, along with substantial myofiber size heterogeneity, compared with able-bodied individuals. Our data suggest that the TWEAK/TWEAK R/NF-κB signaling pathway may be an important mediator of chronic inflammation and fibrotic adaptation in SCI muscle.


Assuntos
Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , NF-kappa B/metabolismo , Traumatismos da Medula Espinal/metabolismo , Fatores de Necrose Tumoral/genética , Adulto , Doença Crônica , Citocina TWEAK , Fibrose , Humanos , Immunoblotting , Inflamação , Interleucina-6/genética , Masculino , Pessoa de Meia-Idade , Fibras Musculares Esqueléticas/patologia , Proteínas Musculares/genética , Músculo Esquelético/patologia , Atrofia Muscular/patologia , Subunidade p50 de NF-kappa B/metabolismo , Tamanho do Órgão , Fosfoproteínas/metabolismo , RNA Mensageiro/metabolismo , Receptores de Interleucina-6/genética , Receptores do Fator de Necrose Tumoral/genética , Receptores do Fator de Necrose Tumoral/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteínas Ligases SKP Culina F-Box/genética , Transdução de Sinais , Traumatismos da Medula Espinal/patologia , Receptor de TWEAK , Fator de Transcrição RelA/metabolismo , Transcriptoma , Proteínas com Motivo Tripartido/genética , Fator de Necrose Tumoral alfa/genética , Fatores de Necrose Tumoral/metabolismo , Ubiquitina-Proteína Ligases/genética
3.
J Appl Physiol (1985) ; 115(5): 756-64, 2013 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-23766505

RESUMO

The mechanisms underlying poor glucose tolerance in persons with spinal cord injury (SCI), along with its improvement after several weeks of neuromuscular electrical stimulation-induced resistance exercise (NMES-RE) training, remain unclear, but presumably involve the affected skeletal musculature. We, therefore, investigated skeletal muscle signaling pathways associated with glucose transporter 4 (GLUT-4) translocation at rest and shortly after a single bout of NMES-RE in SCI (n = 12) vs. able-bodied (AB, n = 12) men. Subjects completed an oral glucose tolerance test during visit 1 and ≈90 NMES-RE isometric contractions of the quadriceps during visit 2. Muscle biopsies were collected before, and 10 and 60 min after, NMES-RE. We assessed transcript levels of GLUT-4 by quantitative PCR and protein levels of GLUT-4 and phosphorylated- and total AMP-activated protein kinase (AMPK)-α, CaMKII, Akt, and AS160 by immunoblotting. Impaired glucose tolerance in SCI was confirmed by higher (P < 0.05) plasma glucose concentrations than AB at all time points after glucose ingestion, despite equivalent insulin responses to the glucose load. GLUT-4 protein content was lower (P < 0.05) in SCI vs. AB at baseline. Main group effects revealed higher phosphorylation in SCI of AMPK-α, CaMKII, and Akt (P < 0.05), and Akt phosphorylation increased robustly (P < 0.05) following NMES-RE in SCI only. In SCI, low skeletal muscle GLUT-4 protein concentration may, in part, explain poor glucose tolerance, whereas heightened phosphorylation of relevant signaling proteins (AMPK-α, CaMKII) suggests a compensatory effort. Finally, it is encouraging to find (based on Akt) that SCI muscle remains both sensitive and responsive to mechanical loading (NMES-RE) even ≈22 yr after injury.


Assuntos
Intolerância à Glucose/metabolismo , Contração Muscular/fisiologia , Músculo Quadríceps/metabolismo , Músculo Quadríceps/fisiologia , Transdução de Sinais/fisiologia , Traumatismos da Medula Espinal/metabolismo , Traumatismos da Medula Espinal/fisiopatologia , Proteínas Quinases Ativadas por AMP/metabolismo , Adulto , Glicemia/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Terapia por Estimulação Elétrica/métodos , Glucose/metabolismo , Intolerância à Glucose/fisiopatologia , Teste de Tolerância a Glucose/métodos , Transportador de Glucose Tipo 4/metabolismo , Humanos , Insulina , Masculino , Pessoa de Meia-Idade , Fosforilação/fisiologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Treinamento Resistido/métodos , Descanso/fisiologia , Medula Espinal/metabolismo , Medula Espinal/fisiopatologia , Torque , Adulto Jovem
4.
Eur J Appl Physiol ; 111(4): 715-23, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20972575

RESUMO

Aging is associated with loss of endurance; however, aging is also associated with decreased fatigue during maximal isometric contractions. The aims of this study were to examine the relationship between age and walking endurance (WE) and maximal isometric fatigue (MIF) and to determine which metabolic/fitness components explain the expected age effects on WE and MIF. Subjects were 96 pre-menopausal women. Oxygen uptake (walking economy) was assessed during a 3-mph walk; aerobic capacity and WE by progressive treadmill test; knee extension strength by isometric contractions, MIF during a 90-s isometric plantar flexion (muscle metabolism measured by (31)P MRS). Age was related to increased walking economy (low VO(2), r = -0.19, P < 0.03) and muscle metabolic economy (force/ATP, 0.34, P = 0.01), and reduced MIF (-0.26, P < 0.03). However, age was associated with reduced WE (-0.28, P < 0.01). Multiple regression showed that muscle metabolic economy explained the age-related decrease in MIF (partial r for MIF and age -0.13, P = 0.35) whereas walking economy did not explain the age-related decrease in WE (partial r for WE and age -0.25, P < 0.02). Inclusion of VO(2max) and knee endurance strength accounted for the age-related decreased WE (partial r for WE and age = 0.03, P > 0.80). In premenopausal women, age is related to WE and MIF. In addition, these results support the hypothesis that age-related increases in metabolic economy may decrease MIF. However, decreased muscle strength and oxidative capacity are related to WE.


Assuntos
Envelhecimento/fisiologia , Fadiga Muscular/fisiologia , Resistência Física/fisiologia , Pré-Menopausa/fisiologia , Caminhada/fisiologia , Adulto , Fatores Etários , Biópsia , Teste de Esforço , Feminino , Humanos , Pessoa de Meia-Idade , Músculo Esquelético/patologia , Músculo Esquelético/fisiologia , Troca Gasosa Pulmonar/fisiologia , Adulto Jovem
5.
Bone ; 36(2): 331-9, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15780960

RESUMO

Spinal cord injury (SCI) results in a dramatic loss of bone mineral and a marked increase in fracture incidence in the femur; however, its effect on the femur's geometric structure and strength is poorly studied. The primary purpose of the present study was to assess the geometric structure, composition, and strength of the midfemur in men with long-term (>2 years), complete SCI (C6-L1 level; n=7) relative to men without SCI (n=8). T1-weighted axial images of the thigh were collected on a GE 1.5-T magnetic resonance imager and geometric, structure, composition, and strength measurements of the midfemur and skeletal muscle volume of the midthigh were determined. Areal bone mineral density (aBMD), bone mineral content (BMC), and bone area of the midthird of the femur and arms were determined using dual-energy X-ray absorptiometry. There were no differences in age, height, weight, femur length, arm BMC, arm aBMD, or arm bone area between the SCI group and controls. While the volume of the midfemur was not different in the two groups, the medullary cavity had 53% more volume and was 21-25% wider in the SCI group (P<0.05). In contrast, the cortical wall in the SCI group had a 24% lower volume and was 27-47% thinner (P<0.05). The cortical wall was particularly thin in the posterior section of the bone. The SCI group also had lower BMC and aBMD in the midfemur (21% and 25%, respectively, P<0.05). Calculated cross-sectional moment of inertia (CSMI), section modulus (Z), and polar moment of inertia (J) were lower in the SCI group (13-19%, P<0.05). A higher ratio of cortical bone volume to muscle volume and BMC to muscle volume in the SCI group (P<0.05) suggests that there was a greater loss of muscle than cortical bone after SCI; however, muscle volume was strongly correlated with cortical bone volume and BMC in the SCI and control groups (r=0.71 to 0.90, P<0.05). Muscle volume was also moderately to strongly correlated with CSMI and Z in the anterior-posterior direction and J. Muscle volume was weakly correlated or not correlated with bone strength measures in the control group (P>0.05). These findings suggest that after SCI, the midfemur erodes on the endosteal surface, resulting in a decreased resistance to bending and torsion. Although midthigh muscle volume appears to decline to a greater degree than midfemur cortical bone volume and BMC, their relationships remain strong.


Assuntos
Densidade Óssea/fisiologia , Fêmur/patologia , Fêmur/fisiologia , Traumatismos da Medula Espinal/patologia , Adulto , Vértebras Cervicais , Humanos , Vértebras Lombares , Masculino
6.
Osteoporos Int ; 16(3): 263-72, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15338112

RESUMO

The prevalence of osteoporosis is high among postmenopausal women and individuals sustaining a spinal cord injury (SCI). We assessed the effects of estrogen loss and unloading on the trabecular bone of the knee in women. Pre- and postmenopausal ambulatory women (n=17) were compared to pre- and postmenopausal women with SCI (n=20). High-resolution magnetic resonance imaging was used to compare groups on apparent measures of trabecular bone volume, trabecular number, trabecular spacing, and trabecular thickness in the distal femur and proximal tibia, regions with a high proportion of trabecular bone and the most common fracture site for SCI patients. Trabecular bone was deteriorated in women with SCI compared to ambulatory women. SCI groups had fewer, (-19 and -26% less) and thinner trabeculae (-6%) that were spaced further apart (40% and 62% more space between structures) resulting in less trabecular bone volume (-22% and -33%) compared to the ambulatory groups (tibia and femur, respectively). Postmenopausal women with SCI also had 34% greater trabecular spacing in the tibia compared to the 40-year-old premenopausal women with SCI, showing an interaction between unloading and estrogen loss. Middle-aged postmenopausal, ambulatory women, not taking estrogen or medications that affect bone, did not show the deteriorated trabeculae that were evident in women with SCI, nor did they show differences in distal femur and proximal tibia trabeculae compared to a premenopausal group. We conclude that the effect of unloading on bone architecture is greater than that of estrogen loss in middle-aged women.


Assuntos
Osso e Ossos/patologia , Osteoporose Pós-Menopausa/patologia , Traumatismos da Medula Espinal/patologia , Absorciometria de Fóton , Adulto , Análise de Variância , Densidade Óssea , Feminino , Fêmur/patologia , Humanos , Imageamento Tridimensional , Imageamento por Ressonância Magnética , Pessoa de Meia-Idade , Músculo Esquelético/patologia , Estresse Mecânico , Tíbia/patologia , Caminhada
7.
J Appl Physiol (1985) ; 98(2): 482-8, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15465884

RESUMO

Resistance exercise (RE) training, designed to induce hypertrophy, strives for optimal activation of anabolic and myogenic mechanisms to increase myofiber size. Clearly, activation of these mechanisms must precede skeletal muscle growth. Most mechanistic studies of RE have involved analysis of outcome variables after many training sessions. This study measured molecular level responses to RE on a scale of hours to establish a time course for the activation of myogenic mechanisms. Muscle biopsy samples were collected from nine subjects before and after acute bouts of RE. The response to a single bout was assessed at 12 and 24 h postexercise. Further samples were obtained 24 and 72 h after a second exercise bout. RE was induced by neuromuscular electrical stimulation to generate maximal isometric contractions in the muscle of interest. A single RE bout resulted in increased levels of mRNA for IGF binding protein-4 (84%), MyoD (83%), myogenin (approximately 3-fold), cyclin D1 (50%), and p21-Waf1 (16-fold), and a transient decrease in IGF-I mRNA (46%). A temporally conserved, significant correlation between myogenin and p21 mRNA was observed (r = 0.70, P < or = 0.02). The mRNAs for mechano-growth factor, IGF binding protein-5, and the IGF-I receptor were unchanged by RE. Total skeletal muscle RNA was increased 72 h after the second serial bout of RE. These results indicate that molecular adaptations of skeletal muscle to loading respond in a very short time. This approach should provide insights on the mechanisms that modulate adaptation to RE and may be useful in evaluating RE training protocol variables with high temporal resolution.


Assuntos
Estimulação Elétrica/métodos , Contração Isométrica/fisiologia , Proteínas Musculares/metabolismo , Músculo Esquelético/inervação , Músculo Esquelético/fisiologia , Resistência Física/fisiologia , Adaptação Fisiológica/fisiologia , Adulto , Feminino , Regulação da Expressão Gênica/fisiologia , Humanos , Cinética , Joelho/fisiologia , Masculino , Fatores de Tempo , Torque
8.
J Appl Physiol (1985) ; 94(6): 2255-62, 2003 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12611774

RESUMO

Spinal cord injury (SCI) results in muscle atrophy, which contributes to a number of health problems, such as cardiovascular deconditioning, metabolic derangement, and osteoporosis. Electromyostimulation (EMS) holds the promise of ameliorating SCI-related muscle atrophy and, therefore, improving general health. To date, EMS training of long-term SCI subjects has resulted in some muscle hypertrophy but has fallen short of normalizing muscle mass. The aim of this study was to compare the molecular responses of vastus lateralis muscles from able-bodied (AB) and SCI subjects after acute bouts of EMS-induced resistance exercise to determine whether SCI muscles displayed some impairment in response. Analysis included mRNA markers known to be responsive to increased loading in rodent muscles. Muscles of AB and SCI subjects were subjected to EMS-stimulated exercise in two 30-min bouts, separated by a 48-h rest. Needle biopsy samples were obtained 24 h after the second exercise bout. In both the AB and SCI muscles, significant changes were seen in insulin-like growth factor binding proteins 4 and 5, cyclin-dependent kinase inhibitor p21, and myogenin mRNA levels. In AB subjects, the mRNA for mechano-growth factor was also increased. Before exercise, the total RNA concentration of the SCI muscles was less than that of the AB subjects but not different postexercise. The results of this study indicate that acute bouts of resistance exercise stimulate molecular responses in the skeletal muscles of both AB and SCI subjects. The responses seen in the SCI muscles indicate that the systems that regulate these molecular responses are intact, even after extended periods of muscle unloading.


Assuntos
Músculo Esquelético/metabolismo , Traumatismos da Medula Espinal/fisiopatologia , Levantamento de Peso , Adulto , Estudos de Casos e Controles , Inibidor de Quinase Dependente de Ciclina p21 , Ciclinas/genética , Estimulação Elétrica , Feminino , Humanos , Proteína 4 de Ligação a Fator de Crescimento Semelhante à Insulina/genética , Proteína 5 de Ligação a Fator de Crescimento Semelhante à Insulina/genética , Perna (Membro) , Masculino , Miogenina/genética , Concentração Osmolar , RNA Mensageiro/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA