Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Bone Miner Res ; 38(1): 70-85, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36321253

RESUMO

Activation of bone anabolic pathways is a fruitful approach for treating severe osteoporosis, yet FDA-approved osteoanabolics, eg, parathyroid hormone (PTH), have limited efficacy. Improving their potency is a promising strategy for maximizing bone anabolic output. Nmp4 (Nuclear Matrix Protein 4) global knockout mice exhibit enhanced PTH-induced increases in trabecular bone but display no overt baseline skeletal phenotype. Nmp4 is expressed in all tissues; therefore, to determine which cell type is responsible for driving the beneficial effects of Nmp4 inhibition, we conditionally removed this gene from cells at distinct stages of osteogenic differentiation. Nmp4-floxed (Nmp4fl/fl ) mice were crossed with mice bearing one of three Cre drivers including (i) Prx1Cre+  to remove Nmp4 from mesenchymal stem/progenitor cells (MSPCs) in long bones; (ii) BglapCre+  targeting mature osteoblasts, and (iii) Dmp1Cre+  to disable Nmp4 in osteocytes. Virgin female Cre+  and Cre- mice (10 weeks of age) were sorted into cohorts by weight and genotype. Mice were administered daily injections of either human PTH 1-34 at 30 µg/kg or vehicle for 4 weeks or 7 weeks. Skeletal response was assessed using dual-energy X-ray absorptiometry, micro-computed tomography, bone histomorphometry, and serum analysis for remodeling markers. Nmp4fl/fl ;Prx1Cre+  mice virtually phenocopied the global Nmp4-/- skeleton in the femur, ie, a mild baseline phenotype but significantly enhanced PTH-induced increase in femur trabecular bone volume/total volume (BV/TV) compared with their Nmp4fl/fl ;Prx1Cre- controls. This was not observed in the spine, where Prrx1 is not expressed. Heightened response to PTH was coincident with enhanced bone formation. Conditional loss of Nmp4 from the mature osteoblasts (Nmp4fl/fl ;BglapCre+ ) failed to increase BV/TV or enhance PTH response. However, conditional disabling of Nmp4 in osteocytes (Nmp4fl/fl ;Dmp1Cre+ ) increased BV/TV without boosting response to hormone under our experimental regimen. We conclude that Nmp4-/- Prx1-expressing MSPCs drive the improved response to PTH therapy and that this gene has stage-specific effects on osteoanabolism. © 2022 American Society for Bone and Mineral Research (ASBMR).


Assuntos
Células-Tronco Mesenquimais , Osteogênese , Animais , Feminino , Humanos , Camundongos , Osso e Ossos , Densidade Óssea , Proteínas de Homeodomínio/genética , Camundongos Knockout , Hormônio Paratireóideo/farmacologia , Microtomografia por Raio-X
2.
Mucosal Immunol ; 14(1): 209-218, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32152414

RESUMO

Severe influenza A virus infection typically triggers excessive and detrimental lung inflammation with massive cell infiltration and hyper-production of cytokines and chemokines. We identified a novel function for nuclear matrix protein 4 (NMP4), a zinc-finger-containing transcription factor playing roles in bone formation and spermatogenesis, in regulating antiviral immune response and immunopathology. Nmp4-deficient mice are protected from H1N1 influenza infection, losing only 5% body weight compared to a 20% weight loss in wild type mice. While having no effects on viral clearance or CD8/CD4 T cell or humoral responses, deficiency of Nmp4 in either lung structural cells or hematopoietic cells significantly reduces the recruitment of monocytes and neutrophils to the lungs. Consistent with fewer innate cells in the airways, influenza-infected Nmp4-deficient mice have significantly decreased expression of chemokine genes Ccl2, Ccl7 and Cxcl1 as well as pro-inflammatory cytokine genes Il1b and Il6. Furthermore, NMP4 binds to the promoters and/or conserved non-coding sequences of the chemokine genes and regulates their expression in mouse lung epithelial cells and macrophages. Our data suggest that NMP4 functions to promote monocyte- and neutrophil-attracting chemokine expression upon influenza A infection, resulting in exaggerated innate inflammation and lung tissue damage.


Assuntos
Imunidade Inata , Imunomodulação , Vírus da Influenza A/imunologia , Proteínas Associadas à Matriz Nuclear/genética , Infecções por Orthomyxoviridae/genética , Infecções por Orthomyxoviridae/imunologia , Fatores de Transcrição/genética , Imunidade Adaptativa , Animais , Quimiotaxia de Leucócito/genética , Quimiotaxia de Leucócito/imunologia , Citocinas/metabolismo , Modelos Animais de Doenças , Suscetibilidade a Doenças , Interações Hospedeiro-Patógeno/imunologia , Imunomodulação/genética , Mediadores da Inflamação/metabolismo , Camundongos , Camundongos Knockout , Monócitos/imunologia , Monócitos/metabolismo , Monócitos/patologia , Neutrófilos/imunologia , Neutrófilos/metabolismo , Neutrófilos/patologia , Proteínas Associadas à Matriz Nuclear/metabolismo , Infecções por Orthomyxoviridae/metabolismo , Infecções por Orthomyxoviridae/virologia , Fatores de Transcrição/metabolismo
3.
J Cell Biochem ; 120(10): 16741-16749, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31106449

RESUMO

Old age and Cx43 deletion in osteocytes are associated with increased osteocyte apoptosis and osteoclastogenesis. We previously demonstrated that apoptotic osteocytes release elevated concentrations of the proinflammatory cytokine, high mobility group box 1 protein (HMGB1) and apoptotic osteocyte conditioned media (CM) promotes osteoclast differentiation. Further, prevention of osteocyte apoptosis blocks osteoclast differentiation and attenuates the extracellular release of HMGB1 and RANKL. Moreover, sequestration of HMGB1, in turn, reduces RANKL production/release by MLO-Y4 osteocytic cells silenced for Cx43 (Cx43def ), highlighting the possibility that HMGB1 promotes apoptotic osteocyte-induced osteoclastogenesis. However, the role of HMGB1 signaling in osteocytes has not been well studied. Further, the mechanisms underlying its release and the receptor(s) responsible for its actions is not clear. We now report that a neutralizing HMGB1 antibody reduces osteoclast formation in RANKL/M-CSF treated bone marrow cells. In bone marrow macrophages (BMMs), toll-like receptor 4 (TLR4) inhibition with LPS-RS, but not receptor for advanced glycation end products (RAGE) inhibition with Azeliragon attenuated osteoclast differentiation. Further, inhibition of RAGE but not of TLR4 in osteoclast precursors reduced osteoclast number, suggesting that HGMB1 produced by osteoclasts directly affects differentiation by activating TLR4 in BMMs and RAGE in preosteoclasts. Our findings also suggest that increased osteoclastogenesis induced by apoptotic osteocytes CM is not mediated through HMGB1/RAGE activation and that direct HMGB1 actions in osteocytes stimulate pro-osteoclastogenic signal release from Cx43def osteocytes. Based on these findings, we propose that HMGB1 exerts dual effects on osteoclasts, directly by inducing differentiation through TLR4 and RAGE activation and indirectly by increasing pro-osteoclastogenic cytokine secretion from osteocytes.


Assuntos
Proteína HMGB1/metabolismo , Osteoclastos/citologia , Osteócitos/metabolismo , Osteogênese/fisiologia , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Receptor 4 Toll-Like/metabolismo , Animais , Apoptose/genética , Células da Medula Óssea/metabolismo , Linhagem Celular , Conexina 43/genética , Feminino , Proteína HMGB1/antagonistas & inibidores , Macrófagos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Osteócitos/citologia , Osteogênese/genética , Ligante RANK/metabolismo , Receptor para Produtos Finais de Glicação Avançada/antagonistas & inibidores , Receptor 4 Toll-Like/antagonistas & inibidores
4.
Am J Physiol Endocrinol Metab ; 316(5): E749-E772, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30645175

RESUMO

A goal of osteoporosis therapy is to restore lost bone with structurally sound tissue. Mice lacking the transcription factor nuclear matrix protein 4 (Nmp4, Zfp384, Ciz, ZNF384) respond to several classes of osteoporosis drugs with enhanced bone formation compared with wild-type (WT) animals. Nmp4-/- mesenchymal stem/progenitor cells (MSPCs) exhibit an accelerated and enhanced mineralization during osteoblast differentiation. To address the mechanisms underlying this hyperanabolic phenotype, we carried out RNA-sequencing and molecular and cellular analyses of WT and Nmp4-/- MSPCs during osteogenesis to define pathways and mechanisms associated with elevated matrix production. We determined that Nmp4 has a broad impact on the transcriptome during osteogenic differentiation, contributing to the expression of over 5,000 genes. Phenotypic anchoring of transcriptional data was performed for the hypothesis-testing arm through analysis of cell metabolism, protein synthesis and secretion, and bone material properties. Mechanistic studies confirmed that Nmp4-/- MSPCs exhibited an enhanced capacity for glycolytic conversion: a key step in bone anabolism. Nmp4-/- cells showed elevated collagen translation and secretion. The expression of matrix genes that contribute to bone material-level mechanical properties was elevated in Nmp4-/- cells, an observation that was supported by biomechanical testing of bone samples from Nmp4-/- and WT mice. We conclude that loss of Nmp4 increases the magnitude of glycolysis upon the metabolic switch, which fuels the conversion of the osteoblast into a super-secretor of matrix resulting in more bone with improvements in intrinsic quality.


Assuntos
Matriz Óssea/metabolismo , Células-Tronco Mesenquimais/metabolismo , Proteínas Associadas à Matriz Nuclear/genética , Osteoblastos/metabolismo , Osteogênese/genética , Fatores de Transcrição/genética , Animais , Calcificação Fisiológica/genética , Colágeno/genética , Colágeno/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Glicólise/genética , Camundongos , Camundongos Knockout , Osteoblastos/citologia , Osteoporose/metabolismo , RNA Mensageiro/metabolismo
5.
Mol Endocrinol ; 29(9): 1269-85, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26244796

RESUMO

PTH is an osteoanabolic for treating osteoporosis but its potency wanes. Disabling the transcription factor nuclear matrix protein 4 (Nmp4) in healthy, ovary-intact mice enhances bone response to PTH and bone morphogenetic protein 2 and protects from unloading-induced osteopenia. These Nmp4(-/-) mice exhibit expanded bone marrow populations of osteoprogenitors and supporting CD8(+) T cells. To determine whether the Nmp4(-/-) phenotype persists in an osteoporosis model we compared PTH response in ovariectomized (ovx) wild-type (WT) and Nmp4(-/-) mice. To identify potential Nmp4 target genes, we performed bioinformatic/pathway profiling on Nmp4 chromatin immunoprecipitation sequencing (ChIP-seq) data. Mice (12 w) were ovx or sham operated 4 weeks before the initiation of PTH therapy. Skeletal phenotype analysis included microcomputed tomography, histomorphometry, serum profiles, fluorescence-activated cell sorting and the growth/mineralization of cultured WT and Nmp4(-/-) bone marrow mesenchymal stem progenitor cells (MSPCs). ChIP-seq data were derived using MC3T3-E1 preosteoblasts, murine embryonic stem cells, and 2 blood cell lines. Ovx Nmp4(-/-) mice exhibited an improved response to PTH coupled with elevated numbers of osteoprogenitors and CD8(+) T cells, but were not protected from ovx-induced bone loss. Cultured Nmp4(-/-) MSPCs displayed enhanced proliferation and accelerated mineralization. ChIP-seq/gene ontology analyses identified target genes likely under Nmp4 control as enriched for negative regulators of biosynthetic processes. Interrogation of mRNA transcripts in nondifferentiating and osteogenic differentiating WT and Nmp4(-/-) MSPCs was performed on 90 Nmp4 target genes and differentiation markers. These data suggest that Nmp4 suppresses bone anabolism, in part, by regulating IGF-binding protein expression. Changes in Nmp4 status may lead to improvements in osteoprogenitor response to therapeutic cues.


Assuntos
Reabsorção Óssea/tratamento farmacológico , Linfócitos T CD8-Positivos/citologia , Proteínas Associadas à Matriz Nuclear/genética , Osteoporose/tratamento farmacológico , Hormônio Paratireóideo/uso terapêutico , Fatores de Transcrição/genética , Animais , Densidade Óssea/efeitos dos fármacos , Doenças Ósseas Metabólicas/prevenção & controle , Proteína Morfogenética Óssea 2/metabolismo , Reabsorção Óssea/genética , Linfócitos T CD8-Positivos/imunologia , Células Cultivadas , Mapeamento Cromossômico , Células-Tronco Embrionárias/citologia , Feminino , Terapia Genética , Humanos , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/genética , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/metabolismo , Células-Tronco Mesenquimais/citologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Osteogênese/efeitos dos fármacos , Osteoporose/genética , Ovariectomia , Ovário/cirurgia
6.
J Cell Physiol ; 230(3): 578-86, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25160801

RESUMO

Recent studies suggest that megakaryocytes (MKs) may play a significant role in skeletal homeostasis, as evident by the occurrence of osteosclerosis in multiple MK related diseases (Lennert et al., 1975; Thiele et al., 1999; Chagraoui et al., 2006). We previously reported a novel interaction whereby MKs enhanced proliferation of osteoblast lineage/osteoprogenitor cells (OBs) by a mechanism requiring direct cell-cell contact. However, the signal transduction pathways and the downstream effector molecules involved in this process have not been characterized. Here we show that MKs contact with OBs, via beta1 integrin, activate the p38/MAPKAPK2/p90RSK kinase cascade in the bone cells, which causes Mdm2 to neutralizes p53/Rb-mediated check point and allows progression through the G1/S. Interestingly, activation of MAPK (ERK1/2) and AKT, collateral pathways that regulate the cell cycle, remained unchanged with MK stimulation of OBs. The MK-to-OB signaling ultimately results in significant increases in the expression of c-fos and cyclin A, necessary for sustaining the OB proliferation. Overall, our findings show that OBs respond to the presence of MKs, in part, via an integrin-mediated signaling mechanism, activating a novel response axis that de-represses cell cycle activity. Understanding the mechanisms by which MKs enhance OB proliferation will facilitate the development of novel anabolic therapies to treat bone loss associated with osteoporosis and other bone-related diseases.


Assuntos
Diferenciação Celular/genética , Megacariócitos/citologia , Osteoblastos/citologia , Transdução de Sinais/genética , Ciclo Celular/genética , Linhagem da Célula , Proliferação de Células/genética , Células Cultivadas , Humanos , Sistema de Sinalização das MAP Quinases/genética , Megacariócitos/metabolismo , Osteoblastos/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/metabolismo
7.
Curr Osteoporos Rep ; 11(2): 117-25, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23471774

RESUMO

The skeleton is a high-renewal organ that undergoes ongoing cycles of remodeling. The regenerative bone formation arm ultimately declines in the aging, postmenopausal skeleton, but current therapies do not adequately address this deficit. Bone marrow is the primary source of the skeletal anabolic response and the mesenchymal stem cells (MSCs), which give rise to bone matrix-producing osteoblasts. The identity of these stem cells is emerging, but it now appears that the term 'MSC' has often been misapplied to the bone marrow stromal cell (BMSC), a progeny of the MSC. Nevertheless, the changes in BMSC phenotype associated with age and estrogen depletion likely contribute to the attenuated regenerative competence of the marrow and may reflect alterations in MSC phenotype. Here we summarize current concepts in bone marrow MSC identity, and within this context, review recent observations on changes in bone marrow population dynamics associated with aging and menopause.


Assuntos
Envelhecimento/patologia , Células da Medula Óssea/patologia , Regeneração Óssea/fisiologia , Osteoblastos/patologia , Osteogênese , Osteoporose/patologia , Diferenciação Celular , Proliferação de Células , Humanos
8.
Stem Cells Dev ; 22(3): 492-500, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-22873745

RESUMO

Parathyroid hormone (PTH) anabolic osteoporosis therapy is intrinsically limited by unknown mechanisms. We previously showed that disabling the transcription factor Nmp4/CIZ in mice expanded this anabolic window while modestly elevating bone resorption. This enhanced bone formation requires a lag period to materialize. Wild-type (WT) and Nmp4-knockout (KO) mice exhibited equivalent PTH-induced increases in bone at 2 weeks of treatment, but by 7 weeks, the null mice showed more new bone. At 3-week treatment, serum osteocalcin, a bone formation marker, peaked in WT mice, but continued to increase in null mice. To determine if 3 weeks is the time when the addition of new bone diverges and to investigate its cellular basis, we treated 10-week-old null and WT animals with human PTH (1-34) (30 µg/kg/day) or vehicle before analyzing femoral trabecular architecture and bone marrow (BM) and peripheral blood phenotypic cell profiles. PTH-treated Nmp4-KO mice gained over 2-fold more femoral trabecular bone than WT by 3 weeks. There was no difference between genotypes in BM cellularity or profiles of several blood elements. However, the KO mice exhibited a significant elevation in CFU-F cells, CFU-F(Alk)(Phos+) cells (osteoprogenitors), and a higher percentage of CFU-F(Alk)(Phos+) cells/CFU-F cells consistent with an increase in CD45-/CD146+/CD105+/nestin+ mesenchymal stem cell frequency. Null BM exhibited a 2-fold enhancement in CD8+ T cells known to support osteoprogenitor differentiation and a 1.6-fold increase in CFU-GM colonies (osteoclast progenitors). We propose that Nmp4/CIZ limits the PTH anabolic window by restricting the number of BM stem, progenitor, and blood cells that support anabolic bone remodeling.


Assuntos
Células-Tronco Mesenquimais/fisiologia , Proteínas Associadas à Matriz Nuclear/metabolismo , Osteoblastos/fisiologia , Teriparatida/administração & dosagem , Fatores de Transcrição/metabolismo , Animais , Antígenos de Diferenciação/metabolismo , Medula Óssea/metabolismo , Células da Medula Óssea/metabolismo , Remodelação Óssea , Linfócitos T CD4-Positivos/fisiologia , Linfócitos T CD8-Positivos/fisiologia , Células Cultivadas , Feminino , Fêmur/citologia , Fêmur/fisiologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Associadas à Matriz Nuclear/genética , Proteínas Associadas à Matriz Nuclear/fisiologia , Tamanho do Órgão , Osteocalcina/sangue , Baço/anatomia & histologia , Fatores de Transcrição/genética , Fatores de Transcrição/fisiologia
9.
Crit Rev Eukaryot Gene Expr ; 22(3): 205-18, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23140162

RESUMO

Chronic degenerative diseases are increasing with the aging U.S. population. One consequence of this phenomenon is the need for long-term osteoporosis therapies. Parathyroid hormone (PTH), the only FDA-approved treatment that adds bone to the aged skeleton, loses its potency within two years of initial treatment but the mechanism regulating its limited "anabolic window" is unknown. We have discovered that disabling the nucleocytoplasmic shuttling transcription factor nuclear matrix protein 4/cas interacting zinc finger protein (Nmp4/CIZ) in mice extends the PTH bone-forming capacity. Nmp4 was discovered during our search for nuclear matrix transcription factors that couple this hormone's impact on osteoblast cytoskeletal and nuclear organization with its anabolic capacity. CIZ was independently discovered as a protein that associates with the focal adhesion-associated mechanosensor p130Cas. The Nmp4/CIZ-knockout (KO) skeletal phenotype exhibits a modestly enhanced bone mineral density but manifests an exaggerated response to both PTH and to BMP2 and is resistant to disuse-induced bone loss. The cellular basis of the global Nmp4/CIZ-KO skeletal phenotype remains to be elucidated but may involve an expansion of the bone marrow osteoprogenitor population along with modestly enhanced osteoblast and osteoclast activities supporting anabolic bone turnover. As a shuttling Cys(2)His(2) zinc finger protein, Nmp4/CIZ acts as a repressive transcription factor perhaps associated with epigenetic remodeling complexes, but the functional significance of its interaction with p130Cas is not known. Despite numerous remaining questions, Nmp4/CIZ provides insights into how the anabolic window is regulated, and itself may provide an adjuvant therapy target for the treatment of osteoporosis by extending PTH anabolic efficacy.


Assuntos
Osso e Ossos/fisiologia , Proteínas Associadas à Matriz Nuclear/metabolismo , Hormônio Paratireóideo/fisiologia , Fatores de Transcrição/metabolismo , Animais , Densidade Óssea , Proteína Morfogenética Óssea 2/genética , Proteína Morfogenética Óssea 2/metabolismo , Adesão Celular , Proteína Substrato Associada a Crk/genética , Proteína Substrato Associada a Crk/metabolismo , Regulação da Expressão Gênica , Técnicas de Inativação de Genes , Humanos , Camundongos , Proteínas Associadas à Matriz Nuclear/genética , Osteoblastos/metabolismo , Osteoclastos/metabolismo , Hormônio Paratireóideo/farmacologia , Fenótipo , Fatores de Transcrição/genética , Dedos de Zinco/genética
10.
J Cell Physiol ; 227(5): 1873-82, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-21732358

RESUMO

Intermittent parathyroid hormone (PTH) adds new bone to the osteoporotic skeleton; the transcription factor Nmp4/CIZ represses PTH-induced bone formation in mice and as a consequence is a potential drug target for improving hormone clinical efficacy. To explore the impact of Nmp4/CIZ on osteoblast phenotype, we immortalized bone marrow stromal cells from wildtype (WT) and Nmp4-knockout (KO) mice using murine telomerase reverse transcriptase. Clonal lines were initially chosen based on their positive staining for alkaline phosphatase and capacity for mineralization. Disabling Nmp4/CIZ had no gross impact on osteoblast phenotype development. WT and KO clones exhibited identical sustained growth, reduced population doubling times, extended maintenance of the mature osteoblast phenotype, and competency for differentiating toward the osteoblast and adipocyte lineages. Additional screening of the immortalized cells for PTH-responsiveness permitted further studies with single WT and KO clones. We recently demonstrated that PTH-induced c-fos femoral mRNA expression is enhanced in Nmp4-KO mice and in the present study we observed that hormone stimulated either an equivalent or modestly enhanced increase in c-fos mRNA expression in both primary null and KO clone cells depending on PTH concentration. The null primary osteoblasts and KO clone cells exhibited a transiently enhanced response to bone morphogenetic protein 2 (BMP2). The clones exhibited lower and higher expressions of the PTH receptor (Pthr1) and the BMP2 receptor (Bmpr1a, Alk3), respectively, as compared to primary cells. These immortalized cell lines will provide a valuable tool for disentangling the complex functional roles underlying Nmp4/CIZ regulation of bone anabolism.


Assuntos
Células da Medula Óssea/fisiologia , Proteínas Associadas à Matriz Nuclear/genética , Osteoblastos/fisiologia , Células Estromais/fisiologia , Telomerase/metabolismo , Fatores de Transcrição/genética , Adipócitos/citologia , Adipócitos/fisiologia , Animais , Células da Medula Óssea/citologia , Proteína Morfogenética Óssea 2/farmacologia , Linhagem Celular , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Associadas à Matriz Nuclear/metabolismo , Osteoblastos/citologia , Osteoblastos/efeitos dos fármacos , Hormônio Paratireóideo/farmacologia , Fenótipo , Células Estromais/citologia , Telomerase/genética , Fatores de Transcrição/metabolismo
11.
Endocrinology ; 152(8): 2963-75, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21652726

RESUMO

PTH is a potent calcium-regulating factor that has skeletal anabolic effects when administered intermittently or catabolic effects when maintained at consistently high levels. Bone cells express PTH receptors, but the cellular responses to PTH in bone are incompletely understood. Wnt signaling has recently been implicated in the osteo-anabolic response to the hormone. Specifically, the Sost gene, a major antagonist of Wnt signaling, is down-regulated by PTH exposure. We investigated this mechanism by treating Sost-deficient mice and their wild-type littermates with anabolic and catabolic regimens of PTH and measuring the skeletal responses. Male Sost(+/+) and Sost(-/-) mice were injected daily with human PTH 1-34 (0, 30, or 90 µg/kg) for 6 wk. Female Sost(+/+) and Sost(-/-) mice were continuously infused with vehicle or high-dose PTH (40 µg/kg · d) for 3 wk. Dual energy x-ray absorptiometry-derived measures of intermittent PTH (iPTH)-induced bone gain were impaired in Sost(-/-) mice. Further probing revealed normal or enhanced iPTH-induced cortical bone formation rates but concomitant increases in cortical porosity among Sost(-/-) mice. Distal femur trabecular bone was highly responsive to iPTH in Sost(-/-) mice. Continuous PTH (cPTH) infusion resulted in equal bone loss in Sost(+/+) and Sost(-/-) mice as measured by dual energy x-ray absorptiometry. However, distal femur trabecular bone, but not lumbar spine trabecular bone, was spared the bone-wasting effects of cPTH in Sost(-/-) mice. These results suggest that changes in Sost expression are not required for iPTH-induced anabolism. iPTH-induced resorption of cortical bone might be overstimulated in Sost-deficient environments. Furthermore, Sost deletion protects some trabecular compartments, but not cortical compartments, from bone loss induced by high-dose PTH infusion.


Assuntos
Osso e Ossos/efeitos dos fármacos , Glicoproteínas/fisiologia , Fragmentos de Peptídeos/farmacologia , Teriparatida/análogos & derivados , Proteínas Adaptadoras de Transdução de Sinal , Animais , Densidade Óssea/efeitos dos fármacos , Osso e Ossos/metabolismo , Colágeno Tipo I/análise , Feminino , Glicoproteínas/deficiência , Humanos , Peptídeos e Proteínas de Sinalização Intercelular , Masculino , Camundongos , Peptídeos/análise , Teriparatida/farmacologia
12.
J Cell Physiol ; 226(4): 1044-51, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20857415

RESUMO

Fluid shear stress protects cells from TNF-α-induced apoptosis. Oscillatory fluid shear stress (OFSS) is generally perceived as physiologically relevant biophysical signal for bone cells. Here we identify several cellular mechanisms responsible for mediating the protective effects of OFSS against TNF-α-induced apoptosis in vitro. We found that exposure of MC3T3-E1 osteoblast-like cells to as little as 5 min of OFSS suppressed TNF-α-induced activation of caspase-3, cleavage of PARP and phosphorylation of histone. In contrast, H(2)O(2)-induced apoptosis was not inhibited by OFSS suggesting that OFSS might not be protecting cells from TNF-α-induced apoptosis via stimulation of global pro-survival signaling pathways. In support of this speculation, OFSS inhibition of TNF-α-induced apoptosis was unaffected by inhibitors of several pro-survival signaling pathways including pI3-kinase (LY294002), MAPK/ERK kinase (PD98059 or U0126), intracellular Ca2+ release (U73122), NO production (L-NAME), or protein synthesis (cycloheximide) that were applied to cells during exposure to OFSS and during TNF-α treatment. However, TNF-α-induced phosphorylation and degradation of IκBα was blocked by pre-exposure of cells to OFSS suggesting a more specific effect of OFSS on TNF-α signaling. We therefore focused on the mechanism of OFSS regulation of TNF-receptor 1 (TNFR1) signaling and found that OFSS (1) reduced the amount of receptor on the cell surface, (2) prevented the association of ubiquitinated RIP in TNFR1 complexes with TRADD and TRAF2, and (3) reduced TNF-α-induced IL-8 promoter activity in the nucleus. We conclude that the anti-apoptotic effect of OFSS is not mediated by activation of universal pro-survival signaling pathways. Rather, OFSS inhibits TNF-α-induced pro-apoptotic signaling which can be explained by the down-regulation of TNFR1 on the cell surface and blockade of TNFR1 downstream signaling by OFSS.


Assuntos
Osteoblastos/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Reologia , Transdução de Sinais , Estresse Mecânico , Animais , Apoptose/efeitos dos fármacos , Sinalização do Cálcio/efeitos dos fármacos , Linhagem Celular , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Citoesqueleto/efeitos dos fármacos , Citoesqueleto/metabolismo , Endocitose/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Peróxido de Hidrogênio/farmacologia , Proteínas I-kappa B/metabolismo , Interleucina-8/genética , Interleucina-8/metabolismo , Espaço Intracelular/efeitos dos fármacos , Espaço Intracelular/metabolismo , Camundongos , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Inibidor de NF-kappaB alfa , Óxido Nítrico/biossíntese , Osteoblastos/efeitos dos fármacos , Osteoblastos/enzimologia , Regiões Promotoras Genéticas/genética , Biossíntese de Proteínas/efeitos dos fármacos , Reologia/efeitos dos fármacos , Fator de Necrose Tumoral alfa/farmacologia , Ubiquitinação/efeitos dos fármacos
13.
J Cell Physiol ; 223(2): 435-41, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20112285

RESUMO

Cellular mechanotransduction, the process of converting mechanical signals into biochemical responses within cells, is a critical aspect of bone health. While the effects of mechanical loading on bone are well recognized, elucidating the specific molecular pathways involved in the processing of mechanical signals by bone cells represents a challenge and an opportunity to identify therapeutic strategies to combat bone loss. In this study we have for the first time examined the relationship between the nucleocytoplasmic shuttling transcription factor nuclear matrix protein-4/cas interacting zinc finger protein (Nmp4/CIZ) and beta-catenin signaling in response to a physiologic mechanical stimulation (oscillatory fluid shear stress, OFSS) in osteoblasts. Using calvaria-derived osteoblasts from Nmp4-deficient and wild-type mice, we found that the normal translocation of beta-catenin to the nucleus in osteoblasts that is induced by OFSS is enhanced when Nmp4/CIZ is absent. Furthermore, we found that other aspects of OFSS-induced mechanotransduction generally associated with the beta-catenin signaling pathway, including ERK, Akt, and GSK3beta activity, as well as expression of the beta-catenin-responsive protein cyclin D1 are also enhanced in cells lacking Nmp4/CIZ. Finally, we found that in the absence of Nmp4/CIZ, OFSS-induced cytoskeletal reorganization and the formation of focal adhesions between osteoblasts and the extracellular substrate is qualitatively enhanced, suggesting that Nmp4/CIZ may reduce the sensitivity of bone cells to mechanical stimuli. Together these results provide experimental support for the concept that Nmp4/CIZ plays an inhibitory role in the response of bone cells to mechanical stimulation induced by OFSS.


Assuntos
Mecanotransdução Celular/fisiologia , Proteínas Associadas à Matriz Nuclear/metabolismo , Osteoblastos/metabolismo , Osteogênese/fisiologia , Transdução de Sinais/fisiologia , Fatores de Transcrição/metabolismo , beta Catenina/metabolismo , Animais , Reabsorção Óssea/metabolismo , Reabsorção Óssea/fisiopatologia , Reabsorção Óssea/prevenção & controle , Adesão Celular/fisiologia , Células Cultivadas , Ciclina D1/metabolismo , Citoesqueleto/metabolismo , Citoesqueleto/ultraestrutura , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Adesões Focais/fisiologia , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Camundongos , Camundongos Knockout , Proteínas Associadas à Matriz Nuclear/genética , Osteoblastos/citologia , Estimulação Física , Transporte Proteico/fisiologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Estresse Mecânico , Fatores de Transcrição/genética , beta Catenina/genética
14.
J Cell Physiol ; 214(3): 730-9, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17786958

RESUMO

High mobility group box 1 (HMGB1) is a chromatin protein that acts as an immunomodulatory cytokine upon active release from myeloid cells. HMGB1 is also an alarmin, an endogenous molecule released by dying cells that acts to initiate tissue repair. We have previously reported that osteoclasts and osteoblasts release HMGB1 and release by the latter is regulated by parathyroid hormone (PTH), an agent of bone remodeling. A recent study suggests that HMGB1 acts as a chemotactic agent to osteoclasts and osteoblasts during endochondral ossification. To explore the potential impact of HMGB1 in the bone microenvironment and its mechanism of release by osseous cells, we characterized the effects of recombinant protein (rHMGB1) on multiple murine bone cell preparations that together exhibit the various cell phenotypes present in bone. We also inquired whether apoptotic bone cells release HMGB1. rHMGB1 enhanced the RANKL/OPG steady state mRNA ratio and dramatically augmented the release of tumor necrosis factor-alpha (TNFalpha) and interleukin-6 (IL6) in osteoblastogenic bone marrow stromal cell (BMSC) cultures but not in the calvarial-derived MC3T3-E1 cells. Interestingly, rHMGB1 promoted GSK-3beta phosphorylation in MC3T3-E1 cells but not in BMSCs. Apoptotic bone cells released HMGB1, including MLO-Y4 osteocyte-like cells. MLO-Y4 release of HMGB1 was coincident with caspase-3 cleavage. Furthermore, the anti-apoptotic action of PTH on MC3T3-E1 cells correlated with the observed decrease in HMGB1 release. Our data suggest that apoptotic bone cells release HMGB1, that within the marrow HMGB1 is a bone resorption signal, and that intramembraneous and endochondral osteoblasts exhibit differential responses to this cytokine.


Assuntos
Osso e Ossos/metabolismo , Citocinas/metabolismo , Proteína HMGB1/metabolismo , Animais , Apoptose/efeitos dos fármacos , Células da Medula Óssea/citologia , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/enzimologia , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Citocinas/farmacologia , Feminino , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Proteína HMGB1/farmacologia , Células HeLa , Humanos , Interleucina-6/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Osteoblastos/citologia , Osteoblastos/efeitos dos fármacos , Osteoblastos/enzimologia , Osteoprotegerina/metabolismo , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ligante RANK/farmacologia , Ratos , Células Estromais/citologia , Células Estromais/efeitos dos fármacos , Células Estromais/enzimologia , Fator de Necrose Tumoral alfa/metabolismo
15.
J Cell Biochem ; 103(6): 1671-80, 2008 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-17948903

RESUMO

The death of osteocytes, the terminally differentiated cells of the osteoblast lineage that are embedded in bone and regulate remodeling, is significant to both normal and pathological bone resorption. Apoptotic osteocytes putatively release a clarion signal that enhances the development of the bone-resorbing osteoclasts and targets their migration to the breach in the osteocyte network. This phenomenon is thought to underlie normal repair of bone microdamage and contribute to the etiologies of inflammatory bone loss. The chromatin protein high mobility group box 1 protein (HMGB1) has been identified as an "alarmin" in other tissues. An alarmin is an endogenous molecule released by dead and dying cells that alert the innate immune system to damage and the need for tissue repair. Wang and colleagues presented evidence in a landmark 1999 study showing that released HMGB1 is a lethal mediator of sepsis. Extracellular HMGB1 is a ligand for the toll-like receptors (TLRs) and for the receptor for advanced glycation end products (RAGE) all of which amplify inflammation. Recent studies by our lab and others have shown that HMGB1 is a bone-active cytokine. It is released by apoptotic osteoblasts in vitro, including the MLO-Y4 osteocyte-like cells. Extracellular HMGB1 enhances the expression of RANKL, TNFalpha, and IL6 in osteoblastogenic bone marrow stromal cell cultures, and it is chemotactic to osteoclasts. In this prospectus we will review HMGB1 activity at the immune-bone interface and propose a role for HMGB1 as an osteocyte alarmin and mediator of normal remodeling and inflammatory bone loss.


Assuntos
Proteína HMGB1/fisiologia , Osteócitos/fisiologia , Animais , Apoptose/fisiologia , Células da Medula Óssea/citologia , Células da Medula Óssea/fisiologia , Remodelação Óssea , Reabsorção Óssea/imunologia , Células Cultivadas , Quimiotaxia/fisiologia , Citocinas/biossíntese , Humanos , Imunidade Inata , Camundongos , Osteoblastos/fisiologia , Osteoclastos/fisiologia , Osteócitos/imunologia
16.
J Cell Biochem ; 102(5): 1202-13, 2007 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-17455210

RESUMO

The expression of matrix metalloproteinase-13 (MMP-13), involved in bone turnover, is elevated in stretched MC3T3-E1 osteoblast-like cells. Strain-mediated forces impact bone remodeling due in large part to the movement of fluid through the canalicular-lacunar network. The resulting fluid shear stress (FSS) over the surface membranes of bone cells initiates bone remodeling. Although the nuclear events mediating putative FSS-induced changes in osteoblast MMP-13 transcription are unknown, previous studies with bone cells suggest an overlap between osteoblast FSS- and PTH-induced signal response pathways. MMP-13 PTH response is regulated by a 110 bp 5' regulatory region, conserved across the mouse, rat, and human genes, that supports the binding of numerous transcription factors including Runx2, c-fos/c-jun, Ets-1, and nuclear matrix protein 4/cas interacting zinc finger protein (Nmp4/CIZ) a nucleocytoplasmic shuttling trans-acting protein that attenuates PTH-driven transcription. Nmp4/CIZ also binds p130(cas), an adaptor protein implicated in mechanotransduction. Here we sought to determine whether Nmp4/CIZ contributes to FSS-induced changes in MMP-13 transcription. FSS (12 dynes/cm(2), 3-5 h) increased MMP-13 promoter-reporter activity approximately two-fold in MC3T3-E1 osteoblast-like cells attended by a comparable increase in mRNA expression. This was accompanied by a decrease in Nmp4/CIZ binding to its cis-element within the PTH response region, the mutation of which abrogated the MMP-13 response to FSS. Interestingly, FSS enhanced Nmp4/CIZ promoter activity and induced p130(cas) nuclear translocation. We conclude that the PTH regulatory region of MMP-13 also contributes to FSS response and that Nmp4/CIZ plays similar but distinct roles in mediating hormone- and FSS-driven induction of MMP-13 in bone cells.


Assuntos
Metaloproteinase 13 da Matriz/biossíntese , Proteínas Associadas à Matriz Nuclear/metabolismo , Osteoblastos/metabolismo , Fatores de Transcrição/metabolismo , Células 3T3 , Animais , Técnicas de Cultura de Células , Células Cultivadas , Proteína Substrato Associada a Crk/metabolismo , Ensaio de Desvio de Mobilidade Eletroforética , Genes Reporter , Luciferases/metabolismo , Metaloproteinase 13 da Matriz/genética , Mecanotransdução Celular , Camundongos , Proteínas Associadas à Matriz Nuclear/genética , Osteoblastos/citologia , Regiões Promotoras Genéticas , Ligação Proteica , RNA Mensageiro/metabolismo , Estresse Mecânico , Fatores de Transcrição/genética , Transfecção
17.
J Cell Physiol ; 207(2): 480-90, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16419037

RESUMO

Immune and bone cells are functionally coupled by pro-inflammatory cytokine intercellular signaling networks common to both tissues and their crosstalk may contribute to the etiologies of some immune-associated bone pathologies. For example, the receptor activator of NF-kappaB ligand (RANKL)/osteoprotegerin (OPG)/receptor activator of NF-kappaB (RANK) signaling axis plays a critical role in dendritic cell (DC) function as well as bone remodeling. The expression of RANKL by immune cells may contribute to bone loss in periodontitis, arthritis, and multiple myeloma. A recent discovery reveals that DCs release the chromatin protein high mobility group box 1 (HMGB1) as a potent immunomodulatory cytokine mediating the interaction between DCs and T-cells, via HMGB1 binding to the membrane receptor for advanced glycation end products (RAGE). To determine whether osteoblasts or osteoclasts express and/or release HMGB1 into the bone microenvironment, we analyzed tissue, cells, and culture media for the presence of this molecule. Our immunohistochemical and immunocytochemical analyses demonstrate HMGB1 expression in primary osteoblasts and osteoclasts and that both cells express RAGE. HMGB1 is recoverable in the media of primary osteoblast cultures and cultures of isolated osteoclast precursors and osteoclasts. Parathyroid hormone (PTH), a regulator of bone remodeling, attenuates HMGB1 release in cultures of primary osteoblasts and MC3T3-E1 osteoblast-like cells but augments this release in the rat osteosarcoma cell line UMR 106-01, both responses primarily via activation of adenylyl cyclase. PTH-induced HMGB1 discharge by UMR cells exhibits similar release kinetics as reported for activated macrophages. These data confirm the presence of the HMGB1/RAGE signaling axis in bone.


Assuntos
Proteína HMGB1/metabolismo , Osteoblastos/metabolismo , Osteoclastos/metabolismo , Fosfatase Alcalina/metabolismo , Animais , Animais Recém-Nascidos , Células da Medula Óssea/química , Células da Medula Óssea/citologia , Osso e Ossos/química , Osso e Ossos/citologia , Osso e Ossos/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Núcleo Celular/química , Colforsina/farmacologia , Relação Dose-Resposta a Droga , Proteína HMGB1/análise , Macrófagos/química , Macrófagos/citologia , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Osteoblastos/citologia , Osteoblastos/efeitos dos fármacos , Osteoclastos/química , Osteoclastos/citologia , Osteossarcoma/metabolismo , Osteossarcoma/patologia , Hormônio Paratireóideo/farmacologia , Ratos , Ratos Sprague-Dawley , Receptor para Produtos Finais de Glicação Avançada , Receptores Imunológicos/análise , Acetato de Tetradecanoilforbol/farmacologia
18.
Gene ; 347(1): 43-54, 2005 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-15716059

RESUMO

Nmp4/CIZ proteins (nuclear matrix protein 4/cas interacting zinc finger protein) contribute to gene regulation in bone, blood, and testis. In osteoblasts, they govern the magnitude of gene response to osteotropic factors like parathyroid hormone (PTH). Nmp4/CIZ is recurrently involved in acute leukemia and it has been implicated in spermatogenesis. However, these conserved proteins, derived from a single gene, are expressed in numerous tissues indicative of a more generalized housekeeping function in addition to their tissue-specific roles. To address how Nmp4/CIZ expression is governed, we characterized the 5' regulatory region of the mouse Nmp4 gene, located on chromosome 6. Two adjacent promoters P(1) [-2521 nucleotide (nt)/-597 nt] and P(2) (-2521 nt/+1 nt) initiate transcription of alternative first exons (U(1) and U(2)). Both promoters lack TATA and CCAAT boxes but contain initiator sites and CpG islands. Northern analysis revealed expression of both U(1) and U(2) in numerous adult tissues consistent with the constitutive and ubiquitous activity of a housekeeping gene. Sequence analysis identified numerous potential transcription factor-binding sites significant to osteogenesis, hematopoeisis, and gonadal development. The promoters are active in both osteoblast-like cells and in the M12 B-lymphocyte cell line. Low doses of PTH attenuated P(1)/P(2) activity in osteoblast-like cells. The Nmp4/CIZ promoters are autoregulated and deletion analysis identified regions that drive P(1) and P(2) basal activities as well as regions that contain positive and negative regulatory elements affecting transcription. The Nmp4/CIZ promoters comprise a genomic regulatory architecture that supports constitutive expression as well as cell- and tissue-specific regulation.


Assuntos
Éxons/genética , Proteínas Associadas à Matriz Nuclear/genética , Regiões Promotoras Genéticas/genética , Fatores de Transcrição/genética , Transcrição Gênica/genética , Animais , Sequência de Bases , Linhagem Celular , Ilhas de CpG , Feminino , Regulação da Expressão Gênica , Genes Reguladores/genética , Hematopoese/genética , Masculino , Camundongos , Dados de Sequência Molecular , Proteínas Associadas à Matriz Nuclear/biossíntese , Especificidade de Órgãos , Osteogênese/genética , Regiões Promotoras Genéticas/fisiologia , Ratos , Fatores de Transcrição/biossíntese , Transcrição Gênica/fisiologia
19.
Am J Physiol Endocrinol Metab ; 287(2): E289-96, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15026307

RESUMO

Parathyroid hormone (PTH) regulation of matrix metalloproteinase-13 (MMP-13) expression in osteoblasts contributes to normal bone turnover. The PTH response region of the rat MMP-13 gene spans nucleotides (nt) -148 to -38 and supports binding of numerous transcription factors, including Runx2, necessary for osteoblast differentiation, c-Fos/c-Jun, and Ets-1. These trans-acting proteins mediate hormone induction via incompletely defined combinatorial interactions. Within this region, adjacent to the distal Runx2 site, is a homopolymeric(dA:dT) element (-119/-110 nt) that conforms to the consensus site for the novel transcription factor nuclear matrix protein-4/cas interacting zinc finger protein (Nmp4/CIZ). This protein regulates bone cell expression of type I collagen and suppresses BMP2-enhanced osteoblast differentiation. The aim of this study was to determine whether Nmp4/CIZ contributes to MMP-13 basal transcription and PTH responsiveness in osteoblasts. Electrophoretic mobility shift analysis confirms Nmp4/CIZ binding within the MMP-13 PTH response region. Mutation of the Nmp4/CIZ element decreases basal activity of an MMP-13 promoter-reporter construct containing the first 1329 nt of the 5'-regulatory region, and overexpression of Nmp4/CIZ protein enhances the activity of the wild-type promoter. The same mutation of the homopolymeric(dA:dT) element enhances the MMP-13 response to PTH and PGE(2). Overexpression of Nmp4/CIZ diminishes hormone induction. Mutation of both the homopolymeric(dA:dT) element and the adjacent Runx2 site further augments the PTH response. On the basis of these data and previous studies, we propose that Nmp4/CIZ is a component of a multiprotein assemblage or enhanceosome within the MMP-13 PTH response region and that, within this context, Nmp4/CIZ promotes both basal expression and hormonal synergy.


Assuntos
Colagenases/metabolismo , Regulação da Expressão Gênica , Proteínas Associadas à Matriz Nuclear/metabolismo , Osteoblastos/metabolismo , Hormônio Paratireóideo/fisiologia , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Células 3T3 , Animais , Colagenases/genética , Elementos Facilitadores Genéticos/genética , Elementos Facilitadores Genéticos/fisiologia , Metaloproteinase 13 da Matriz , Camundongos , Osteoblastos/citologia , Regiões Promotoras Genéticas , Ratos , Elementos de Resposta/genética , Elementos de Resposta/fisiologia , Transcrição Gênica/fisiologia , Células Tumorais Cultivadas , Dedos de Zinco/fisiologia
20.
J Biol Chem ; 277(18): 16153-9, 2002 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-11867614

RESUMO

Splice variants of the Nmp4 gene include nuclear matrix transcription factors that regulate the type I collagen alpha1(I) polypeptide chain (COL1A1) promoter and several matrix metalloproteinase (MMP) genes. To date, these are the only Cys(2)His(2) zinc finger proteins known to bind within the minor groove of homopolymeric (dA.dT) DNA. Nmp4 isoforms contain from 5 to 8 Cys(2)His(2) zinc fingers, an SH3-binding domain that overlaps with a putative AT-hook and a polyglutamine-alanine repeat (poly(QA)). To determine the mechanistic significance of Cys(2)His(2) zinc finger association with this unusual consensus DNA binding element, we identified the Nmp4 DNA-binding and transcriptional activation domains. Zinc fingers 2, 3, and 6 mediated association with the homopolymeric (dA.dT) COL1A1/MMP DNA consensus element. The N terminus of the Nmp4 protein exhibited a strong trans-activation capacity when fused to the GAL4 DNA-binding domain, but this activity was masked within the context of the full-length Nmp4-GAL4 DNA-binding domain chimera. However, upon binding to the COL1A1/MMP homopolymeric (dA.dT) element, the native Nmp4 protein up-regulated transcription, and the poly(QA) domain acquired a significant role in trans-activation. We propose that allosteric effects induced upon zinc finger association with the homopolymeric (dA.dT) minor groove confer context-specific functionality to this unusual family of Cys(2)His(2) transcription factors.


Assuntos
Regulação da Expressão Gênica , Proteínas Nucleares/metabolismo , Regiões Promotoras Genéticas , Fatores de Transcrição/metabolismo , Antígenos Nucleares , Ligação Competitiva , Linhagem Celular , Colágeno Tipo I/genética , Proteínas de Ligação a DNA/metabolismo , Distamicinas/farmacologia , Humanos , Cinética , Metaloproteinases da Matriz/genética , Verde de Metila/farmacologia , Matriz Nuclear/metabolismo , Isoformas de Proteínas/metabolismo , Proteínas Recombinantes/metabolismo , Ativação Transcricional , Transfecção , Dedos de Zinco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA