Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 459, 2023 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-36709330

RESUMO

Multiple trans-synaptic complexes organize synapse development, yet their roles in the mature brain and cooperation remain unclear. We analyzed the postsynaptic adhesion protein LRRTM1 in the prefrontal cortex (PFC), a region relevant to cognition and disorders. LRRTM1 knockout (KO) mice had fewer synapses, and we asked whether other synapse organizers counteract further loss. This determined that the immunoglobulin family member SynCAM 1 controls synapse number in PFC and was upregulated upon LRRTM1 loss. Combined LRRTM1 and SynCAM 1 deletion substantially lowered dendritic spine number in PFC, but not hippocampus, more than the sum of single KO impairments. Their cooperation extended presynaptically, and puncta of Neurexins, LRRTM1 partners, were less abundant in double KO (DKO) PFC. Electrophysiology and fMRI demonstrated aberrant neuronal activity in DKO mice. Further, DKO mice were impaired in social interactions and cognitive tasks. Our results reveal concerted roles of LRRTM1 and SynCAM 1 across synaptic, network, and behavioral domains.


Assuntos
Molécula 1 de Adesão Celular , Proteínas de Membrana , Proteínas do Tecido Nervoso , Sinapses , Animais , Camundongos , Cognição , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Córtex Pré-Frontal/metabolismo , Sinapses/metabolismo , Molécula 1 de Adesão Celular/genética , Molécula 1 de Adesão Celular/metabolismo
2.
Cell Rep ; 26(2): 381-393.e6, 2019 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-30625321

RESUMO

Cortical plasticity peaks early in life and tapers in adulthood, as exemplified in the primary visual cortex (V1), wherein brief loss of vision in one eye reduces cortical responses to inputs from that eye during the critical period but not in adulthood. The synaptic locus of cortical plasticity and the cell-autonomous synaptic factors determining critical periods remain unclear. We here demonstrate that the immunoglobulin protein Synaptic Cell Adhesion Molecule 1 (SynCAM 1/Cadm1) is regulated by visual experience and limits V1 plasticity. Loss of SynCAM 1 selectively reduces the number of thalamocortical inputs onto parvalbumin (PV+) interneurons, impairing the maturation of feedforward inhibition in V1. SynCAM 1 acts in PV+ interneurons to actively restrict cortical plasticity, and brief PV+-specific knockdown of SynCAM 1 in adult visual cortex restores juvenile-like plasticity. These results identify a synapse-specific, cell-autonomous mechanism for thalamocortical visual circuit maturation and closure of the visual critical period.


Assuntos
Molécula 1 de Adesão Celular/metabolismo , Plasticidade Neuronal , Sinapses/metabolismo , Córtex Visual/metabolismo , Animais , Células Cultivadas , Feminino , Interneurônios/metabolismo , Interneurônios/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurogênese , Parvalbuminas/genética , Parvalbuminas/metabolismo , Ratos , Ratos Sprague-Dawley , Sinapses/fisiologia , Tálamo/crescimento & desenvolvimento , Tálamo/metabolismo , Tálamo/fisiologia , Córtex Visual/citologia , Córtex Visual/crescimento & desenvolvimento , Córtex Visual/fisiologia
3.
Artigo em Inglês | MEDLINE | ID: mdl-30369876

RESUMO

Autism spectrum disorder (ASD) is a highly prevalent and genetically heterogeneous brain disorder. Developing effective therapeutic interventions requires knowledge of the brain regions that malfunction and how they malfunction during ASD-relevant behaviors. Our study provides insights into brain regions activated by a novel social stimulus and how the activation pattern differs between mice that display autism-like disabilities and control littermates. Adenomatous polyposis coli (APC) conditional knockout (cKO) mice display reduced social interest, increased repetitive behaviors and dysfunction of the ß-catenin pathway, a convergent target of numerous ASD-linked human genes. Here, we exposed the mice to a novel social vs. non-social stimulus and measured neuronal activation by immunostaining for the protein c-Fos. We analyzed three brain regions known to play a role in social behavior. Compared with control littermates, APC cKOs display excessive activation, as evidenced by an increased number of excitatory pyramidal neurons stained for c-Fos in the medial prefrontal cortex (mPFC), selectively in the infralimbic sub-region. In contrast, two other social brain regions, the medial amygdala and piriform cortex show normal levels of neuron activation. Additionally, APC cKOs exhibit increased frequency of miniature excitatory postsynaptic currents (mEPSCs) in layer 5 pyramidal neurons of the infralimbic sub-region. Further, immunostaining is reduced for the inhibitory interneuron markers parvalbumin (PV) and somatostatin (SST) in the APC cKO mPFC. Our findings suggest aberrant excitatory-inhibitory balance and activation patterns. As ß-catenin is a core pathway in ASD, we identify the infralimbic sub-region of the mPFC as a critical brain region for autism-relevant social behavior.

4.
J Neurosci ; 36(28): 7464-75, 2016 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-27413156

RESUMO

UNLABELLED: Select adhesion proteins control the development of synapses and modulate their structural and functional properties. Despite these important roles, the extent to which different synapse-organizing mechanisms act across brain regions to establish connectivity and regulate network properties is incompletely understood. Further, their functional roles in different neuronal populations remain to be defined. Here, we applied diffusion tensor imaging (DTI), a modality of magnetic resonance imaging (MRI), to map connectivity changes in knock-out (KO) mice lacking the synaptogenic cell adhesion protein SynCAM 1. This identified reduced fractional anisotropy in the hippocampal CA3 area in absence of SynCAM 1. In agreement, mossy fiber refinement in CA3 was impaired in SynCAM 1 KO mice. Mossy fibers make excitatory inputs onto postsynaptic specializations of CA3 pyramidal neurons termed thorny excrescences and these structures were smaller in the absence of SynCAM 1. However, the most prevalent targets of mossy fibers are GABAergic interneurons and SynCAM 1 loss unexpectedly reduced the number of excitatory terminals onto parvalbumin (PV)-positive interneurons in CA3. SynCAM 1 KO mice additionally exhibited lower postsynaptic GluA1 expression in these PV-positive interneurons. These synaptic imbalances in SynCAM 1 KO mice resulted in CA3 disinhibition, in agreement with reduced feedforward inhibition in this network in the absence of SynCAM 1-dependent excitatory drive onto interneurons. In turn, mice lacking SynCAM 1 were impaired in memory tasks involving CA3. Our results support that SynCAM 1 modulates excitatory mossy fiber inputs onto both interneurons and principal neurons in the hippocampal CA3 area to balance network excitability. SIGNIFICANCE STATEMENT: This study advances our understanding of synapse-organizing mechanisms on two levels. First, the data support that synaptogenic proteins guide connectivity and can function in distinct brain regions even if they are expressed broadly. Second, the results demonstrate that a synaptogenic process that controls excitatory inputs to both pyramidal neurons and interneurons can balance excitation and inhibition. Specifically, the study reveals that hippocampal CA3 connectivity is modulated by the synapse-organizing adhesion protein SynCAM 1 and identifies a novel, SynCAM 1-dependent mechanism that controls excitatory inputs onto parvalbumin-positive interneurons. This enables SynCAM 1 to regulate feedforward inhibition and set network excitability. Further, we show that diffusion tensor imaging is sensitive to these cellular refinements affecting neuronal connectivity.


Assuntos
Região CA3 Hipocampal/citologia , Moléculas de Adesão Celular/metabolismo , Regulação da Expressão Gênica/genética , Imunoglobulinas/metabolismo , Inibição Neural/fisiologia , Vias Neurais/fisiologia , Sinapses/fisiologia , Animais , Região CA3 Hipocampal/diagnóstico por imagem , Molécula 1 de Adesão Celular , Moléculas de Adesão Celular/genética , Condicionamento Clássico/efeitos dos fármacos , Medo/efeitos dos fármacos , Feminino , Antagonistas GABAérgicos/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Imunoglobulinas/genética , Técnicas In Vitro , Masculino , Transtornos da Memória/diagnóstico por imagem , Transtornos da Memória/genética , Transtornos da Memória/patologia , Transtornos da Memória/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Vias Neurais/efeitos dos fármacos , Parvalbuminas/metabolismo , Piridazinas/farmacologia , Potenciais Sinápticos/efeitos dos fármacos , Potenciais Sinápticos/genética , Fatores de Tempo
5.
Neuron ; 88(6): 1165-1172, 2015 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-26687224

RESUMO

The cleft is an integral part of synapses, yet its macromolecular organization remains unclear. We show here that the cleft of excitatory synapses exhibits a distinct density profile as measured by cryoelectron tomography (cryo-ET). Aiming for molecular insights, we analyzed the synapse-organizing proteins Synaptic Cell Adhesion Molecule 1 (SynCAM 1) and EphB2. Cryo-ET of SynCAM 1 knockout and overexpressor synapses showed that this immunoglobulin protein shapes the cleft's edge. SynCAM 1 delineates the postsynaptic perimeter as determined by immunoelectron microscopy and super-resolution imaging. In contrast, the EphB2 receptor tyrosine kinase is enriched deeper within the postsynaptic area. Unexpectedly, SynCAM 1 can form ensembles proximal to postsynaptic densities, and synapses containing these ensembles were larger. Postsynaptic SynCAM 1 surface puncta were not static but became enlarged after a long-term depression paradigm. These results support that the synaptic cleft is organized on a nanoscale into sub-compartments marked by distinct trans-synaptic complexes.


Assuntos
Moléculas de Adesão Celular/fisiologia , Moléculas de Adesão Celular/ultraestrutura , Imunoglobulinas/fisiologia , Imunoglobulinas/ultraestrutura , Sinapses/fisiologia , Sinapses/ultraestrutura , Animais , Molécula 1 de Adesão Celular , Moléculas de Adesão Celular Neuronais/fisiologia , Moléculas de Adesão Celular Neuronais/ultraestrutura , Células Cultivadas , Hipocampo/fisiologia , Hipocampo/ultraestrutura , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Microscopia Imunoeletrônica , Neurônios/fisiologia , Neurônios/ultraestrutura
6.
J Comp Neurol ; 522(4): 900-20, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23982969

RESUMO

Adhesive interactions in the retina instruct the developmental specification of inner retinal layers. However, potential roles of adhesion in the development and function of photoreceptor synapses remain incompletely understood. This contrasts with our understanding of synapse development in the CNS, which can be guided by select adhesion molecules such as the Synaptic Cell Adhesion Molecule 1 (SynCAM 1/CADM1/nectin-like 2 protein). This immunoglobulin superfamily protein modulates the development and plasticity of classical excitatory synapses. We show here by immunoelectron microscopy and immunoblotting that SynCAM 1 is expressed on mouse rod photoreceptors and their terminals in the outer nuclear and plexiform layers in a developmentally regulated manner. Expression of SynCAM 1 on rods is low in early postnatal stages (P3-P7) but increases after eye opening (P14). In support of functional roles in the photoreceptors, electroretinogram recordings demonstrate impaired responses to light stimulation in SynCAM 1 knockout (KO) mice. In addition, the structural integrity of synapses in the OPL requires SynCAM 1. Quantitative ultrastructural analysis of SynCAM 1 KO retina measured fewer fully assembled, triadic rod ribbon synapses. Furthermore, rod synapse ribbons are shortened in KO mice, and protein levels of Ribeye, a major structural component of ribbons, are reduced in SynCAM 1 KO retina. Together, our results implicate SynCAM 1 in the synaptic organization of the rod visual pathway and provide evidence for novel roles of synaptic adhesion in the structural and functional integrity of ribbon synapses.


Assuntos
Moléculas de Adesão Celular/metabolismo , Imunoglobulinas/metabolismo , Retina/citologia , Retina/crescimento & desenvolvimento , Células Fotorreceptoras Retinianas Bastonetes/ultraestrutura , Sinapses/metabolismo , Oxirredutases do Álcool , Análise de Variância , Animais , Animais Recém-Nascidos , Molécula 1 de Adesão Celular , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/ultraestrutura , Proteínas Correpressoras , Proteínas de Ligação a DNA/metabolismo , Eletrorretinografia , Feminino , Regulação da Expressão Gênica no Desenvolvimento/genética , Imunoglobulinas/genética , Imunoglobulinas/ultraestrutura , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Imunoeletrônica , Proteínas do Tecido Nervoso/metabolismo , Fosfoproteínas/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Sinapses/ultraestrutura , Proteína Vesicular 1 de Transporte de Glutamato/metabolismo
7.
Neuropsychopharmacology ; 38(4): 628-38, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23169347

RESUMO

Drugs of abuse have acute and persistent effects on synapse structure and addiction-related behaviors. Trans-synaptic interactions can control synapse development, and synaptic cell adhesion molecule (SynCAM) proteins (also named nectin-like molecules) are immunoglobulin adhesion proteins that span the synaptic cleft and induce excitatory synapses. Our studies now reveal that the loss of SynCAM 1 in knockout (KO) mice reduces excitatory synapse number in nucleus accumbens (NAc). SynCAM 1 additionally contributes to the structural remodeling of NAc synapses in response to the psychostimulant cocaine. Specifically, we find that cocaine administration increases the density of stubby spines on medium spiny neurons in NAc, and that maintaining this increase requires SynCAM 1. Furthermore, mushroom-type spines on these neurons are structurally more plastic when SynCAM 1 is absent, and challenging drug-withdrawn mice with cocaine shortens these spines in SynCAM 1 KO mice. These effects are correlated with changes on the behavioral level, where SynCAM 1 contributes to the psychostimulant effects of cocaine as measured after acute and repeated administration, and in drug-withdrawn mice. Together, our results provide evidence that the loss of a synapse-organizing adhesion molecule can modulate cocaine effects on spine structures in NAc and increases vulnerability to the behavioral actions of cocaine. SynCAM-dependent pathways may therefore represent novel points of therapeutic intervention after exposure to drugs of abuse.


Assuntos
Moléculas de Adesão Celular/deficiência , Estimulantes do Sistema Nervoso Central/toxicidade , Cocaína/toxicidade , Hipercinese/induzido quimicamente , Hipercinese/metabolismo , Imunoglobulinas/deficiência , Sinapses/metabolismo , Animais , Molécula 1 de Adesão Celular , Espinhas Dendríticas/efeitos dos fármacos , Espinhas Dendríticas/metabolismo , Espinhas Dendríticas/patologia , Hipercinese/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/metabolismo , Núcleo Accumbens/patologia , Sinapses/efeitos dos fármacos , Sinapses/patologia
8.
J Cell Biol ; 199(6): 985-1001, 2012 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-23209303

RESUMO

Synaptic adhesion organizes synapses, yet the signaling pathways that drive and integrate synapse development remain incompletely understood. We screened for regulators of these processes by proteomically analyzing synaptic membranes lacking the synaptogenic adhesion molecule SynCAM 1. This identified FERM, Rho/ArhGEF, and Pleckstrin domain protein 1 (Farp1) as strongly reduced in SynCAM 1 knockout mice. Farp1 regulates dendritic filopodial dynamics in immature neurons, indicating roles in synapse formation. Later in development, Farp1 is postsynaptic and its 4.1 protein/ezrin/radixin/moesin (FERM) domain binds SynCAM 1, assembling a synaptic complex. Farp1 increases synapse number and modulates spine morphology, and SynCAM 1 requires Farp1 for promoting spines. In turn, SynCAM 1 loss reduces the ability of Farp1 to elevate spine density. Mechanistically, Farp1 activates the GTPase Rac1 in spines downstream of SynCAM 1 clustering, and promotes F-actin assembly. Farp1 furthermore triggers a retrograde signal regulating active zone composition via SynCAM 1. These results reveal a postsynaptic signaling pathway that engages transsynaptic interactions to coordinate synapse development.


Assuntos
Proteínas do Citoesqueleto/fisiologia , Citoesqueleto/fisiologia , Fatores de Troca do Nucleotídeo Guanina/fisiologia , Sinapses/fisiologia , Actinas/metabolismo , Animais , Molécula 1 de Adesão Celular , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/fisiologia , Espinhas Dendríticas/fisiologia , Células HEK293 , Hipocampo/citologia , Hipocampo/fisiologia , Humanos , Imunoglobulinas/genética , Imunoglobulinas/fisiologia , Camundongos , Camundongos Knockout , Neurogênese , Neurônios/citologia , Neurônios/fisiologia , Neuropeptídeos/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Proteômica , Fatores de Troca de Nucleotídeo Guanina Rho , Transdução de Sinais , Proteínas rac de Ligação ao GTP/metabolismo , Proteínas rac1 de Ligação ao GTP
9.
EMBO J ; 30(23): 4728-38, 2011 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-21926970

RESUMO

Synapses are specialized adhesion sites between neurons that are connected by protein complexes spanning the synaptic cleft. These trans-synaptic interactions can organize synapse formation, but their macromolecular properties and effects on synaptic morphology remain incompletely understood. Here, we demonstrate that the synaptic cell adhesion molecule SynCAM 1 self-assembles laterally via its extracellular, membrane-proximal immunoglobulin (Ig) domains 2 and 3. This cis oligomerization generates SynCAM oligomers with increased adhesive capacity and instructs the interactions of this molecule across the nascent and mature synaptic cleft. In immature neurons, cis assembly promotes the adhesive clustering of SynCAM 1 at new axo-dendritic contacts. Interfering with the lateral self-assembly of SynCAM 1 in differentiating neurons strongly impairs its synaptogenic activity. At later stages, the lateral oligomerization of SynCAM 1 restricts synaptic size, indicating that this adhesion molecule contributes to the structural organization of synapses. These results support that lateral interactions assemble SynCAM complexes within the synaptic cleft to promote synapse induction and modulate their structure. These findings provide novel insights into synapse development and the adhesive mechanisms of Ig superfamily members.


Assuntos
Moléculas de Adesão Celular , Imunoglobulinas , Neuritos/metabolismo , Estrutura Quaternária de Proteína/fisiologia , Sinapses/metabolismo , Animais , Células COS , Adesão Celular/fisiologia , Molécula 1 de Adesão Celular , Moléculas de Adesão Celular/química , Moléculas de Adesão Celular/metabolismo , Moléculas de Adesão Celular Neuronais/química , Moléculas de Adesão Celular Neuronais/metabolismo , Diferenciação Celular/fisiologia , Células Cultivadas , Chlorocebus aethiops , Técnicas de Cocultura , Transferência Ressonante de Energia de Fluorescência , Células HEK293 , Hipocampo/citologia , Humanos , Imunoglobulinas/química , Imunoglobulinas/metabolismo , Imuno-Histoquímica , Camundongos
10.
Endocrinology ; 152(6): 2353-63, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21486931

RESUMO

We previously identified synaptic cell adhesion molecule 1 (SynCAM1) as a component of a genetic network involved in the hypothalamic control of female puberty. Although it is well established that SynCAM1 is a synaptic adhesion molecule, its contribution to hypothalamic function is unknown. Here we show that, in addition to the expected neuronal localization illustrated by its presence in GnRH neurons, SynCAM1 is expressed in hypothalamic astrocytes. Cell adhesion assays indicated that SynCAM is recognized by both GnRH neurons and astrocytes as an adhesive partner and promotes cell-cell adhesiveness via homophilic, extracellular domain-mediated interactions. Alternative splicing of the SynCAM1 primary mRNA transcript yields four mRNAs encoding membrane-spanning SynCAM1 isoforms. Variants 1 and 4 are predicted to be both N and O glycosylated. Hypothalamic astrocytes and GnRH-producing GT1-7 cells express mainly isoform 4 mRNA, and sequential N- and O-deglycosylation of proteins extracted from these cells yields progressively smaller SynCAM1 species, indicating that isoform 4 is the predominant SynCAM1 variant expressed in astrocytes and GT1-7 cells. Neither cell type expresses the products of two other SynCAM genes (SynCAM2 and SynCAM3), suggesting that SynCAM-mediated astrocyte-astrocyte and astrocyte-GnRH neuron adhesiveness is mostly mediated by SynCAM1 homophilic interactions. When erbB4 receptor function is disrupted in astrocytes, via transgenic expression of a dominant-negative erbB4 receptor form, SynCAM1-mediated adhesiveness is severely compromised. Conversely, SynCAM1 adhesive behavior is rapidly, but transiently, enhanced in astrocytes by ligand-dependent activation of erbB4 receptors, suggesting that erbB4-mediated events affecting SynCAM1 function contribute to regulate astrocyte adhesive communication.


Assuntos
Astrócitos/citologia , Moléculas de Adesão Celular/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo , Hipotálamo/citologia , Hipotálamo/metabolismo , Imunoglobulinas/metabolismo , Neurônios/citologia , Sequência de Aminoácidos , Animais , Astrócitos/metabolismo , Adesão Celular , Molécula 1 de Adesão Celular , Moléculas de Adesão Celular/genética , Comunicação Celular , Linhagem Celular , Feminino , Imunoglobulinas/genética , Camundongos , Camundongos Transgênicos , Dados de Sequência Molecular , Neurônios/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Transdução de Sinais
11.
Endocrinology ; 152(6): 2364-76, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21486934

RESUMO

Female sexual maturation requires erythroblastosis B (erbB)4 signaling in hypothalamic astrocytes; however, the mechanisms by which erbB4 contributes to this process are incompletely understood. Here we show that SynCAM1, a synaptic adhesion molecule with signaling capabilities, is not only expressed highly in neurons, but also in hypothalamic astrocytes and is functionally associated with erbB4 receptor activity. Whereas SynCAM1 expression is diminished in astrocytes with impaired erbB4 signaling, ligand-dependent activation of astroglial erbB4 receptors results in rapid association of erbB4 with SynCAM1 and activation of SynCAM1 gene transcription. To determine whether astrocytic SynCAM1-dependent intracellular signaling is required for normal female reproductive function, we generated transgenic mice that express in an astrocyte-specific manner a dominant-negative form of SynCAM1 lacking the intracellular domain. The mutant protein was correctly targeted to the cell membrane and was functionally viable as shown by its ability to block intracellular calcium/calmodulin-dependent serine protein kinase redistribution, a major SynCAM1-mediated event. Dominant-negative-SynCAM1 female mice had a delayed onset of puberty, disrupted estrous cyclicity, and reduced fecundity. These deficits were associated with a reduced capacity of neuregulin-dependent erbB4 receptor activation to elicit prostaglandin E2 release from astrocytes and GnRH release from the hypothalamus. We conclude that one of the mechanisms underlying erbB4 receptor-mediated facilitation of glial-neuronal interactions in the neuroendocrine brain involves SynCAM1-dependent signaling and that this interaction is required for normal female reproductive function.


Assuntos
Astrócitos/metabolismo , Receptores ErbB/metabolismo , Camundongos/metabolismo , Desenvolvimento Sexual , Animais , Astrócitos/citologia , Encéfalo/citologia , Encéfalo/metabolismo , Dinoprostona/metabolismo , Receptores ErbB/genética , Feminino , Hormônio Liberador de Gonadotropina/metabolismo , Camundongos/genética , Camundongos/crescimento & desenvolvimento , Camundongos Transgênicos , Ligação Proteica , Receptor ErbB-4 , Transdução de Sinais
12.
Neuron ; 68(5): 894-906, 2010 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-21145003

RESUMO

Synaptogenesis is required for wiring neuronal circuits in the developing brain and continues to remodel adult networks. However, the molecules organizing synapse development and maintenance in vivo remain incompletely understood. We now demonstrate that the immunoglobulin adhesion molecule SynCAM 1 dynamically alters synapse number and plasticity. Overexpression of SynCAM 1 in transgenic mice promotes excitatory synapse number, while loss of SynCAM 1 results in fewer excitatory synapses. By turning off SynCAM 1 overexpression in transgenic brains, we show that it maintains the newly induced synapses. SynCAM 1 also functions at mature synapses to alter their plasticity by regulating long-term depression. Consistent with these effects on neuronal connectivity, SynCAM 1 expression affects spatial learning, with knock-out mice learning better. The reciprocal effects of increased SynCAM 1 expression and loss reveal that this adhesion molecule contributes to the regulation of synapse number and plasticity, and impacts how neuronal networks undergo activity-dependent changes.


Assuntos
Moléculas de Adesão Celular/metabolismo , Imunoglobulinas/metabolismo , Depressão Sináptica de Longo Prazo/fisiologia , Aprendizagem em Labirinto/fisiologia , Plasticidade Neuronal/fisiologia , Sinapses/metabolismo , Animais , Molécula 1 de Adesão Celular , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular Neuronais/genética , Moléculas de Adesão Celular Neuronais/metabolismo , Imunoglobulinas/genética , Depressão Sináptica de Longo Prazo/genética , Camundongos , Camundongos da Linhagem 129 , Camundongos Knockout , Camundongos Mutantes Neurológicos , Camundongos Transgênicos , Plasticidade Neuronal/genética , Comportamento Espacial , Sinapses/genética , Membranas Sinápticas/genética , Membranas Sinápticas/metabolismo
13.
Proc Natl Acad Sci U S A ; 107(16): 7568-73, 2010 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-20368431

RESUMO

Neuronal growth cones are highly motile structures that tip developing neurites and explore their surroundings before axo-dendritic contact and synaptogenesis. However, the membrane proteins organizing these processes remain insufficiently understood. Here we identify that the synaptic cell adhesion molecule 1 (SynCAM 1), an immunoglobulin superfamily member, is already expressed in developing neurons and localizes to their growth cones. Upon interaction of growth cones with target neurites, SynCAM 1 rapidly assembles at these contacts to form stable adhesive clusters. Synaptic markers can also be detected at these sites. Addressing the functions of SynCAM 1 in growth cones preceding contact, we determine that it is required and sufficient to restrict the number of active filopodia. Further, SynCAM 1 negatively regulates the morphological complexity of migrating growth cones. Focal adhesion kinase, a binding partner of SynCAM 1, is implicated in its morphogenetic activities. These results reveal that SynCAM 1 acts in developing neurons to shape migrating growth cones and contributes to the adhesive differentiation of their axo-dendritic contacts.


Assuntos
Axônios/metabolismo , Moléculas de Adesão Celular Neuronais/fisiologia , Dendritos/metabolismo , Cones de Crescimento/metabolismo , Imunoglobulinas/fisiologia , Proteínas de Membrana/fisiologia , Proteínas Supressoras de Tumor/fisiologia , Animais , Molécula 1 de Adesão Celular , Moléculas de Adesão Celular , Moléculas de Adesão Celular Neuronais/genética , Diferenciação Celular , Movimento Celular , Concentração de Íons de Hidrogênio , Imunoglobulinas/genética , Proteínas de Membrana/genética , Camundongos , Microscopia Confocal/métodos , Modelos Biológicos , Neurônios/metabolismo , Ligação Proteica , Ratos , Proteínas Supressoras de Tumor/genética
14.
J Comp Neurol ; 510(1): 47-67, 2008 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-18615557

RESUMO

Cell-cell interactions through adhesion molecules play key roles in the development of the nervous system. Synaptic cell adhesion molecules (SynCAMs) comprise a group of four immunoglobulin (Ig) superfamily members that mediate adhesion and are prominently expressed in the brain. Although SynCAMs have been implicated in the differentiation of neurons, there has been no comprehensive analysis of their expression patterns. Here we examine the spatiotemporal expression patterns of SynCAMs by using reverse transcriptase-polymerase chain reaction, in situ hybridization, and immunohistological techniques. SynCAMs 1-4 are widely expressed throughout the developing and adult central nervous system. They are prominently expressed in neurons throughout the brain and are present in both excitatory and inhibitory neurons. Investigation of different brain regions in the developing and mature mouse brain indicates that each SynCAM exhibits a distinct spatiotemporal expression pattern. This is observed in all regions analyzed and is particularly notable in the cerebellum, where SynCAMs display highly distinct expression in cerebellar granule and Purkinje cells. These unique expression profiles are complemented by specific heterophilic adhesion patterns of SynCAM family members, as shown by cell overlay experiments. Three prominent interactions are observed, mediated by the extracellular domains of SynCAMs 1/2, 2/4, and 3/4. These expression and adhesion profiles of SynCAMs together with their previously reported functions in synapse organization indicate that SynCAM proteins contribute importantly to the synaptic circuitry of the central nervous system.


Assuntos
Moléculas de Adesão Celular Neuronais/fisiologia , Imunoglobulinas/metabolismo , Proteínas de Membrana/metabolismo , Camundongos , Neurônios/fisiologia , Envelhecimento/metabolismo , Animais , Animais Recém-Nascidos , Encéfalo/metabolismo , Adesão Celular/fisiologia , Molécula 1 de Adesão Celular , Moléculas de Adesão Celular , Moléculas de Adesão Celular Neuronais/metabolismo , Imunoglobulinas/genética , Imuno-Histoquímica , Hibridização In Situ , Proteínas de Membrana/genética , Camundongos Endogâmicos BALB C , Neurônios/metabolismo , Isoformas de Proteínas/metabolismo , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Medula Espinal/metabolismo , Distribuição Tecidual
15.
J Neurosci ; 27(46): 12516-30, 2007 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-18003830

RESUMO

Synapses are asymmetric cell junctions with precisely juxtaposed presynaptic and postsynaptic sides. Transsynaptic adhesion complexes are thought to organize developing synapses. The molecular composition of these complexes, however, remains incompletely understood, precluding us from understanding how adhesion across the synaptic cleft guides synapse development. Here, we define two immunoglobulin superfamily members, SynCAM 1 and 2, that are expressed in neurons in the developing brain and localize to excitatory and inhibitory synapses. They function as cell adhesion molecules and assemble with each other across the synaptic cleft into a specific, transsynaptic SynCAM 1/2 complex. Additionally, SynCAM 1 and 2 promote functional synapses as they increase the number of active presynaptic terminals and enhance excitatory neurotransmission. The interaction of SynCAM 1 and 2 is affected by glycosylation, indicating regulation of this adhesion complex by posttranslational modification. The SynCAM 1/2 complex is representative for the highly defined adhesive patterns of this protein family, the four members of which are expressed in neurons in divergent expression profiles. SynCAMs 1, 2, and 3 each can bind themselves, yet preferentially assemble into specific, heterophilic complexes as shown for the synaptic SynCAM 1/2 interaction and a second complex comprising SynCAM 3 and 4. Our results define SynCAM proteins as components of novel heterophilic transsynaptic adhesion complexes that set up asymmetric interactions, with SynCAM proteins contributing to synapse organization and function.


Assuntos
Moléculas de Adesão Celular Neuronais/metabolismo , Hipocampo/embriologia , Hipocampo/metabolismo , Vias Neurais/embriologia , Vias Neurais/metabolismo , Sinapses/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Adesão Celular/fisiologia , Moléculas de Adesão Celular , Diferenciação Celular/fisiologia , Linhagem Celular , Células Cultivadas , Técnicas de Cocultura , Hipocampo/ultraestrutura , Humanos , Imunoglobulinas , Substâncias Macromoleculares/metabolismo , Camundongos , Vias Neurais/ultraestrutura , Terminações Pré-Sinápticas/metabolismo , Terminações Pré-Sinápticas/ultraestrutura , Isoformas de Proteínas/metabolismo , Ratos , Ratos Sprague-Dawley , Membranas Sinápticas/metabolismo , Membranas Sinápticas/ultraestrutura , Transmissão Sináptica/fisiologia
16.
Genomics ; 87(1): 139-50, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16311015

RESUMO

SynCAM 1 (synaptic cell adhesion molecule 1, alternatively named Tslc1 and nectin-like protein 3) belongs to the immunoglobulin superfamily and is an adhesion molecule that operates in a variety of important contexts. Exemplary are its roles in adhesion at synapses in the central nervous system and as tumor suppressor. Here, I describe a family of genes homologous to SynCAM 1 comprising four genes found solely in vertebrates. All SynCAM genes encode proteins with three immunoglobulin-like domains of the V-set, C1-set, and I-set subclasses. Comparison of genomic with cDNA sequences provides their exon-intron structure. Alternative splicing generates isoforms of SynCAM proteins, and diverse SynCAM 1 and 2 isoforms are created in an extracellular region rich in predicted O-glycosylation sites. Protein interaction motifs in the cytosolic sequence are highly conserved among all four SynCAM proteins, indicating their critical functional role. These findings aim to facilitate the understanding of SynCAM genes and provide the framework to examine the physiological functions of this family of vertebrate-specific adhesion molecules.


Assuntos
Moléculas de Adesão Celular Neuronais/genética , Genes Supressores de Tumor/fisiologia , Genoma Humano/genética , Processamento Alternativo/genética , Motivos de Aminoácidos/genética , Animais , Sistema Nervoso Central/fisiologia , Humanos , Modificação Traducional de Proteínas/genética , Estrutura Terciária de Proteína/genética , Homologia de Sequência de Aminoácidos , Sinapses/fisiologia , Vertebrados/genética
17.
Proc Natl Acad Sci U S A ; 99(22): 14464-9, 2002 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-12391317

RESUMO

RIMs are presynaptic active zone proteins that regulate neurotransmitter release. We describe two related genes that encode proteins with identical C-terminal sequences that bind to the conserved PDZ domain of RIMs via an unusual PDZ-binding motif. These proteins were previously reported separately as ELKS, Rab6-interacting protein 2, and CAST, leading us to refer to them by the acronym ERC. Alternative splicing of the C terminus of ERC1 generates a longer ERC1a variant that does not bind to RIMs and a shorter ERC1b variant that binds to RIMs, whereas the C terminus of ERC2 is synthesized only in a single RIM-binding variant. ERC1a is expressed ubiquitously as a cytosolic protein outside of brain; ERC1b is detectable only in brain, where it is both a cytosolic protein and an insoluble active zone component; and ERC2 is brain-specific but exclusively localized to active zones. Only brain-specific ERCs bind to RIMs, but both ubiquitous and brain-specific ERCs bind to Rab6, a GTP-binding protein involved in membrane traffic at the Golgi complex. ERC1a and ERC1b/2 likely perform similar functions at distinct localizations, indicating unexpected connections between nonneuronal membrane traffic at the Golgi complex executed via Rab6 and neuronal membrane traffic at the active zone executed via RIMs.


Assuntos
Processamento Alternativo , Proteínas de Transporte/metabolismo , Proteínas de Ligação ao GTP , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Terminações Pré-Sinápticas/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Membranas Sinápticas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Sequência de Aminoácidos , Animais , Sequência de Bases , Sítios de Ligação , Células COS , Proteínas de Transporte/genética , Chlorocebus aethiops , Proteínas do Citoesqueleto , DNA Complementar , Humanos , Proteínas de Membrana/genética , Mesotelina , Camundongos , Camundongos Knockout , Dados de Sequência Molecular , Proteínas do Tecido Nervoso/genética , Ligação Proteica , Proteínas Proto-Oncogênicas/genética , Ratos , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos , Sinapsinas/metabolismo , Transmissão Sináptica , Distribuição Tecidual , Proteínas rab de Ligação ao GTP
18.
Science ; 297(5586): 1525-31, 2002 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-12202822

RESUMO

Synapses, the junctions between nerve cells through which they communicate, are formed by the coordinated assembly and tight attachment of pre- and postsynaptic specializations. We now show that SynCAM is a brain-specific, immunoglobulin domain-containing protein that binds to intracellular PDZ-domain proteins and functions as a homophilic cell adhesion molecule at the synapse. Expression of the isolated cytoplasmic tail of SynCAM in neurons inhibited synapse assembly. Conversely, expression of full-length SynCAM in nonneuronal cells induced synapse formation by cocultured hippocampal neurons with normal release properties. Glutamatergic synaptic transmission was reconstituted in these nonneuronal cells by coexpressing glutamate receptors with SynCAM, which suggests that a single type of adhesion molecule and glutamate receptor are sufficient for a functional postsynaptic response.


Assuntos
Encéfalo/fisiologia , Moléculas de Adesão Celular Neuronais/fisiologia , Moléculas de Adesão Celular/fisiologia , Sinapses/fisiologia , Sequência de Aminoácidos , Animais , Encéfalo/citologia , Química Encefálica , Moléculas de Adesão Celular/química , Moléculas de Adesão Celular/isolamento & purificação , Moléculas de Adesão Celular Neuronais/química , Moléculas de Adesão Celular Neuronais/isolamento & purificação , Linhagem Celular , Técnicas de Cocultura , Exocitose , Humanos , Imunoglobulinas , Dados de Sequência Molecular , Neurônios/fisiologia , Prosencéfalo/química , Prosencéfalo/fisiologia , Estrutura Terciária de Proteína , Ratos , Receptores de AMPA/fisiologia , Proteínas Recombinantes de Fusão/metabolismo , Homologia de Sequência de Aminoácidos , Sinapses/química , Transmissão Sináptica/fisiologia , Transfecção , Proteínas Supressoras de Tumor
19.
J Neurosci ; 22(17): 7340-51, 2002 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-12196555

RESUMO

Mints/X11s are neuron-specific (Mints 1 and 2) and ubiquitous (Mint 3) adaptor proteins composed of isoform-specific N-terminal sequences and common C-terminal phosphotyrosine-binding (PTB) and PDZ domains. We now show that all three Mints bind to the cytoplasmic tail of amyloid-beta precursor protein (APP) and presenilins and strongly increase the levels of cellular APP in transfected cells. Immunocytochemistry revealed that in neurons, Mints 1 and 2 were colocalized with APP in the trans-Golgi network, with lower levels throughout the cell body and neurites. Using an APP-dependent transactivation assay that uses a fusion protein of APP coupled to the potent transcription factor Gal4/VP16, we examined the effects of Mints on the proteolytic processing and putative transcriptional function of APP. Although all Mints were biochemically similar, only Mints 1 and 2 but not Mint 3 strongly inhibited transactivation by APP-Gal4/VP16. Inhibition was enhanced by a mutation of the first PDZ domain and by deletion of the PDZ domains or the N-terminal sequences but abolished by inactivation of the PTB- and PDZ domains. Mint 1 also inhibited transactivation by the "precleaved" cytoplasmic tail of APP fused to Gal4/VP16, whereas Fe65 (which binds to APP as strongly as Mints) enhanced transactivation. Our data suggest that Mints 1 and 2 but not Mint 3 have a specific effect on APP function that cannot be explained simply by their interaction with presenilins and occurs at least partly after cleavage of APP. In view of their biochemical similarity, the functional differences among Mints are unexpected, suggesting that Mints 1 and 2 have a brain-specific function related to APP that is not executed by the ubiquitous Mint 3.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Precursor de Proteína beta-Amiloide/metabolismo , Caderinas , Proteínas de Transporte/metabolismo , Regulação da Expressão Gênica/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Proteínas/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animais , Células COS , Proteínas de Transporte/genética , Proteínas de Transporte/farmacologia , Células Cultivadas , Células HeLa , Humanos , Imuno-Histoquímica , Rim/citologia , Rim/metabolismo , Substâncias Macromoleculares , Proteínas de Membrana/metabolismo , Camundongos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/farmacologia , Neurônios/citologia , Neurônios/metabolismo , Células PC12 , Presenilina-1 , Presenilina-2 , Ligação Proteica/fisiologia , Isoformas de Proteínas/metabolismo , Proteínas/genética , Proteínas/farmacologia , Ratos , Relação Estrutura-Atividade , Transcrição Gênica/efeitos dos fármacos , Transcrição Gênica/fisiologia , Ativação Transcricional/efeitos dos fármacos , Ativação Transcricional/fisiologia , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA