Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cancer Res ; 82(18): 3263-3274, 2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-35857801

RESUMO

The mTOR is a key regulator of cell growth that integrates growth factor signaling and nutrient availability and is a downstream effector of oncogenic receptor tyrosine kinases (RTK) and PI3K/Akt signaling. Thus, activating mTOR mutations would be expected to enhance growth in many tumor types. However, tumor sequencing data have shown that mTOR mutations are enriched only in renal clear cell carcinoma, a clinically hypervascular tumor unlikely to be constrained by nutrient availability. To further define this cancer-type-specific restriction, we studied activating mutations in mTOR. All mTOR mutants tested enhanced growth in a cell-type agnostic manner under nutrient-replete conditions but were detrimental to cell survival in nutrient-poor conditions. Consistently, analysis of tumor data demonstrated that oncogenic mutations in the nutrient-sensing arm of the mTOR pathway display a similar phenotype and were exceedingly rare in human cancers of all types. Together, these data suggest that maintaining the ability to turn off mTOR signaling in response to changing nutrient availability is retained in most naturally occurring tumors. SIGNIFICANCE: This study suggests that cells need to inactivate mTOR to survive nutrient stress, which could explain the rarity of mTOR mutations and the limited clinical activity of mTOR inhibitors in cancer.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/patologia , Humanos , Neoplasias Renais/genética , Neoplasias Renais/patologia , Mutação , Nutrientes , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Tirosina/genética
2.
J Natl Compr Canc Netw ; 19(2): 130-133, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33545685

RESUMO

Lynch syndrome is a heritable cancer syndrome caused by a heterozygous germline mutation in DNA mismatch repair (MMR) genes. MMR-deficient (dMMR) tumors are particularly sensitive to immune checkpoint inhibitors, an effect attributed to the higher mutation rate in these cancers. However, approximately 15% to 30% of patients with dMMR cancers do not respond to immunotherapy. This report describes 3 patients with Lynch syndrome who each had 2 primary malignancies: 1 with dMMR and a high tumor mutational burden (TMB), and 1 with dMMR but, unexpectedly, a low TMB. Two of these patients received immunotherapy for their TMB-low tumors but experienced no response. We have found that not all Lynch-associated dMMR tumors have a high TMB and propose that tumors with dMMR and TMB discordance may be resistant to immunotherapy. The possibility of dMMR/TMB discordance should be considered, particularly in less-typical Lynch cancers, in which TMB evaluation could guide the use of immune checkpoint inhibitors.


Assuntos
Neoplasias Encefálicas , Neoplasias Colorretais Hereditárias sem Polipose , Neoplasias Colorretais , Resistencia a Medicamentos Antineoplásicos , Imunoterapia , Síndromes Neoplásicas Hereditárias , Neoplasias Colorretais Hereditárias sem Polipose/genética , Neoplasias Colorretais Hereditárias sem Polipose/terapia , Reparo de Erro de Pareamento de DNA , Humanos , Instabilidade de Microssatélites
3.
J Am Chem Soc ; 136(10): 3803-16, 2014 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-24559475

RESUMO

Phosphorylation and OGlcNAcylation are dynamic intracellular protein post-translational modifications that frequently are alternatively observed on the same serine and threonine residues. Phosphorylation and OGlcNAcylation commonly occur in natively disordered regions of proteins, and often have opposing functional effects. In the microtubule-associated protein tau, hyperphosphorylation is associated with protein misfolding and aggregation as the neurofibrillary tangles of Alzheimer's disease, whereas OGlcNAcylation stabilizes the soluble form of tau. A series of peptides derived from the proline-rich domain (residues 174-251) of tau was synthesized, with free Ser/Thr hydroxyls, phosphorylated Ser/Thr (pSer/pThr), OGlcNAcylated Ser/Thr, and diethylphosphorylated Ser/Thr. Phosphorylation and OGlcNAcylation were found by CD and NMR to have opposing structural effects on polyproline helix (PPII) formation, with phosphorylation favoring PPII, OGlcNAcylation opposing PPII, and the free hydroxyls intermediate in structure, and with phosphorylation structural effects greater than OGlcNAcylation. For tau196-209, phosphorylation and OGlcNAcylation had similar structural effects, opposing a nascent α-helix. Phosphomimic Glu exhibited PPII-favoring structural effects. Structural changes due to Thr phosphorylation were greater than those of Ser phosphorylation or Glu, with particular conformational restriction as the dianion, with mean (3)JαN = 3.5 Hz (pThr) versus 5.4 Hz (pSer), compared to 7.2, 6.8, and 6.2 Hz for Thr, Ser, and Glu, respectively, values that correlate with the backbone torsion angle ϕ. Dianionic phosphothreonine induced strong phosphothreonine amide protection and downfield amide chemical shifts (δmean = 9.63 ppm), consistent with formation of a stable phosphate-amide hydrogen bond. These data suggest potentially greater structural importance of threonine phosphorylation than serine phosphorylation due to larger induced structural effects.


Assuntos
Acetilglucosamina/metabolismo , Fosfotreonina/metabolismo , Proteínas tau/química , Proteínas tau/metabolismo , Acilação , Doença de Alzheimer/metabolismo , Sequência de Aminoácidos , Humanos , Modelos Moleculares , Dados de Sequência Molecular , N-Acetilglucosaminiltransferases/metabolismo , Fosforilação , Fosfotreonina/química , Processamento de Proteína Pós-Traducional , Estabilidade Proteica , Estrutura Secundária de Proteína
4.
Biochemistry ; 45(17): 5527-37, 2006 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-16634634

RESUMO

Alzheimer's disease is characterized by two protein precipitates, extracellular amyloid plaques and intracellular neurofibrillary tangles (NFTs). The primary constituent of NFTs is a hyperphosphorylated form of the microtubule-binding protein tau. Hyperphosphorylation of tau on over 30 residues, primarily within proline-rich sequences, is associated with conformational changes whose nature is poorly defined. Peptides derived from the proline-rich region of tau (residues 174-242) were synthesized, and the conformations were analyzed for the nonphosphorylated and phosphorylated peptides. CD and NMR data indicate that phosphorylation of serine and threonine residues in proline-rich sequences induces a conformational change to a type II polyproline helix. The largest phosphorylation-dependent conformational changes observed by CD were for tau peptides incorporating residues 174-183 or residues 229-238. Phosphoserine and phosphothreonine residues exhibited ordered values of (3)J(alphaN) (3.1-6.2 Hz; mean = 4.7 Hz) compared to nonphosphorylated serine and threonine. Phosphorylation of a tau peptide consisting of tau residues 196-209 resulted in the disruption of a nascent alpha-helix. These results suggest that global reorganization of tau may occur upon hyperphosphorylation of proline-rich sequences in tau.


Assuntos
Peptídeos/química , Proteínas tau/metabolismo , Sequência de Aminoácidos , Dicroísmo Circular , Humanos , Dados de Sequência Molecular , Emaranhados Neurofibrilares/química , Ressonância Magnética Nuclear Biomolecular , Fosforilação , Fosfosserina/química , Fosfotreonina/química , Conformação Proteica/efeitos dos fármacos , Estrutura Secundária de Proteína/efeitos dos fármacos , Proteínas tau/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA