Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
ACS Appl Mater Interfaces ; 13(30): 35266-35280, 2021 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-34310112

RESUMO

The lack of clinical response to the alkylating agent temozolomide (TMZ) in pediatric diffuse midline/intrinsic pontine glioma (DIPG) has been associated with O6-methylguanine-DNA-methyltransferase (MGMT) expression and mismatch repair deficiency. Hence, a potent N(3)-propargyl analogue (N3P) was derived, which not only evades MGMT but also remains effective in mismatch repair deficient cells. Due to the poor pharmacokinetic profile of N3P (t1/2 < 1 h) and to bypass the blood-brain barrier, we proposed convection enhanced delivery (CED) as a method of administration to decrease dose and systemic toxicity. Moreover, to enhance N3P solubility, stability, and sustained distribution in vivo, either it was incorporated into an apoferritin (AFt) nanocage or its sulfobutyl ether ß-cyclodextrin complex was loaded into nanoliposomes (Lip). The resultant AFt-N3P and Lip-N3P nanoparticles (NPs) had hydrodynamic diameters of 14 vs 93 nm, icosahedral vs spherical morphology, negative surface charge (-17 vs -34 mV), and encapsulating ∼630 vs ∼21000 N3P molecules per NP, respectively. Both NPs showed a sustained release profile and instant uptake within 1 h incubation in vitro. In comparison to the naked drug, N3P NPs demonstrated stronger anticancer efficacy against 2D TMZ-resistant DIPG cell cultures [IC50 = 14.6 (Lip-N3P) vs 32.8 µM (N3P); DIPG-IV) and (IC50 = 101.8 (AFt-N3P) vs 111.9 µM (N3P); DIPG-VI)]. Likewise, both N3P-NPs significantly (P < 0.01) inhibited 3D spheroid growth compared to the native N3P in MGMT+ DIPG-VI (100 µM) and mismatch repair deficient DIPG-XIX (50 µM) cultures. Interestingly, the potency of TMZ was remarkably enhanced when encapsulated in AFt NPs against DIPG-IV, -VI, and -XIX spheroid cultures. Dynamic PET scans of CED-administered zirconium-89 (89Zr)-labeled AFt-NPs in rats also demonstrated substantial enhancement over free 89Zr radionuclide in terms of localized distribution kinetics and retention within the brain parenchyma. Overall, both NP formulations of N3P represent promising approaches for treatment of TMZ-resistant DIPG and merit the next phase of preclinical evaluation.


Assuntos
Antineoplásicos Alquilantes/uso terapêutico , Portadores de Fármacos/química , Glioma/tratamento farmacológico , Nanopartículas/química , Temozolomida/análogos & derivados , Temozolomida/uso terapêutico , Animais , Apoferritinas/química , Linhagem Celular Tumoral , Humanos , Lipossomos/química , Masculino , Ratos Wistar , Esferoides Celulares/efeitos dos fármacos , beta-Ciclodextrinas/química
2.
Int J Clin Oncol ; 26(4): 647-658, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33575829

RESUMO

PURPOSE: Effective treatment of diffuse intrinsic pontine glioma (DIPG) remains a formidable challenge due to inadequate penetration of the blood-brain barrier (BBB) by systemically administered chemotherapies. The BBB can be overcome by directly infusing drugs into pons using method of convection-enhanced delivery (CED). We describe our clinical experience and what we have learned about the safety and feasibility of treating DIPG with intermittent CED of carboplatin and sodium valproate to the pons through the Renishaw Drug Delivery System (RDDS). METHODS: Retrospective review (2017-2020) of children with DIPG, who following radiotherapy, received compassionate treatment commencing 3.3-10 months post-diagnosis (median 4.9 months). They received up to 7 cycles of 3-6 weekly pontine infusions of carboplatin (0.12-0.18 mg/ml) and sodium valproate (14.4-28.8 mg/ml). RESULTS: 13 children 3-19 years (mean 6.9 years) were treated. There were no surgical complications. With the exception of infusion channels blocking in one device, there were no adverse device effects. Two patients developed persistent 6th nerve palsies, which led to drug concentration reduction in the combination therapy. Subsequently infusion/ drug-related toxicities were transient. Tumour was controlled in pons in 10/13 patients. Median progression-free survival (PFS) was 13.0 months, while median overall survival (OS) was 15.3 months. CONCLUSIONS: Use of the RDDS was safe and well tolerated in all 13 patients. Treatment improved control of pontine disease resulting in longer PFS and OS and merits further evaluation in a clinical trial.


Assuntos
Antineoplásicos , Glioma Pontino Intrínseco Difuso , Glioma , Antineoplásicos/uso terapêutico , Carboplatina/efeitos adversos , Criança , Convecção , Glioma/tratamento farmacológico , Glioma/radioterapia , Humanos , Ponte , Estudos Retrospectivos , Ácido Valproico/efeitos adversos , Adulto Jovem
3.
Cancer Manag Res ; 10: 3483-3500, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30254491

RESUMO

BACKGROUND: Diffuse intrinsic pontine glioma (DIPG) is a lethal type of pediatric brain tumor that is resistant to conventional chemotherapies. Palbociclib is a putative novel DIPG treatment that restricts the proliferation of rapidly dividing cancer cells via selective inhibition of cyclin-dependent kinase (CDK) 4 and CDK6. However, implementing palbociclib as a monotherapy for DIPG is unfeasible, as CDK4/6 inhibitor resistance is commonplace and palbociclib does not readily cross the blood-brain barrier (BBB) or persist in the central nervous system. To inhibit the growth of DIPG cells, we aimed to use palbociclib in combination with the rapamycin analog temsirolimus, which is known to ameliorate resistance to CDK4/6 inhibitors and inhibit BBB efflux. MATERIALS AND METHODS: We tested palbociclib and temsirolimus in three patient-derived DIPG cell lines. The expression profiles of key proteins in the CDK4/6 and mammalian target of rapamycin (mTOR) signaling pathways were assessed, respectively, to determine feasibility against DIPG. Moreover, we investigated effects on cell viability and examined in vivo drug toxicity. RESULTS: Immunoblot analyses revealed palbociclib and temsirolimus inhibited CDK4/6 and mTOR signaling through canonical perturbation of phosphorylation of the retinoblastoma (RB) and mTOR proteins, respectively; however, we observed noncanonical downregulation of mTOR by palbociclib. We demonstrated that palbociclib and temsirolimus inhibited cell proliferation in all three DIPG cell lines, acting synergistically in combination to further restrict cell growth. Flow cytometric analyses revealed both drugs caused G1 cell cycle arrest, and clonogenic assays showed irreversible effects on cell proliferation. Palbociclib did not elicit neurotoxicity in primary cultures of normal rat hippocampi or when infused into rat brains. CONCLUSION: These data illustrate the in vitro antiproliferative effects of CDK4/6 and mTOR inhibitors in DIPG cells. Direct infusion of palbociclib into the brain, in combination with systemic delivery of temsirolimus, represents a promising new approach to developing a much-needed treatment for DIPG.

4.
J Neurosurg Pediatr ; 22(3): 288-296, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29856296

RESUMO

OBJECTIVE The pan-histone deacetylase inhibitor panobinostat has preclinical efficacy against diffuse intrinsic pontine glioma (DIPG), and the oral formulation has entered a Phase I clinical trial. However, panobinostat does not cross the blood-brain barrier in humans. Convection-enhanced delivery (CED) is a novel neurosurgical drug delivery technique that bypasses the blood-brain barrier and is of considerable clinical interest in the treatment of DIPG. METHODS The authors investigated the toxicity, distribution, and clearance of a water-soluble formulation of panobinostat (MTX110) in a small- and large-animal model of CED. Juvenile male Wistar rats (n = 24) received panobinostat administered to the pons by CED at increasing concentrations and findings were compared to those in animals that received vehicle alone (n = 12). Clinical observation continued for 2 weeks. Animals were sacrificed at 72 hours or 2 weeks following treatment, and the brains were subjected to neuropathological analysis. A further 8 animals received panobinostat by CED to the striatum and were sacrificed 0, 2, 6, or 24 hours after infusion, and their brains explanted and snap-frozen. Tissue-drug concentration was determined by liquid chromatography tandem mass spectrometry (LC-MS/MS). Large-animal toxicity was investigated using a clinically relevant MRI-guided translational porcine model of CED in which a drug delivery system designed for humans was used. Panobinostat was administered at 30 µM to the ventral pons of 2 juvenile Large White-Landrace cross pigs. The animals were subjected to clinical and neuropathological analysis, and findings were compared to those obtained in controls after either 1 or 2 weeks. Drug distribution was determined by LC-MS/MS in porcine white and gray matter immediately after CED. RESULTS There were no clinical or neuropathological signs of toxicity up to an infused concentration of 30 µM in both small- and large-animal models. The half-life of panobinostat in rat brain after CED was 2.9 hours, and the drug was observed to be distributed in porcine white and gray matter with a volume infusion/distribution ratio of 2 and 3, respectively. CONCLUSIONS CED of water-soluble panobinostat, up to a concentration of 30 µM, was not toxic and was distributed effectively in normal brain. CED of panobinostat warrants clinical investigation in patients with DIPG.


Assuntos
Antineoplásicos/administração & dosagem , Neoplasias do Tronco Encefálico/tratamento farmacológico , Convecção , Glioma/tratamento farmacológico , Panobinostat/administração & dosagem , Animais , Antineoplásicos/farmacocinética , Neoplasias do Tronco Encefálico/diagnóstico por imagem , Proteínas de Ligação ao Cálcio/metabolismo , Cromatografia Líquida , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Proteína Glial Fibrilar Ácida/metabolismo , Glioma/diagnóstico por imagem , Imageamento por Ressonância Magnética , Masculino , Proteínas dos Microfilamentos/metabolismo , Panobinostat/farmacocinética , Fosfopiruvato Hidratase/metabolismo , Ratos , Ratos Wistar , Suínos , Espectrometria de Massas em Tandem , Fatores de Tempo , Distribuição Tecidual/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
5.
PLoS One ; 12(5): e0176855, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28542253

RESUMO

Targeting epigenetic changes in diffuse intrinsic pontine glioma (DIPG) may provide a novel treatment option for patients. This report demonstrates that sodium valproate, a histone deacetylase inhibitor (HDACi), can increase the cytotoxicity of carboplatin in an additive and synergistic manner in DIPG cells in vitro. Sodium valproate causes a dose-dependent decrease in DIPG cell viability in three independent ex vivo cell lines. Furthermore, sodium valproate caused an increase in acetylation of histone H3. Changes in cell viability were consistent with an induction of apoptosis in DIPG cells in vitro, determined by flow cytometric analysis of Annexin V staining and assessment of apoptotic markers by western blotting. Subsequently, immunofluorescent staining of neuronal and glial markers was used to determine toxicity in normal rat hippocampal cells. Pre-treatment of cells with sodium valproate enhanced the cytotoxic effects of carboplatin, in three DIPG cell lines tested. These results demonstrate that sodium valproate causes increased histone H3 acetylation indicative of HDAC inhibition, which is inversely correlated with a reduction in cell viability. Cell viability is reduced through an induction of apoptosis in DIPG cells. Sodium valproate potentiates carboplatin cytotoxicity and prompts further work to define the mechanism responsible for the synergy between these two drugs and determine in vivo efficacy. These findings support the use of sodium valproate as an adjuvant treatment for DIPG.


Assuntos
Adjuvantes Farmacêuticos/farmacologia , Anticonvulsivantes/farmacologia , Neoplasias do Tronco Encefálico/tratamento farmacológico , Glioma/tratamento farmacológico , Ácido Valproico/farmacologia , Acetilação/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Neoplasias do Tronco Encefálico/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Reposicionamento de Medicamentos/métodos , Epigênese Genética/efeitos dos fármacos , Glioma/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Humanos , Ratos
6.
Drug Deliv ; 23(1): 167-73, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-24786643

RESUMO

CONTEXT: Inadequate penetration of the blood-brain barrier (BBB) by systemically administered chemotherapies including carboplatin is implicated in their failure to improve prognosis for patients with glioblastoma. Convection-enhanced delivery (CED) of carboplatin has the potential to improve outcomes by facilitating bypass of the BBB. OBJECTIVE: We report the first use of an implantable CED system incorporating a novel transcutaneous bone-anchored port (TBAP) for intermittent CED of carboplatin in a patient with recurrent glioblastoma. MATERIALS AND METHODS: The CED catheter system was implanted using a robot-assisted surgical method. Catheter targeting accuracy was verified by performing intra-operative O-arm imaging. The TBAP was implanted using a skin-flap dermatome technique modeled on bone-anchored hearing aid surgery. Repeated infusions were performed by attaching a needle administration set to the TBAP. Drug distribution was monitored with serial real-time T2-weighted magnetic resonance imaging (MRI). RESULTS: All catheters were implanted to within 1.5 mm of their planned target. Intermittent infusions of carboplatin were performed on three consecutive days and repeated after one month without the need for further surgical intervention. Infused volumes of 27.9 ml per day were well tolerated, with the exception of a single seizure episode. Follow-up MRI at eight weeks demonstrated a significant reduction in the volume of tumor enhancement from 42.6 ml to 24.6 ml, and was associated with stability of the patient's clinical condition. CONCLUSION: Reduction in the volume of tumor enhancement indicates that intermittent CED of carboplatin has the potential to improve outcomes in glioblastoma. The novel technology described in this report make intermittent CED infusion regimes an achievable treatment strategy.


Assuntos
Antineoplásicos/administração & dosagem , Antineoplásicos/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Carboplatina/administração & dosagem , Carboplatina/uso terapêutico , Sistemas de Liberação de Medicamentos/métodos , Glioblastoma/tratamento farmacológico , Administração Cutânea , Antineoplásicos/efeitos adversos , Carboplatina/efeitos adversos , Cateteres de Demora , Convecção , Epilepsia Generalizada/complicações , Feminino , Humanos , Infusões Intravenosas , Imageamento por Ressonância Magnética , Pessoa de Meia-Idade , Robótica
7.
J Neurosci Methods ; 259: 47-56, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26617320

RESUMO

BACKGROUND: Intraparenchymal convection-enhanced delivery (CED) of therapeutics directly into the brain has long been endorsed as a medium through which meaningful concentrations of drug can be administered to patients, bypassing the blood brain barrier. The translation of the technology to clinic has been hindered by poor distribution not previously observed in smaller pre-clinical models. In part this was due to the larger volumes of target structures found in humans but principally the poor outcome was linked to reflux (backflow) of infusate proximally along the catheter track. Over the past 10 years, improvements have been made to the technology in the field which has led to a small number of commercially available devices containing reflux inhibiting features. NEW METHOD: While these devices are currently suitable for acute or short term use, several indications would benefit from longer term repeated, intermittent administration of therapeutics (Parkinson's, Alzheimer's, Amyotrophic lateral sclerosis, Brain tumours such as Glioblastoma Multiforme (GBM) and Diffuse intrinsic Pontine Glioma (DIPG), etc.). RESULTS: Despite the need for a chronically accessible platform for such indications, limited experience exists in this part of the field. COMPARISON WITH EXISTING METHOD(S): At the time of writing no commercially available clinical platform, indicated for chronic, intermittent or continuous delivery to the brain exists. CONCLUSIONS: Here we review the improvements that have been made to CED devices over recent years and current state of the art for chronic infusion systems.


Assuntos
Encéfalo , Catéteres , Sistemas de Liberação de Medicamentos/métodos , Convecção , Humanos
8.
PLoS One ; 10(7): e0132266, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26186224

RESUMO

We currently use Convection-Enhanced Delivery (CED) of the platinum-based drug, carboplatin as a novel treatment strategy for high grade glioblastoma in adults and children. Although initial results show promise, carboplatin is not specifically toxic to tumour cells and has been associated with neurotoxicity at high infused concentrations in pre-clinical studies. Our treatment strategy requires intermittent infusions due to rapid clearance of carboplatin from the brain. In this study, carboplatin was encapsulated in lactic acid-glycolic acid copolymer (PLGA) to develop a novel drug delivery system. Neuronal and tumour cytotoxicity were assessed in primary neuronal and glioblastoma cell cultures. Distribution, tissue clearance and toxicity of carboplatin nanoparticles following CED was assessed in rat and porcine models. Carboplatin nanoparticles conferred greater tumour cytotoxicity, reduced neuronal toxicity and prolonged tissue half-life. In conclusion, this drug delivery system has the potential to improve the prognosis for patients with glioblastomas.


Assuntos
Carboplatina/uso terapêutico , Convecção , Sistemas de Liberação de Medicamentos , Glioblastoma/tratamento farmacológico , Ácido Láctico/química , Nanopartículas/química , Ácido Poliglicólico/química , Animais , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Células Cultivadas , Endocitose/efeitos dos fármacos , Glioblastoma/patologia , Hipocampo/patologia , Humanos , Masculino , Nanopartículas/toxicidade , Neurotoxinas/toxicidade , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Ratos Wistar , Sus scrofa
9.
Int J Nanomedicine ; 10: 2673-83, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25878500

RESUMO

Nonviral gene and small interfering RNA (siRNA) delivery formulations are extensively used for biological and therapeutic research in cell culture experiments, but less so in in vivo and clinical research. Difficulties with formulating the nanoparticles for uniformity and stability at concentrations required for in vivo and clinical use are limiting their progression in these areas. Here, we report a simple but effective method of formulating monodisperse nanocomplexes from a ternary formulation of lipids, targeting peptides, and nucleic acids at a low starting concentration of 0.2 mg/mL of DNA, and we then increase their concentration up to 4.5 mg/mL by reverse dialysis against a concentrated polymer solution at room temperature. The nanocomplexes did not aggregate and they had maintained their biophysical properties, but, importantly, they also mediated DNA transfection and siRNA silencing in cultured cells. Moreover, concentrated anionic nanocomplexes administered by convection-enhanced delivery in the striatum showed efficient silencing of the ß-secretase gene BACE1. This method of preparing nanocomplexes could probably be used to concentrate other nonviral formulations and may enable more widespread use of nanoparticles in vivo.


Assuntos
DNA , Lipídeos , Nanopartículas/química , Peptídeos , RNA Interferente Pequeno , Transfecção/métodos , Animais , Linhagem Celular Tumoral , DNA/química , DNA/isolamento & purificação , Humanos , Lipídeos/química , Lipídeos/isolamento & purificação , Camundongos , Peptídeos/química , Peptídeos/isolamento & purificação , RNA Interferente Pequeno/química , RNA Interferente Pequeno/isolamento & purificação
10.
Am J Transl Res ; 6(2): 169-78, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24489997

RESUMO

The main determinant of glioblastoma (GBM) resistance to temozolomide (TMZ) is thought to be O(6)-methylguanine-DNA methyltransferase (MGMT), which is a DNA-repair enzyme that removes alkyl groups from the O(6)-position of guanine. Previously, we reported that a MGMT-siRNA/cationic liposome complex exerted a clear synergistic antitumor effect in combination with TMZ. Translation to a clinical setting might be desirable for reinforcing the efficacy of TMZ therapy for GBM. In this study, we aim to evaluate the safety of MGMT-siRNA/cationic liposome complexes and determine whether the convection-enhanced delivery of these complexes is suitable for clinical use by undertaking preclinical testing in laboratory animals. No significant adverse events were observed in rats receiving infusions of MGMT-siRNA/cationic liposome complex directly into the brain with or without TMZ administration. A pig which received the complex administered by CED also showed no evidence of neurological dysfunction or histological abnormalities. However, the complex did not appear to achieve effective distribution by CED in either the rat or the porcine brain tissue. Considering these results together, we concluded that insufficient distribution of cationic liposomes was achieved for tumor treatment by CED.

11.
J Control Release ; 174: 177-87, 2014 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-24269968

RESUMO

Non-viral vector formulations comprise typically complexes of nucleic acids with cationic polymers or lipids. However, for in vivo applications cationic formulations suffer from problems of poor tissue penetration, non-specific binding to cells, interaction with serum proteins and cell adhesion molecules and can lead to inflammatory responses. Anionic formulations may provide a solution to these problems but they have not been developed to the same extent as cationic formulations due to difficulties of nucleic acid packaging and poor transfection efficiency. We have developed novel PEGylated, anionic nanocomplexes containing cationic targeting peptides that act as a bridge between PEGylated anionic liposomes and plasmid DNA. At optimized ratios, the components self-assemble into anionic nanocomplexes with a high packaging efficiency of plasmid DNA. Anionic PEGylated nanocomplexes were resistant to aggregation in serum and transfected cells with a far higher degree of receptor-targeted specificity than their homologous non-PEGylated anionic and cationic counterparts. Gadolinium-labeled, anionic nanoparticles, administered directly to the brain by convection-enhanced delivery displayed improved tissue penetration and dispersal as well as more widespread cellular transfection than cationic formulations. Anionic PEGylated nanocomplexes have widespread potential for in vivo gene therapy due to their targeted transfection efficiency and ability to penetrate tissues.


Assuntos
DNA/administração & dosagem , Nanopartículas/administração & dosagem , Peptídeos/metabolismo , Polietilenoglicóis/química , Transfecção/métodos , Animais , Encéfalo/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Meios de Contraste/química , DNA/química , Corantes Fluorescentes/química , Gadolínio/química , Humanos , Lipídeos/química , Lipossomos , Masculino , Camundongos , Nanopartículas/química , Ratos , Ratos Wistar , Rodaminas/química
12.
Biomaterials ; 34(36): 9190-200, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23948162

RESUMO

Convection enhanced delivery (CED) is a method of direct injection to the brain that can achieve widespread dispersal of therapeutics, including gene therapies, from a single dose. Non-viral, nanocomplexes are of interest as vectors for gene therapy in the brain, but it is essential that administration should achieve maximal dispersal to minimise the number of injections required. We hypothesised that anionic nanocomplexes administered by CED should disperse more widely in rat brains than cationics of similar size, which bind electrostatically to cell-surface anionic moieties such as proteoglycans, limiting their spread. Anionic, receptor-targeted nanocomplexes (RTN) containing a neurotensin-targeting peptide were prepared with plasmid DNA and compared with cationic RTNs for dispersal and transfection efficiency. Both RTNs were labelled with gadolinium for localisation in the brain by MRI and in brain sections by LA-ICP-MS, as well as with rhodamine fluorophore for detection by fluorescence microscopy. MRI distribution studies confirmed that the anionic RTNs dispersed more widely than cationic RTNs, particularly in the corpus callosum. Gene expression levels from anionic formulations were similar to those of cationic RTNs. Thus, anionic RTN formulations can achieve both widespread dispersal and effective gene expression in brains after administration of a single dose by CED.


Assuntos
Encéfalo/metabolismo , Técnicas de Transferência de Genes , Nanopartículas/química , Ácidos Nucleicos/uso terapêutico , Receptores de Superfície Celular/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Linhagem Celular Tumoral , Regulação da Expressão Gênica/efeitos dos fármacos , Genes Reporter , Lipossomos/química , Imageamento por Ressonância Magnética , Masculino , Camundongos , Nanosferas , Ácidos Nucleicos/farmacologia , Peptídeos/metabolismo , Plasmídeos/metabolismo , Ratos , Ratos Wistar , Espectrofotometria Atômica , Distribuição Tecidual/efeitos dos fármacos , Transfecção
13.
Vet Anaesth Analg ; 39(6): 647-52, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22882604

RESUMO

OBSERVATIONS: A total of 13 intracerebral infusions were performed at approximately 1 month intervals in three NIH miniature pigs over the age range of 31-59 weeks. Pigs received azaperone and ketamine premedication to allow venous cannulation and propofol induction of anaesthesia. Anaesthesia was maintained with isoflurane throughout cranial surgery and MRI scanning. Physiological monitoring during surgery consisted of blood pressure, pulse, temperature and oxygen saturation monitoring, ECG and capnography. Analgesia consisted of meloxicam and morphine. However, during MRI scanning blood pressure and ECG monitoring had to be discontinued. Anaesthetized pigs underwent intermittent intraputamenal convection enhanced delivery (CED) of gadolinium with real-time magnetic resonance imaging. Progressive tachycardia was consistently observed in all pigs during CED with a mean ± SD maximum increase of 41 ± 22 beats minute(-1) from a baseline heart rate of 96 ± 9 minute(-1) . The heart rate remained elevated until recovery. A mean reduction in body temperature of 2.8 ± 0.6 °C from the start of anaesthesia was also observed during the period of MRI scanning. All pigs recovered from anaesthesia smoothly and heart rates returned to normal during the recovery period. CONCLUSIONS: Hypothermia is common in pigs undergoing this sedation and anaesthesia protocol. Convection enhanced delivery of drugs in healthy anaesthetized pigs may result in tachycardia.


Assuntos
Anestesia Geral/veterinária , Gadolínio/farmacologia , Complicações Intraoperatórias/veterinária , Imageamento por Ressonância Magnética/veterinária , Doenças dos Suínos/induzido quimicamente , Taquicardia/veterinária , Anestesia Geral/efeitos adversos , Animais , Gadolínio/administração & dosagem , Suínos , Taquicardia/induzido quimicamente
14.
J Alzheimers Dis ; 32(1): 43-56, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22751177

RESUMO

Enzymatic degradation contributes to the control of intracerebral amyloid-ß (Aß) peptide levels. Previous studies have demonstrated the therapeutic potential of viral vector-mediated neprilysin (NEP) gene therapy in mouse models of Alzheimer's disease (AD). However, clinical translation of NEP gene therapy is limited by ethical and practical considerations. In this study we have assessed the potential of convection-enhanced delivery (CED) as a means of elevating intracerebral NEP level and activity and degrading endogenous Aß. We analyzed the interstitial and perivascular distribution of NEP following CED into rat striatum. We measured NEP protein level, clearance, activity, and toxicity by ELISA for NEP and synaptophysin, NEP-specific activity assay, and immunohistochemistry for NEP, NeuN, glial fibrillary acidic protein and Iba1. We subsequently performed CED of NEP in normal aged rats and measured endogenous Aß by ELISA. CED resulted in widespread distribution of NEP, and a 20-fold elevation of NEP protein level with preservation of enzyme activity and without evidence of toxicity. CED in normal, aged rats resulted in a significant reduction in endogenous Aß(40) (p = 0.04), despite rapid NEP clearance from the brain (half-life ~3 h). CED of NEP has therapeutic potential as a dynamically controllable Aß(40)-degrading therapeutic strategy for AD. Further studies are required to determine the longer term effects on Aß (including Aß(42)) and on cognitive function.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides/metabolismo , Neprilisina/administração & dosagem , Neprilisina/uso terapêutico , Envelhecimento/fisiologia , Doença de Alzheimer/metabolismo , Animais , Antígenos Nucleares/metabolismo , Bloqueadores dos Canais de Cálcio/farmacologia , Proteínas de Ligação ao Cálcio/metabolismo , Cateterismo , Relação Dose-Resposta a Droga , Sistemas de Liberação de Medicamentos , Ensaio de Imunoadsorção Enzimática , Proteína Glial Fibrilar Ácida/metabolismo , Imuno-Histoquímica , Masculino , Proteínas dos Microfilamentos/metabolismo , Neprilisina/farmacocinética , Proteínas do Tecido Nervoso/metabolismo , Neuroimagem , Nimodipina/farmacologia , Veículos Farmacêuticos , Polietilenoglicóis , Ratos , Ratos Wistar , Sinaptofisina/metabolismo
15.
J Control Release ; 162(2): 340-8, 2012 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-22800579

RESUMO

Gadolinium-labelled nanocomplexes offer prospects for the development of real-time, non-invasive imaging strategies to visualise the location of gene delivery by MRI. In this study, targeted nanoparticle formulations were prepared comprising a cationic liposome (L) containing a Gd-chelated lipid at 10, 15 and 20% by weight of total lipid, a receptor-targeted, DNA-binding peptide (P) and plasmid DNA (D), which electrostatically self-assembled into LPD nanocomplexes. The LPD formulation containing the liposome with 15% Gd-chelated lipid displayed optimal peptide-targeted, transfection efficiency. MRI conspicuity peaked at 4h after incubation of the nanocomplexes with cells, suggesting enhancement by cellular uptake and trafficking. This was supported by time course confocal microscopy analysis of transfections with fluorescently-labelled LPD nanocomplexes. Gd-LPD nanocomplexes delivered to rat brains by convection-enhanced delivery were visible by MRI at 6 h, 24 h and 48 h after administration. Histological brain sections analysed by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) confirmed that the MRI signal was associated with the distribution of Gd(3+) moieties and differentiated MRI signals due to haemorrhage. The transfected brain cells near the injection site appeared to be mostly microglial. This study shows the potential of Gd-LPD nanocomplexes for simultaneous delivery of contrast agents and genes for real-time monitoring of gene therapy in the brain.


Assuntos
Meios de Contraste/administração & dosagem , DNA/administração & dosagem , Gadolínio/administração & dosagem , Glicosiltransferases/administração & dosagem , Nanopartículas/administração & dosagem , Animais , Encéfalo/metabolismo , Linhagem Celular Tumoral , Meios de Contraste/química , Meios de Contraste/farmacocinética , DNA/química , Ácidos Graxos Monoinsaturados/química , Gadolínio/química , Gadolínio/farmacocinética , Glicosiltransferases/química , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Nanopartículas/química , Peptídeos , Fosfatidiletanolaminas/química , Compostos de Amônio Quaternário/química , Ratos , Ratos Wistar , Transfecção/métodos
16.
J Neurooncol ; 108(1): 77-88, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22476649

RESUMO

Glioblastoma multiforme (GBM) is the most common and most aggressive form of intrinsic brain tumour. Despite standard treatment involving surgical resection, chemotherapy and radiotherapy this disease remains incurable with the majority of tumours recurring adjacent to the resection cavity. Consequently there is a clear need to improve local tumour control. Convection-enhanced delivery (CED) is a practical technique for administering chemotherapeutics directly into peritumoural brain. In this study, we have tested the hypothesis that carboplatin would be an appropriate chemotherapeutic agent to administer by CED into peritumoural brain to treat GBM. Within this study we have evaluated the relationships between carboplatin concentration, duration of exposure and tumour cell kill in vitro using GBM cell lines and the relationship between carboplatin concentration and clinical and histological evidence of toxicity in vivo. In addition, we have used laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) to evaluate the distribution properties of carboplatin following CED into rat brain and to determine the rate at which carboplatin is cleared from the brain. Finally, we have compared the distribution properties of carboplatin and the MRI contrast agent gadolinium-DTPA in pig brain. The results of these experiments confirm that carboplatin can be widely distributed by CED and that it remains in the brain for at least 24 h after infusion completion. Furthermore, carboplatin provokes a significant GBM cell kill at concentrations that are not toxic to normal brain. Finally, we provide evidence that gadolinium-DTPA coinfusion is a viable technique for visualising carboplatin distribution using T1-weighted MR imaging.


Assuntos
Antineoplásicos/administração & dosagem , Encéfalo/efeitos dos fármacos , Carboplatina/administração & dosagem , Fibras Nervosas Mielinizadas/efeitos dos fármacos , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Sistemas de Liberação de Medicamentos , Estudos de Viabilidade , Proteína Glial Fibrilar Ácida/metabolismo , Glioma/patologia , Meia-Vida , Humanos , Imageamento por Ressonância Magnética , Masculino , Ratos , Ratos Wistar , Espectrofotometria Atômica/métodos , Suínos , Sais de Tetrazólio , Tiazóis , Fatores de Tempo , Distribuição Tecidual/efeitos dos fármacos
17.
Hum Gene Ther ; 23(1): 115-27, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21793715

RESUMO

Before the successful use of lentiviral vectors in clinical trials it is essential that strategies for direct vector delivery into the brain be evaluated in vivo, particularly as these vectors are significantly larger than the brain extracellular space. To date no such studies have been undertaken. In this study, convection-enhanced delivery (CED) was employed in an attempt to achieve widespread lentiviral delivery in the striatum. Infusions of equine infectious anemia virus (EIAV) and HIV vector constructs expressing the reporter gene ß-galactosidase (ß-Gal) were undertaken into the striatum at a range of flow rates and viral titers. In rats, all EIAV and HIV infusions led to the extensive transduction of cells in perivascular spaces throughout the brain. Although infusions were performed under standardized conditions, the number and volume of distribution of transduced cells were highly variable, with approximately one-third of EIAV infusions leading to no concentrated cell transduction in the striatum. Heparin coinfusion had no effect on EIAV distribution, although coinfusion of nimodipine resulted in a significant reduction in the number and volume of distribution of transduced cells. Intrastriatal EIAV delivery in pigs led to extensive transduction of mainly neurons, which could be effectively visualized in real time by T(2)-weighted magnetic resonance imaging. No infusions were associated with a significant inflammatory response. Therefore, despite its large size, lentiviral vectors can be administered by CED to the striatum in both small and large animal models. However, the variability in vector distribution under standardized conditions and widespread vector distribution through the perivascular spaces raise serious concerns regarding the practicality of lentivirus-mediated gene therapy in the brain in clinical practice.


Assuntos
Convecção , Corpo Estriado/metabolismo , Técnicas de Transferência de Genes , Vetores Genéticos/administração & dosagem , Lentivirus/metabolismo , Animais , Corpo Estriado/efeitos dos fármacos , Genes Reporter , Vetores Genéticos/genética , Vetores Genéticos/metabolismo , HIV/genética , Heparina/administração & dosagem , Heparina/farmacologia , Vírus da Anemia Infecciosa Equina/genética , Lentivirus/genética , Imageamento por Ressonância Magnética/métodos , Masculino , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Microscopia Confocal , Nimodipina/administração & dosagem , Nimodipina/farmacologia , Ratos , Ratos Wistar , Suínos , Vírus da Estomatite Vesicular Indiana/genética , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/metabolismo , beta-Galactosidase/genética , beta-Galactosidase/metabolismo
18.
Contemp Clin Trials ; 33(2): 320-31, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22101221

RESUMO

Glioblastoma multiforme (GBM) is the commonest primary malignant brain tumour in adults. Standard treatment comprises surgery, radiotherapy and chemotherapy; however this condition remains incurable as these tumours are highly invasive and involve critical areas of the brain making it impossible to remove them surgically or cure them with radiotherapy. In the majority of cases the tumour recurs within 2 to 3 cm of the original site of tumour resection. Furthermore, the blood-brain barrier profoundly limits the access of many systemically administered chemotherapeutics to the tumour. Convection-enhanced delivery (CED) is a promising technique of direct intracranial drug delivery involving the implantation of microcatheters into the brain. Carboplatin represents an ideal chemotherapy to administer using this technique as glioblastoma cells are highly sensitive to carboplatin in vitro at concentrations that are not toxic to normal brain in vivo. This protocol describes a single-centre phase I dose-escalation study of carboplatin administered by CED to patients with recurrent or progressive GBM despite full standard treatment. This trial will incorporate 6 cohorts of 3 patients each. Cohorts will be treated in a sequential manner with increasing doses of carboplatin, subject to dose-limiting toxicity not being observed. This protocol should facilitate the identification of the maximum-tolerated infused concentration of carboplatin by CED into the supratentorial brain. This should facilitate the safe application of this technique in a phase II trial, treating patients with GBM, as well as for the treatment of other forms of malignant brain tumours, including metastases.


Assuntos
Antineoplásicos/administração & dosagem , Neoplasias Encefálicas/tratamento farmacológico , Carboplatina/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Glioblastoma/tratamento farmacológico , Recidiva Local de Neoplasia/tratamento farmacológico , Adulto , Antineoplásicos/farmacocinética , Barreira Hematoencefálica , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/metabolismo , Carboplatina/farmacocinética , Progressão da Doença , Relação Dose-Resposta a Droga , Feminino , Seguimentos , Glioblastoma/diagnóstico , Glioblastoma/metabolismo , Humanos , Masculino , Recidiva Local de Neoplasia/diagnóstico , Resultado do Tratamento
19.
J Gene Med ; 13(5): 269-82, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21544905

RESUMO

BACKGROUND: Direct adenoviral vector injections into the brain have been used in clinical trials to treat patients with high-grade gliomas. However, a recent phase 3 trial using first-generation vectors failed to demonstrate significant survival benefits. Malignant gliomas infiltrate extensively through the white matter, making them difficult to treat, and chemotherapy is at best partially effective. Convection enhanced delivery (CED) represents a rationale approach for achieving widespread targeting of infiltrating tumour cells. Previous studies have demonstrated that infusions of particle numbers above a threshold level [10(8) plaque-forming units (pfu)] are associated with a pronounced inflammatory response in rat grey matter, although no such comparisons have been made with CED infusions into the white matter. METHODS: In the present study, we investigated the distribution and immune response after the administration of 10(7) and 10(9) pfu of a first-generation adenoviral vector (Ad.CMV.EGFP) by CED in both small and large animal models. RESULTS: We show that Ad.CMV.EGFP can be efficiently distributed by CED over large volumes of brain. A threshold vector dose of between 10(7) and 10(9) pfu was seen in both rat striatum and white matter, above which transgene expression was lost at 30 days. Furthermore, all adenoviral infusions were associated with evidence of significant tissue damage, as demonstrated by loss of neurones and astrocytes or the presence of extensive astrocytosis. CONCLUSIONS: These results indicate that CED is capable of mediating widespread adenoviral vector distribution, although these vectors are associated with significant tissue toxicity that may render their safe application in clinical trials unfeasible.


Assuntos
Adenoviridae/imunologia , Convecção , Técnicas de Transferência de Genes , Vetores Genéticos/imunologia , Animais , Encéfalo/imunologia , Encéfalo/patologia , Vetores Genéticos/administração & dosagem , Infusões Intravenosas , Masculino , Microglia/imunologia , Microglia/patologia , Ratos , Ratos Wistar , Suínos , Transdução Genética , Tropismo Viral/imunologia
20.
Hum Gene Ther ; 22(2): 237-51, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20836701

RESUMO

Convection-enhanced delivery (CED) of recombinant adeno-associated virus (rAAV) vectors is a promising approach for delivery of therapeutic transgenes to the brain. In this study we have systematically examined vector dosing in vivo. Infusions of rAAV serotypes 2/1, 2/2, 2/rh8, 2/9, and 2/rh10 expressing an enhanced green fluorescent protein reporter gene were undertaken into the striatum of rats and pigs using CED. Vector distribution, as defined by the volume of distribution and number of transduced cells following each infusion, was determined using stereological methods. Immunohistochemistry was used to determine the transductional tropism of serotypes and to evaluate for the presence of immune cell infiltration into the brain. Vector distribution was highly variable between serotypes. Infusion rate had no significant effect on vector distribution or the occurrence of tissue damage. For serotypes 2/1, 2/2 and 2/rh10, as the vector concentration was increased beyond 10(12) vg/ml, no increase in vector distribution was observed. In contrast, for serotypes 2/rh8 and 2/9, retrograde axonal transport was observed above this threshold concentration. Cell transduction was principally neuronal for all serotypes and was associated with a low-level immune response. In planning clinical trials it is critical that these observations are considered in order to achieve optimal vector dosing.


Assuntos
Corpo Estriado/virologia , Dependovirus/genética , Vetores Genéticos , Neurônios/metabolismo , Neurônios/virologia , Animais , Convecção , Dependovirus/metabolismo , Terapia Genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Masculino , Modelos Animais , Ratos , Ratos Wistar , Suínos , Transdução Genética , Transgenes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA