Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Dis Model Mech ; 17(3)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38501211

RESUMO

Mitogen-activated protein 3 kinase 1 (MAP3K1) has a plethora of cell type-specific functions not yet fully understood. Herein, we describe a role for MAP3K1 in female reproductive tract (FRT) development. MAP3K1 kinase domain-deficient female mice exhibited an imperforate vagina, labor failure and infertility. These defects corresponded with shunted Müllerian ducts (MDs), the embryonic precursors of FRT, that manifested as a contorted caudal vagina and abrogated vaginal-urogenital sinus fusion in neonates. The MAP3K1 kinase domain is required for optimal activation of the Jun-N-terminal kinase (JNK) and cell polarity in the MD epithelium, and for upregulation of WNT signaling in the mesenchyme surrounding the caudal MD. The MAP3K1-deficient epithelial cells and MD epithelium had reduced expression of WNT7B ligands. Correspondingly, conditioned media derived from MAP3K1-competent, but not -deficient, epithelial cells activated a TCF/Lef-luciferase reporter in fibroblasts. These observations indicate that MAP3K1 regulates MD caudal elongation and FRT development, in part through the induction of paracrine factors in the epithelium that trans-activate WNT signaling in the mesenchyme.


Assuntos
Células Epiteliais , MAP Quinase Quinase Quinase 1 , Vagina , Animais , Feminino , Camundongos , Células Epiteliais/metabolismo , Epitélio/metabolismo , Vagina/metabolismo , Via de Sinalização Wnt , MAP Quinase Quinase Quinase 1/genética , MAP Quinase Quinase Quinase 1/metabolismo
2.
bioRxiv ; 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38293110

RESUMO

Copper (Cu) is an essential trace element required for mitochondrial respiration. Late-stage clear cell renal cell carcinoma (ccRCC) accumulates Cu and allocates it to mitochondrial cytochrome c oxidase. We show that Cu drives coordinated metabolic remodeling of bioenergy, biosynthesis and redox homeostasis, promoting tumor growth and progression of ccRCC. Specifically, Cu induces TCA cycle-dependent oxidation of glucose and its utilization for glutathione biosynthesis to protect against H 2 O 2 generated during mitochondrial respiration, therefore coordinating bioenergy production with redox protection. scRNA-seq determined that ccRCC progression involves increased expression of subunits of respiratory complexes, genes in glutathione and Cu metabolism, and NRF2 targets, alongside a decrease in HIF activity, a hallmark of ccRCC. Spatial transcriptomics identified that proliferating cancer cells are embedded in clusters of cells with oxidative metabolism supporting effects of metabolic states on ccRCC progression. Our work establishes novel vulnerabilities with potential for therapeutic interventions in ccRCC. Accumulation of copper is associated with progression and relapse of ccRCC and drives tumor growth.Cu accumulation and allocation to cytochrome c oxidase (CuCOX) remodels metabolism coupling energy production and nucleotide biosynthesis with maintenance of redox homeostasis.Cu induces oxidative phosphorylation via alterations in the mitochondrial proteome and lipidome necessary for the formation of the respiratory supercomplexes. Cu stimulates glutathione biosynthesis and glutathione derived specifically from glucose is necessary for survival of Cu Hi cells. Biosynthesis of glucose-derived glutathione requires activity of glutamyl pyruvate transaminase 2, entry of glucose-derived pyruvate to mitochondria via alanine, and the glutamate exporter, SLC25A22. Glutathione derived from glucose maintains redox homeostasis in Cu-treated cells, reducing Cu-H 2 O 2 Fenton-like reaction mediated cell death. Progression of human ccRCC is associated with gene expression signature characterized by induction of ETC/OxPhos/GSH/Cu-related genes and decrease in HIF/glycolytic genes in subpopulations of cancer cells. Enhanced, concordant expression of genes related to ETC/OxPhos, GSH, and Cu characterizes metabolically active subpopulations of ccRCC cells in regions adjacent to proliferative subpopulations of ccRCC cells, implicating oxidative metabolism in supporting tumor growth.

3.
J Biol Chem ; 299(5): 104663, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37003503

RESUMO

Microtubule-associated protein 1 light chain 3 gamma (MAP1LC3C or LC3C) is a member of the microtubule-associated family of proteins that are essential in the formation of autophagosomes and lysosomal degradation of cargo. LC3C has tumor-suppressing activity, and its expression is dependent on kidney cancer tumor suppressors, such as von Hippel-Lindau protein and folliculin. Recently, we demonstrated that LC3C autophagy is regulated by noncanonical upstream regulatory complexes and targets for degradation postdivision midbody rings associated with cancer cell stemness. Here, we show that loss of LC3C leads to peripheral positioning of the lysosomes and lysosomal exocytosis (LE). This process is independent of the autophagic activity of LC3C. Analysis of isogenic cells with low and high LE shows substantial transcriptomic reprogramming with altered expression of zinc (Zn)-related genes and activity of polycomb repressor complex 2, accompanied by a robust decrease in intracellular Zn. In addition, metabolomic analysis revealed alterations in amino acid steady-state levels. Cells with augmented LE show increased tumor initiation properties and form aggressive tumors in xenograft models. Immunocytochemistry identified high levels of lysosomal-associated membrane protein 1 on the plasma membrane of cancer cells in human clear cell renal cell carcinoma and reduced levels of Zn, suggesting that LE occurs in clear cell renal cell carcinoma, potentially contributing to the loss of Zn. These data indicate that the reprogramming of lysosomal localization and Zn metabolism with implication for epigenetic remodeling in a subpopulation of tumor-propagating cancer cells is an important aspect of tumor-suppressing activity of LC3C.


Assuntos
Carcinoma de Células Renais , Exocitose , Neoplasias Renais , Lisossomos , Proteínas Associadas aos Microtúbulos , Zinco , Animais , Humanos , Autofagia , Carcinoma de Células Renais/metabolismo , Carcinoma de Células Renais/patologia , Neoplasias Renais/metabolismo , Neoplasias Renais/patologia , Lisossomos/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Zinco/metabolismo , Complexo Repressor Polycomb 2 , Epigênese Genética
4.
Head Neck ; 45(1): 212-224, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36271833

RESUMO

BACKGROUND: The objective was to assess secretion of small extracellular vesicular microRNA (exo-miRNA) in head and neck squamous cell carcinoma (HNSCC) according to human papillomavirus (HPV) status, and determine the translational potential as a liquid biopsy for early detection. METHODS: This study employed a combination of cell culture and case-control study design using archival pretreatment serum. Small extracellular vesicles (sEV) were isolated from conditioned culture media and human serum samples via differential ultracentrifugation. miRNA-sequencing was performed on each sEV isolate. RESULTS: There were clear exo-miRNA profiles that distinguished HNSCC cell lines from nonpathologic oral epithelial control cells. While there was some overlap among profiles across all samples, there were apparent differences in exo-miRNA profiles according to HPV-status. Importantly, differential exo-miRNA profiles were also apparent in serum from early-stage HNSCC cases relative to cancer-free controls. CONCLUSIONS: Our findings indicate that exo-miRNA are highly dysregulated in HNSCC and support the potential of exo-miRNA as biomarkers for HNSCC.


Assuntos
Neoplasias de Cabeça e Pescoço , MicroRNAs , Infecções por Papillomavirus , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , MicroRNAs/genética , Infecções por Papillomavirus/genética , Neoplasias de Cabeça e Pescoço/diagnóstico , Neoplasias de Cabeça e Pescoço/genética , Estudos de Casos e Controles , Biópsia Líquida , Papillomaviridae/genética
5.
Nat Commun ; 13(1): 4678, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35945222

RESUMO

There are only a few platforms that integrate multiple omics data types, bioinformatics tools, and interfaces for integrative analyses and visualization that do not require programming skills. Here we present iLINCS ( http://ilincs.org ), an integrative web-based platform for analysis of omics data and signatures of cellular perturbations. The platform facilitates mining and re-analysis of the large collection of omics datasets (>34,000), pre-computed signatures (>200,000), and their connections, as well as the analysis of user-submitted omics signatures of diseases and cellular perturbations. iLINCS analysis workflows integrate vast omics data resources and a range of analytics and interactive visualization tools into a comprehensive platform for analysis of omics signatures. iLINCS user-friendly interfaces enable execution of sophisticated analyses of omics signatures, mechanism of action analysis, and signature-driven drug repositioning. We illustrate the utility of iLINCS with three use cases involving analysis of cancer proteogenomic signatures, COVID 19 transcriptomic signatures and mTOR signaling.


Assuntos
COVID-19 , Neoplasias , COVID-19/genética , Biologia Computacional , Humanos , Neoplasias/genética , Software , Transcriptoma , Fluxo de Trabalho
6.
J Clin Invest ; 131(1)2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-32970633

RESUMO

BACKGROUNDClear cell renal cell carcinoma (ccRCC) is the most common histologically defined renal cancer. However, it is not a uniform disease and includes several genetic subtypes with different prognoses. ccRCC is also characterized by distinctive metabolic reprogramming. Tobacco smoking (TS) is an established risk factor for ccRCC, with unknown effects on tumor pathobiology.METHODSWe investigated the landscape of ccRCCs and paired normal kidney tissues using integrated transcriptomic, metabolomic, and metallomic approaches in a cohort of white males who were long-term current smokers (LTS) or were never smokers (NS).RESULTSAll 3 Omics domains consistently identified a distinct metabolic subtype of ccRCCs in LTS, characterized by activation of oxidative phosphorylation (OXPHOS) coupled with reprogramming of the malate-aspartate shuttle and metabolism of aspartate, glutamate, glutamine, and histidine. Cadmium, copper, and inorganic arsenic accumulated in LTS tumors, showing redistribution among intracellular pools, including relocation of copper into the cytochrome c oxidase complex. A gene expression signature based on the LTS metabolic subtype provided prognostic stratification of The Cancer Genome Atlas ccRCC tumors that was independent of genomic alterations.CONCLUSIONThe work identified the TS-related metabolic subtype of ccRCC with vulnerabilities that can be exploited for precision medicine approaches targeting metabolic pathways. The results provided rationale for the development of metabolic biomarkers with diagnostic and prognostic applications using evaluation of OXPHOS status. The metallomic analysis revealed the role of disrupted metal homeostasis in ccRCC, highlighting the importance of studying effects of metals from e-cigarettes and environmental exposures.FUNDINGDepartment of Defense, Veteran Administration, NIH, ACS, and University of Cincinnati Cancer Institute.


Assuntos
Carcinoma de Células Renais/metabolismo , Reprogramação Celular , Neoplasias Renais/metabolismo , Fumar Tabaco/efeitos adversos , Fumar Tabaco/metabolismo , Carcinoma de Células Renais/patologia , Feminino , Humanos , Neoplasias Renais/patologia , Masculino , Fumar Tabaco/patologia
7.
Epigenetics ; 16(12): 1361-1376, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33319643

RESUMO

Hexavalent chromium compounds are well-established respiratory carcinogens to which humans are commonly exposed in industrial and occupational settings. In addition, natural and anthropogenic sources of these compounds contribute to the exposure of global populations through multiple routes, including dermal, ingestion and inhalation that elevate the risk of cancer by largely unresolved mechanisms. Cr(VI) has genotoxic properties that include ternary adduct formation with DNA, increases in DNA damage, mostly by double-strand break formation, and altered transcriptional responses. Our previous work using ATAC-seq showed that CTCF motifs were enriched in Cr(VI)-dependent differentially accessible chromatin, suggesting that CTCF, a key transcription factor responsible for the regulation of the transcriptome, might be a chromium target. To test this hypothesis, we investigated the effect of Cr(VI) treatment on the binding of CTCF to its cognate sites and ensuing changes in transcription-related histone modifications. Differentially bound CTCF sites were enriched by Cr(VI) treatment within transcription-related regions, specifically transcription start sites and upstream genic regions. Functional annotation of the affected genes highlighted biological processes previously associated with Cr(VI) exposure. Notably, we found that differentially bound CTCF sites proximal to the promoters of this subset of genes were frequently associated with the active histone marks H3K27ac, H3K4me3, and H3K36me3, in agreement with the concept that Cr(VI) targets CTCF in euchromatic regions of the genome. Our results support the conclusion that Cr(VI) treatment promotes the differential binding of CTCF to its cognate sites in genes near transcription-active boundaries, targeting these genes for dysregulation.


Assuntos
Metilação de DNA , Eucromatina , Cromatina , Cromo , Humanos
8.
Environ Health Perspect ; 128(12): 127005, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33296240

RESUMO

BACKGROUND: Bisphenol A (BPA) is known to be biologically active in experimental models even at low levels of exposure. However, its impact on endometrial cancer remains unclear. OBJECTIVES: This study aimed to investigate whether lifelong exposure to different doses of BPA induced uterine abnormalities and molecular changes in a rat model. METHODS: Sprague-Dawley rats were exposed to 5 doses of BPA [0, 25, 250, 2,500, or 25,000µg/kg body weight (BW)/d] or 2 doses of 17α-ethynylestradiol (EE2) (0.05 and 0.5µg/kg BW/d) starting from gestational day 6 up to 1 y old according to the CLARITY-BPA consortium protocol. The BW, uterus weight, and histopathology end points of the uteri were analyzed at postnatal (PND) day 21, 90, and 365. Estrous cycling status was evaluated in PND90 and PND365 rats. Transcriptomic analyses of estrus stage uteri were conducted on PND365 rats. RESULTS: Based on the analysis of the combined effects of all testing outcomes (including immunohistological, morphological, and estrous cycle data) in a semiblinded fashion, using statistical models, 25µg/kg BW/d BPA [BPA(25)], or 250µg/kg BW/d BPA [BPA(250)] exerted effects similar to that of EE2 at 0.5µg/kg BW/d in 1-y-old rats. Transcriptome analyses of estrus stage uteri revealed a set of 710 genes shared only between the BPA(25) and BPA(250) groups, with 115 of them predicted to be regulated by estradiol and 57 associated with female cancers. An interesting finding is that the expression of 476 human orthologous genes in this rat BPA signature robustly predicted the overall survival (p=1.68×10-5, hazard ratio=2.62) of endometrial cancer patients. DISCUSSION: Lifelong exposure of rats to low-dose BPA at 25 and 250µg/kg BW/d altered the estrous cycle and uterine pathology with similarity to EE2. The exposure also disrupted a unique low-dose BPA-gene signature with predictive value for survival outcomes in patients with endometrial cancer. https://doi.org/10.1289/EHP6875.


Assuntos
Compostos Benzidrílicos/toxicidade , Fenóis/toxicidade , Testes de Toxicidade , Animais , Relação Dose-Resposta a Droga , Neoplasias do Endométrio , Feminino , Ratos
9.
PLoS One ; 15(3): e0229801, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32163428

RESUMO

We report the synthesis and preliminary characterization of IODVA1, a potent small molecule that is active in xenograft mouse models of Ras-driven lung and breast cancers. In an effort to inhibit oncogenic Ras signaling, we combined in silico screening with inhibition of proliferation and colony formation of Ras-driven cells. NSC124205 fulfilled all criteria. HPLC analysis revealed that NSC124205 was a mixture of at least three compounds, from which IODVA1 was determined to be the active component. IODVA1 decreased 2D and 3D cell proliferation, cell spreading and ruffle and lamellipodia formation through downregulation of Rac activity. IODVA1 significantly impaired xenograft tumor growth of Ras-driven cancer cells with no observable toxicity. Immuno-histochemistry analysis of tumor sections suggests that cell death occurs by increased apoptosis. Our data suggest that IODVA1 targets Rac signaling to induce death of Ras-transformed cells. Therefore, IODVA1 holds promise as an anti-tumor therapeutic agent.


Assuntos
Antineoplásicos/farmacologia , Benzimidazóis/farmacologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Proteínas ras/antagonistas & inibidores , Animais , Antineoplásicos/síntese química , Antineoplásicos/uso terapêutico , Benzimidazóis/síntese química , Benzimidazóis/uso terapêutico , Proliferação de Células/efeitos dos fármacos , Feminino , Células HEK293 , Humanos , Células MCF-7 , Camundongos , Camundongos Nus , Células NIH 3T3 , Ensaio Tumoral de Célula-Tronco , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Epigenomics ; 11(9): 987-1002, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31215230

RESUMO

Aim: The goal of this study was to comprehensively interrogate and map DNA methylation across 16 CpG-dense regions previously associated with oral and pharyngeal squamous cell carcinoma (OPSCC). Materials & methods: Targeted multiplex bisulfite amplicon sequencing was performed on four OPSCC cell lines and primary non-neoplastic oral epithelial cells. Real-time quantitative polymerase chain reaction (RT-qPCR) was performed for a subset of associated genes. Results: There was clear differential methylation between one or more OPSCC cell lines and control cells for the majority of CpG-dense regions. Conclusion: Targeted multiplex bisulfite amplicon sequencing allowed us to efficiently map methylation across the entire region of interest with a high degree of sensitivity and helps shed light on novel differentially methylated regions that may have value as biomarkers of OPSCC.


Assuntos
Biomarcadores/análise , Carcinoma de Células Escamosas/genética , Ilhas de CpG/genética , Epigenômica , Neoplasias Bucais/genética , Neoplasias Faríngeas/genética , Biologia Computacional , Metilação de DNA , Análise de Sequência de DNA
11.
RNA Biol ; 16(1): 5-12, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30604646

RESUMO

Ultracentrifugation remains the gold standard for isolation of small extracellular vesicles (sEV), particularly for cancer applications. The objective of this study was to determine if a widely used ultracentrifugation protocol for isolation of serum sEV could be modified to reduce the number of ultracentrifugation cycles and increase efficiency, while maintaining equal or better sample purity and yield. Serum was obtained from two healthy subjects. sEVs were isolated from 1 mL aliquots using three different ultracentrifugation protocols. Co-isolation of RNA carrier protein was assessed by performing Western blots for ApoA-I, ApoB, and Ago2. Small RNA-sequencing was performed on the sEV isolates, and differential detection of small ncRNA was compared across isolation protocols. Reduction from three- to two-ultracentrifuge cycles with no sucrose cushion resulted in a much higher sEV yield but also had the highest levels of lipoprotein and Ago2 contamination. However, the two-ultracentrifugation cycle protocol that incorporated a 30% sucrose cushion into the first cycle resulted in slightly higher sEV yields with lower levels of protein contamination compared to the lengthier three-ultracentrifugation cycle approach, therefore presenting a more efficient alternative approach for isolation of serum sEVs. It was also notable that there were some differences in sEV ncRNA cargo according to protocol, although it was less than expected given the differences in co-isolated RNA carrier proteins. Our results suggest that use of the modified serum sEV isolation protocol with two ultracentrifugation cycles and incorporating a 30% sucrose cushion offers a more efficient approach in terms of efficiency and purity.


Assuntos
Vesículas Extracelulares , Soro/química , Ultracentrifugação , Biomarcadores , Centrifugação com Gradiente de Concentração , Exossomos/metabolismo , Exossomos/ultraestrutura , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/ultraestrutura , Feminino , Humanos , Masculino , MicroRNAs , RNA não Traduzido , Ultracentrifugação/métodos
12.
Cell Mol Gastroenterol Hepatol ; 7(1): 161-184, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30522949

RESUMO

BACKGROUND & AIMS: Our goal was to develop an initial study for the proof of concept whereby gastric cancer organoids are used as an approach to predict the tumor response in individual patients. METHODS: Organoids were derived from resected gastric cancer tumors (huTGOs) or normal stomach tissue collected from sleeve gastrectomies (huFGOs). Organoid cultures were treated with standard-of-care chemotherapeutic drugs corresponding to patient treatment: epirubicin, oxaliplatin, and 5-fluorouracil. Organoid response to chemotherapeutic treatment was correlated with the tumor response in each patient from whom the huTGOs were derived. HuTGOs were orthotopically transplanted into the gastric mucosa of NOD scid gamma mice. RESULTS: Whereas huFGOs exhibited a half maximal inhibitory concentration that was similar among organoid lines, divergent responses and varying half maximal inhibitory concentration values among the huTGO lines were observed in response to chemotherapeutic drugs. HuTGOs that were sensitive to treatment were derived from a patient with a near complete tumor response to chemotherapy. However, organoids resistant to treatment were derived from patients who exhibited no response to chemotherapy. Orthotropic transplantation of organoids resulted in the engraftment and development of human adenocarcinoma. RNA sequencing revealed that huTGOs closely resembled the patient's native tumor tissue and not commonly used gastric cancer cell lines and cell lines derived from the organoid cultures. CONCLUSIONS: The treatment of patient-derived organoids alongside patients from whom cultures were derived will ultimately test their usefulness to predict individual therapy response and patient outcome.


Assuntos
Organoides/patologia , Neoplasias Gástricas/patologia , Ensaios Antitumorais Modelo de Xenoenxerto , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/patologia , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Proliferação de Células/efeitos dos fármacos , Epirubicina/farmacologia , Epirubicina/uso terapêutico , Epitélio/efeitos dos fármacos , Epitélio/patologia , Fluoruracila/farmacologia , Fluoruracila/uso terapêutico , Ontologia Genética , Humanos , Concentração Inibidora 50 , Camundongos , Organoides/efeitos dos fármacos , Oxaliplatina/farmacologia , Oxaliplatina/uso terapêutico , Fenótipo , Receptor ErbB-2/metabolismo , Reprodutibilidade dos Testes , Análise de Sequência de RNA , Neoplasias Gástricas/tratamento farmacológico
13.
Epigenetics ; 13(4): 363-375, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29561703

RESUMO

Hexavalent chromium compounds are well-established respiratory carcinogens used in industrial processes. While inhalation exposure constitutes an occupational risk affecting mostly chromium workers, environmental exposure from drinking water is a widespread gastrointestinal cancer risk, affecting millions of people throughout the world. Cr(VI) is genotoxic, forming protein-Cr-DNA adducts and silencing tumor suppressor genes, but its mechanism of action at the molecular level is poorly understood. Our prior work using FAIRE showed that Cr(VI) disrupted the binding of transcription factors CTCF and AP-1 to their cognate chromatin sites. Here, we used two complementary approaches to test the hypothesis that chromium perturbs chromatin organization and dynamics. DANPOS2 analyses of MNase-seq data identified several chromatin alterations induced by Cr(VI) affecting nucleosome architecture, including occupancy changes at specific genome locations; position shifts of 10 nucleotides or more; and changes in position amplitude or fuzziness. ATAC-seq analysis revealed that Cr(VI) disrupted the accessibility of chromatin regions enriched for CTCF and AP-1 binding motifs, with a significant co-occurrence of binding sites for both factors in the same region. Cr(VI)-enriched CTCF sites were confirmed by ChIP-seq and found to correlate with evolutionarily conserved sites occupied by CTCF in vivo, as determined by comparison with ENCODE-validated CTCF datasets from mouse liver. In addition, more than 30% of the Cr(VI)-enriched CTCF sites were located in promoters of genes differentially expressed from chromium treatment. Our results support the conclusion that Cr(VI) exposure promotes broad changes in chromatin accessibility and suggest that the subsequent effects on transcription regulation may result from disruption of CTCF binding and nucleosome spacing, implicating transcription regulatory mechanisms as primary Cr(VI) targets.


Assuntos
Fator de Ligação a CCCTC/metabolismo , Cromatina/genética , Cromo/efeitos adversos , Regiões Promotoras Genéticas/efeitos dos fármacos , Análise de Sequência de DNA/métodos , Animais , Sítios de Ligação , Linhagem Celular , Cromatina/química , Cromatina/efeitos dos fármacos , Cromatina/metabolismo , Montagem e Desmontagem da Cromatina/efeitos dos fármacos , Água Potável/efeitos adversos , Água Potável/química , Regulação da Expressão Gênica/efeitos dos fármacos , Fígado/química , Fígado/efeitos dos fármacos , Camundongos , Ligação Proteica/efeitos dos fármacos
14.
Head Neck ; 40(7): 1555-1564, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29575229

RESUMO

BACKGROUND: Long non-coding RNA (lncRNA) has emerged as a new avenue of interest due to its various biological functions in cancer. Abnormal expression of lncRNA has been reported in other malignancies but has been understudied in head and neck squamous cell carcinoma (HNSCC). METHODS: The lncRNA expression was interrogated via quantitative real-time polymerase chain reaction (qRT-PCR) array for 19 human papillomavirus (HPV)-negative HNSCC tumor-normal pairs. The Cancer Genome Atlas (TCGA) was used to validate these results. The association between differentially expressed lncRNA and survival outcomes was analyzed. RESULTS: Differential expression was validated for 5 lncRNA (SPRY4-IT1, HEIH, LUCAT1, LINC00152, and HAND2-AS1). There was also an inverse association between MEG3 expression (not significantly differentially expressed in TCGA tumors but highly variable expression) and 3-year recurrence-free survival (RFS). CONCLUSION: We identified and validated differential expression of 5 lncRNA in HPV-negative HNSCC. Low MEG3 expression was associated with favorable 3-year RFS, although the significance of this finding remains unclear.


Assuntos
Carcinoma de Células Escamosas/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias de Cabeça e Pescoço/genética , RNA Longo não Codificante/metabolismo , Idoso , Idoso de 80 Anos ou mais , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/mortalidade , Bases de Dados de Ácidos Nucleicos , Intervalo Livre de Doença , Feminino , Neoplasias de Cabeça e Pescoço/metabolismo , Neoplasias de Cabeça e Pescoço/mortalidade , Humanos , Masculino , Pessoa de Meia-Idade , Recidiva Local de Neoplasia , Papillomaviridae , Prognóstico , Modelos de Riscos Proporcionais , RNA Neoplásico/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sobrevida
15.
Oncotarget ; 8(47): 82459-82474, 2017 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-29137278

RESUMO

Exosomes are nano-scale, membrane encapsulated vesicles that are released by cells into the extracellular space and function as intercellular signaling vectors through horizontal transfer of biologic molecules, including microRNA (miRNA). There is evidence that cancer-derived exosomes enable the tumor to manipulate its microenvironment, thus contributing to the capacity of the tumor for immune evasion, growth, invasion, and metastatic spread. The objective of this study was to characterize differential secretion of exosomal miRNA by head and neck squamous cell carcinoma (HNSCC) and identify a set of candidate biomarkers that could be detected in non-invasive saliva samples. We isolated exosomes from conditioned media from 4 HNSCC cell lines and oral epithelial control cells and applied miRNA-sequencing to comprehensively characterize their miRNA cargo and compare transcript levels of each HNSCC cell line to that of oral epithelial control cells. A candidate set of miRNA differentially secreted by all 4 HNSCC cell lines was further evaluated in saliva collected from HNSCC patients and healthy controls. We observed extensive differences in exosomal miRNA content between HNSCC cells when compared to normal oral epithelial control cells, with a high degree of overlap in exosomal miRNA profiles between the 4 distinct HNSCC cell lines. Importantly, several of the exosomal miRNA secreted solely by cancer cells in culture were detected at substantially elevated levels in saliva from HNSCC patients relative to saliva from healthy controls. These findings provide important insight into tumor biology and yields a promising set of candidate HNSCC biomarkers for use with non-invasive saliva samples.

16.
J Pathol ; 242(4): 463-475, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28497484

RESUMO

The CD44 gene encodes several protein isoforms due to alternative splicing and post translational modifications. Given that CD44 variant isoform 9 (CD44v9) is expressed within Spasmolytic Polypeptide/TFF2-Expressing Metaplasia (SPEM) glands during repair, CD44v9 may be play a funcitonal role during the process of regeneration of the gastric epithelium. Here we hypothesize that CD44v9 marks a regenerative cell lineage responsive to infiltrating macrophages during regeneration of the gastric epithelium. Ulcers were induced in CD44-deficient (CD44KO) and C57BL/6 (BL6) mice by a localized application of acetic acid to the serosal surface of the stomach. Gastric organoids expressing CD44v9 were derived from mouse stomachs and transplanted at the ulcer site of CD44KO mice. Ulcers, CD44v9 expression, proliferation and histology were measured 1, 3, 5 and 7-days post-injury. Human-derived gastric organoids were generated from stomach tissue collected from elderly (>55 years) or young (14-20 years) patients. Organoids were transplanted into the stomachs of NOD scid gamma (NSG) mice at the site of injury. Gastric injury was induced in NRG-SGM3 (NRGS) mice harboring human-derived immune cells (hnNRGS) and the immune profile anlayzed by CyTOF. CD44v9 expression emerged within regenerating glands the ulcer margin in response to injury. While ulcers in BL6 mice healed within 7-days post-injury, CD44KO mice exhibited loss of repair and epithelial regeneration. Ulcer healing was promoted in CD44KO mice by transplanted CD55v9-expressing gastric organoids. NSG mice exhibited loss of CD44v9 expression and gastric repair. Transplantation of human-derived gastric organoids from young, but not aged stomachs promoted repair in NSG mouse stomachs in response to injury. Finally, compared to NRGS mice, huNRGS animals exhibited reduced ulcer sizes, an infiltration of human CD162+ macrophages and an emergence of CD44v9 expression in SPEM. Thus, during repair of the gastic epithelium CD44v9 emerges within a regenerative cell lineage that coincides with macrophage inflitration within the injured mucosa. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Assuntos
Mucosa Gástrica/fisiologia , Receptores de Hialuronatos/genética , Regeneração/fisiologia , Úlcera Gástrica/metabolismo , Adolescente , Fatores Etários , Idoso , Animais , Células Cultivadas , Mucosa Gástrica/patologia , Variação Genética/fisiologia , Humanos , Receptores de Hialuronatos/metabolismo , Receptores de Hialuronatos/fisiologia , Macrófagos/fisiologia , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos Knockout , Pessoa de Meia-Idade , Organoides/citologia , Organoides/transplante , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/fisiologia , Regeneração/genética , Úlcera Gástrica/genética , Úlcera Gástrica/patologia , Cicatrização/fisiologia , Adulto Jovem
17.
Placenta ; 42: 93-105, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27238719

RESUMO

This study aims to determine whether placental examination can be used to distinguish between pathologic fetal growth restriction (FGR) and constitutional fetal smallness. Data were extracted from a clinicoplacental database of high risk pregnancies during the period 1994-2013. These data were used to compare the 590 consecutive cases having birth weights below the 10th percentile with the 5201 remaining cases having gestational ages ≥20 weeks. The authors analyzed 20 clinical and 46 placental phenotypes using classical statistics, clustering analysis, and multidimensional scaling. Of the low-birth-weight babies, the following types of cases were compared: Four categories of placental phenotypes (those with features of poor uteroplacental perfusion, postuterine placental pathology, chronic inflammation, and a mixed category) better defined the presumably true FGR than did the clinical phenotypes. Maternal smoking and oligohydramnios were associated with fewer abnormal placental phenotypes than were maternal hypertensive diseases and abnormal Dopplers. Early-onset cases of fetal smallness clustered with placental features of poor uteroplacental perfusion, whereas late onset cases did not. Placental examination helps to retrospectively distinguish constitutionally small fetuses from those that are pathologically growth restricted. The latter correlate best with the clinical risk for FGR and with early-onset FGR. This correlation may have prognostic significance for the child and for future pregnancies, since hypoxic placental lesions can occur without clinical risk factors but with a tendency to recur in future pregnancies.


Assuntos
Peso ao Nascer/imunologia , Retardo do Crescimento Fetal/diagnóstico , Fenótipo , Placenta/patologia , Adulto , Análise por Conglomerados , Feminino , Retardo do Crescimento Fetal/classificação , Retardo do Crescimento Fetal/patologia , Humanos , Recém-Nascido de Baixo Peso , Recém-Nascido , Gravidez , Estudos Retrospectivos
18.
Sci Rep ; 5: 14538, 2015 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-26419724

RESUMO

Emergence of genetic resistance against kinase inhibitors poses a great challenge for durable therapeutic response. Here, we report a novel mechanism of JAK2 kinase inhibition by fedratinib (TG101348) that prevents emergence of genetic resistance. Using in vitro drug screening, we identified 211 amino-acid substitutions conferring resistance to ruxolitinib (INCB018424) and cross-resistance to the JAK2 inhibitors AZD1480, CYT-387 and lestaurtinib. In contrast, these resistant variants were fully sensitive to fedratinib. Structural modeling, coupled with mutagenesis and biochemical studies, revealed dual binding sites for fedratinib. In vitro binding assays using purified proteins showed strong affinity for the substrate-binding site (Kd = 20 nM) while affinity for the ATP site was poor (Kd = ~8 µM). Our studies demonstrate that mutations affecting the substrate-binding pocket encode a catalytically incompetent kinase, thereby preventing emergence of resistant variants. Most importantly, our data suggest that in order to develop resistance-free kinase inhibitors, the next-generation drug design should target the substrate-binding site.


Assuntos
Sítios de Ligação , Domínio Catalítico , Resistência a Medicamentos/genética , Janus Quinase 2/química , Janus Quinase 2/genética , Inibidores de Proteínas Quinases/química , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Regulação Alostérica , Substituição de Aminoácidos , Códon , Resistência a Múltiplos Medicamentos/genética , Humanos , Janus Quinase 2/antagonistas & inibidores , Janus Quinase 2/metabolismo , Modelos Moleculares , Conformação Molecular , Mutagênese Sítio-Dirigida , Mutação , Nitrilas , Domínios e Motivos de Interação entre Proteínas/genética , Inibidores de Proteínas Quinases/farmacologia , Pirazóis/química , Pirazóis/farmacologia , Pirimidinas , Pirrolidinas/química , Pirrolidinas/farmacologia , Especificidade por Substrato , Sulfonamidas/química , Sulfonamidas/farmacologia
19.
J Biol Chem ; 290(20): 12879-98, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25825487

RESUMO

The Ras family small GTPases regulate multiple cellular processes, including cell growth, survival, movement, and gene expression, and are intimately involved in cancer pathogenesis. Activation of these small GTPases is catalyzed by a special class of enzymes, termed guanine nucleotide exchange factors (GEFs). Herein, we developed a small molecule screening platform for identifying lead hits targeting a Ras GEF enzyme, SOS1. We employed an ensemble structure-based virtual screening approach in combination with a multiple tier high throughput experimental screen utilizing two complementary fluorescent guanine nucleotide exchange assays to identify small molecule inhibitors of GEF catalytic activity toward Ras. From a library of 350,000 compounds, we selected a set of 418 candidate compounds predicted to disrupt the GEF-Ras interaction, of which dual wavelength GDP dissociation and GTP-loading experimental screening identified two chemically distinct small molecule inhibitors. Subsequent biochemical validations indicate that they are capable of dose-dependently inhibiting GEF catalytic activity, binding to SOS1 with micromolar affinity, and disrupting GEF-Ras interaction. Mutagenesis studies in conjunction with structure-activity relationship studies mapped both compounds to different sites in the catalytic pocket, and both inhibited Ras signaling in cells. The unique screening platform established here for targeting Ras GEF enzymes could be broadly useful for identifying lead inhibitors for a variety of small GTPase-activating GEF reactions.


Assuntos
Inibidores Enzimáticos , Proteínas Ativadoras de ras GTPase/antagonistas & inibidores , Fatores ras de Troca de Nucleotídeo Guanina/antagonistas & inibidores , Relação Dose-Resposta a Droga , Sistemas de Liberação de Medicamentos/métodos , Avaliação Pré-Clínica de Medicamentos/métodos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Humanos , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Proteínas Ativadoras de ras GTPase/genética , Proteínas Ativadoras de ras GTPase/metabolismo , Fatores ras de Troca de Nucleotídeo Guanina/genética , Fatores ras de Troca de Nucleotídeo Guanina/metabolismo
20.
Cancer Cell ; 26(5): 738-53, 2014 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-25517751

RESUMO

Autophagy promotes tumor growth by generating nutrients from the degradation of intracellular structures. Here we establish, using shRNAs, a dominant-negative mutant, and a pharmacologic inhibitor, mefenamic acid (MFA), that the Transient Receptor Potential Melastatin 3 (TRPM3) channel promotes the growth of clear cell renal cell carcinoma (ccRCC) and stimulates MAP1LC3A (LC3A) and MAP1LC3B (LC3B) autophagy. Increased expression of TRPM3 in RCC leads to Ca(2+) influx, activation of CAMKK2, AMPK, and ULK1, and phagophore formation. In addition, TRPM3 Ca(2+) and Zn(2+) fluxes inhibit miR-214, which directly targets LC3A and LC3B. The von Hippel-Lindau tumor suppressor (VHL) represses TRPM3 directly through miR-204 and indirectly through another miR-204 target, Caveolin 1 (CAV1).


Assuntos
Autofagia , Carcinoma de Células Renais/patologia , Neoplasias Renais/patologia , MicroRNAs/fisiologia , Canais de Cátion TRPM/genética , Animais , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/metabolismo , Caveolina 1/metabolismo , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Humanos , Neoplasias Renais/genética , Camundongos Nus , Transplante de Neoplasias , Oncogenes , Interferência de RNA , Canais de Cátion TRPM/metabolismo , Carga Tumoral , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA