Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Hum Mol Genet ; 30(5): 381-392, 2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33600551

RESUMO

The human ATP synthase is an assembly of 29 subunits of 18 different types, of which only two (a and 8) are encoded in the mitochondrial genome. Subunit a, together with an oligomeric ring of c-subunit (c-ring), forms the proton pathway responsible for the transport of protons through the mitochondrial inner membrane, coupled to rotation of the c-ring and ATP synthesis. Neuromuscular diseases have been associated to a number of mutations in the gene encoding subunit a, ATP6. The most common, m.8993 T > G, leads to replacement of a strictly conserved leucine residue with arginine (aL156R). We previously showed that the equivalent mutation (aL173R) dramatically compromises respiratory growth of Saccharomyces cerevisiae and causes a 90% drop in the rate of mitochondrial ATP synthesis. Here, we isolated revertants from the aL173R strain that show improved respiratory growth. Four first-site reversions at codon 173 (aL173M, aL173S, aL173K and aL173W) and five second-site reversions at another codon (aR169M, aR169S, aA170P, aA170G and aI216S) were identified. Based on the atomic structures of yeast ATP synthase and the biochemical properties of the revertant strains, we propose that the aL173R mutation is responsible for unfavorable electrostatic interactions that prevent the release of protons from the c-ring into a channel from which protons move from the c-ring to the mitochondrial matrix. The results provide further evidence that yeast aL173 (and thus human aL156) optimizes the exit of protons from ATP synthase, but is not essential despite its strict evolutionary conservation.


Assuntos
Mitocôndrias/genética , ATPases Mitocondriais Próton-Translocadoras/genética , Subunidades Proteicas/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Complexos de ATP Sintetase/genética , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , DNA Mitocondrial , Genes Mitocondriais , Humanos , Modelos Moleculares , Mutação , Domínios Proteicos , Subunidades Proteicas/metabolismo , Prótons
2.
Cell ; 158(6): 1293-1308, 2014 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-25215488

RESUMO

Fat (Ft) cadherins are enormous cell adhesion molecules that function at the cell surface to regulate the tumor-suppressive Hippo signaling pathway and planar cell polarity (PCP) tissue organization. Mutations in Ft cadherins are found in a variety of tumors, and it is presumed that this is due to defects in either Hippo signaling or PCP. Here, we show Drosophila Ft functions in mitochondria to directly regulate mitochondrial electron transport chain integrity and promote oxidative phosphorylation. Proteolytic cleavage releases a soluble 68 kDa fragment (Ft(mito)) that is imported into mitochondria. Ft(mito) binds directly to NADH dehydrogenase ubiquinone flavoprotein 2 (Ndufv2), a core component of complex I, stabilizing the holoenzyme. Loss of Ft leads to loss of complex I activity, increases in reactive oxygen species, and a switch to aerobic glycolysis. Defects in mitochondrial activity in ft mutants are independent of Hippo and PCP signaling and are reminiscent of the Warburg effect.


Assuntos
Caderinas/metabolismo , Moléculas de Adesão Celular/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Mitocôndrias/metabolismo , Sequência de Aminoácidos , Animais , Moléculas de Adesão Celular/química , Polaridade Celular , Proteínas de Drosophila/química , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Complexo I de Transporte de Elétrons/metabolismo , Olho/crescimento & desenvolvimento , Genes Supressores de Tumor , Humanos , MAP Quinase Quinase 4/metabolismo , Dados de Sequência Molecular , Transporte Proteico , Espécies Reativas de Oxigênio/metabolismo , Asas de Animais/crescimento & desenvolvimento
3.
J Biol Chem ; 282(47): 34039-47, 2007 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-17855363

RESUMO

NARP (neuropathy, ataxia, and retinitis pigmentosa) and MILS (maternally inherited Leigh syndrome) are mitochondrial disorders associated with point mutations of the mitochondrial DNA (mtDNA) in the gene encoding the Atp6p subunit of the ATP synthase. The most common and studied of these mutations is T8993G converting the highly conserved leucine 156 into arginine. We have introduced this mutation at the corresponding position (183) of yeast Saccharomyces cerevisiae mitochondrially encoded Atp6p. The "yeast NARP mutant" grew very slowly on respiratory substrates, possibly because mitochondrial ATP synthesis was only 10% of the wild type level. The mutated ATP synthase was found to be correctly assembled and present at nearly normal levels (80% of the wild type). Contrary to what has been reported for human NARP cells, the reverse functioning of the ATP synthase, i.e. ATP hydrolysis in the F(1) coupled to F(0)-mediated proton translocation out of the mitochondrial matrix, was significantly compromised in the yeast NARP mutant. Interestingly, the oxygen consumption rate in the yeast NARP mutant was decreased by about 80% compared with the wild type, due to a selective lowering in cytochrome c oxidase (complex IV) content. This finding suggests a possible regulatory mechanism between ATP synthase activity and complex IV expression in yeast mitochondria. The availability of a yeast NARP model could ease the search for rescuing mechanisms against this mitochondrial disease.


Assuntos
Ataxia/enzimologia , Doença de Leigh/enzimologia , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Modelos Biológicos , Retinose Pigmentar/enzimologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Trifosfato de Adenosina/biossíntese , Trifosfato de Adenosina/genética , Substituição de Aminoácidos , Ataxia/genética , Complexo IV da Cadeia de Transporte de Elétrons/genética , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Hidrólise , Mitocôndrias/enzimologia , Mitocôndrias/genética , ATPases Mitocondriais Próton-Translocadoras/genética , Mutação de Sentido Incorreto , Consumo de Oxigênio/genética , Prótons , Retinose Pigmentar/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA