Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Bioorg Chem ; 138: 106615, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37244229

RESUMO

A series of nine novel ether phospholipid-dinitroaniline hybrids were synthesized in an effort to deliver more potent antiparasitic agents with improved safety profile compared to miltefosine. The compounds were evaluated for their in vitro antiparasitic activity against L. infantum, L.donovani, L. amazonensis, L. major and L. tropica promastigotes, L. infantum and L. donovani intracellular amastigotes, Trypanosoma brucei brucei and against different developmental stages of Trypanosoma cruzi. The nature of the oligomethylene spacer between the dinitroaniline moiety and the phosphate group, the length of the side chain substituent on the dinitroaniline and the choline or homocholine head group were found to affect both the activity and toxicity of the hybrids. The early ADMET profile of the derivatives did not reveal major liabilities. Hybrid 3, bearing an 11-carbon oligomethylene spacer, a butyl side chain and a choline head group, was the most potent analogue of the series. It exhibited a broad spectrum antiparasitic profile against the promastigotes of New and Old World Leishmania spp., against intracellular amastigotes of two L. infantum strains and L. donovani, against T. brucei and against T. cruzi Y strain epimastigotes, intracellular amastigotes and trypomastigotes. The early toxicity studies revealed that hybrid 3 showed a safe toxicological profile while its cytotoxicity concentration (CC50) against THP-1 macrophages being >100 µM. Computational analysis of binding sites and docking indicated that the interaction of hybrid 3 with trypanosomatid α-tubulin may contribute to its mechanism of action. Furthermore, compound 3 was found to interfere with the cell cycle in T. cruzi epimastigotes, while ultrastructural studies using SEM and TEM in T. cruzi showed that compound 3 affects cellular processes that result in changes in the Golgi complex, the mitochondria and the parasite's plasma membrane. The snapshot pharmacokinetic studies showed low levels of 3 after 24 h following oral administration of 100 mg/Kg, while, its homocholine congener compound 9 presented a better pharmacokinetic profile.


Assuntos
Antiprotozoários , Doença de Chagas , Trypanosoma cruzi , Humanos , Antiparasitários/farmacologia , Antiprotozoários/farmacologia , Éteres Fosfolipídicos/uso terapêutico , Doença de Chagas/tratamento farmacológico , Colina/uso terapêutico
2.
Molecules ; 26(14)2021 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-34299479

RESUMO

A library of seventeen novel ether phospholipid analogues, containing 5-membered heterocyclic rings (1,2,3-triazolyl, isoxazolyl, 1,3,4-oxadiazolyl and 1,2,4-oxadiazolyl) in the lipid portion were designed and synthesized aiming to identify optimised miltefosine analogues. The compounds were evaluated for their in vitro antiparasitic activity against Leishmania infantum and Leishmania donovani intracellular amastigotes, against Trypanosoma brucei brucei and against different developmental stages of Trypanosoma cruzi. The nature of the substituents of the heterocyclic ring (tail) and the oligomethylene spacer between the head group and the heterocyclic ring was found to affect the activity and toxicity of these compounds leading to a significantly improved understanding of their structure-activity relationships. The early ADMET profile of the new derivatives did not reveal major liabilities for the potent compounds. The 1,2,3-triazole derivative 27 substituted by a decyl tail, an undecyl spacer and a choline head group exhibited broad spectrum antiparasitic activity. It possessed low micromolar activity against the intracellular amastigotes of two L. infantum strains and T. cruzi Y strain epimastigotes, intracellular amastigotes and trypomastigotes, while its cytotoxicity concentration (CC50) against THP-1 macrophages ranged between 50 and 100 µM. Altogether, our work paves the way for the development of improved ether phospholipid derivatives to control neglected tropical diseases.


Assuntos
Antiparasitários/síntese química , Antiparasitários/farmacologia , Doença de Chagas/tratamento farmacológico , Desenho de Fármacos , Leishmaniose/tratamento farmacológico , Macrófagos/efeitos dos fármacos , Fosfolipídeos/farmacologia , Doença de Chagas/parasitologia , Química Click , Humanos , Leishmania/efeitos dos fármacos , Leishmaniose/parasitologia , Relação Estrutura-Atividade , Trypanosoma cruzi/efeitos dos fármacos
3.
Methods Mol Biol ; 1971: 237-247, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30980307

RESUMO

Murine bone marrow-derived macrophages (BMMs) can be differentiated within 10 days from ex vivo bone marrow progenitor cells by supplementing the cell growth medium with colony stimulating factor-1 (CSF-1). Mature macrophages express specific myeloid markers which can be labeled and detected by flow cytometry (FACS).BMMs are a valuable tool to investigate the interactions between the Leishmania parasites and their host cell as well as to screen anti-Leishmania components. Options for the readout of in vitro infection experiments are diverse and may range from simple counting of intracellular parasites to the determination of metabolic changes of the intracellular parasite or the infected cell, thus providing the investigator with valuable results.


Assuntos
Células da Medula Óssea/parasitologia , Leishmania/crescimento & desenvolvimento , Leishmaniose/metabolismo , Macrófagos/parasitologia , Animais , Células da Medula Óssea/metabolismo , Células da Medula Óssea/patologia , Diferenciação Celular , Células Cultivadas , Feminino , Leishmaniose/patologia , Fator Estimulador de Colônias de Macrófagos/farmacologia , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos , Camundongos Endogâmicos BALB C
4.
Methods Mol Biol ; 1971: 249-263, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30980308

RESUMO

While infecting humans and other mammals, Leishmania spp. are obligate intracellular parasites. Therefore, for the purpose of therapeutic intervention and the study of infectivity, the relevant form of Leishmania spp. is the intracellular amastigote. Therefore, monitoring intracellular parasite load is an essential requirement in many fields of Leishmania research. Real-time quantitative PCR is a highly accurate technique for the detection and quantification of parasite burden in in vitro or in vivo infection experiments. The quantification of DNA for standard curves shows linearity over a 5 to 6-log concentration range indicating the high sensitivity of the method. Moreover, qPCR allows for the simultaneous quantification of host and parasite DNA in the same reaction, thereby allowing for an assessment of relative parasite load for basic research, but also for low- to medium-throughput compound screening. The method also allows to analyze late stages of in vitro infections where host cells and parasites have detached from surfaces and escape microscopy-based assays.


Assuntos
DNA de Protozoário/genética , Leishmania , Leishmaniose/diagnóstico , Estágios do Ciclo de Vida , Macrófagos/parasitologia , Reação em Cadeia da Polimerase em Tempo Real/métodos , Animais , Citoplasma/genética , Citoplasma/metabolismo , Citoplasma/parasitologia , Leishmania/genética , Leishmania/crescimento & desenvolvimento , Leishmaniose/genética , Leishmaniose/parasitologia , Macrófagos/metabolismo , Camundongos
5.
J Med Chem ; 59(16): 7598-616, 2016 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-27411733

RESUMO

Flavonoids represent a potential source of new antitrypanosomatidic leads. Starting from a library of natural products, we combined target-based screening on pteridine reductase 1 with phenotypic screening on Trypanosoma brucei for hit identification. Flavonols were identified as hits, and a library of 16 derivatives was synthesized. Twelve compounds showed EC50 values against T. brucei below 10 µM. Four X-ray crystal structures and docking studies explained the observed structure-activity relationships. Compound 2 (3,6-dihydroxy-2-(3-hydroxyphenyl)-4H-chromen-4-one) was selected for pharmacokinetic studies. Encapsulation of compound 2 in PLGA nanoparticles or cyclodextrins resulted in lower in vitro toxicity when compared to the free compound. Combination studies with methotrexate revealed that compound 13 (3-hydroxy-6-methoxy-2-(4-methoxyphenyl)-4H-chromen-4-one) has the highest synergistic effect at concentration of 1.3 µM, 11.7-fold dose reduction index and no toxicity toward host cells. Our results provide the basis for further chemical modifications aimed at identifying novel antitrypanosomatidic agents showing higher potency toward PTR1 and increased metabolic stability.


Assuntos
Produtos Biológicos/farmacologia , Flavonóis/farmacologia , Tripanossomicidas/farmacologia , Trypanosoma brucei brucei/efeitos dos fármacos , Animais , Produtos Biológicos/síntese química , Produtos Biológicos/química , Linhagem Celular , Relação Dose-Resposta a Droga , Flavonóis/síntese química , Flavonóis/química , Humanos , Macrófagos/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Modelos Moleculares , Estrutura Molecular , Testes de Sensibilidade Parasitária , Relação Estrutura-Atividade , Tripanossomicidas/síntese química , Tripanossomicidas/química
6.
Infect Genet Evol ; 30: 195-205, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25558028

RESUMO

Cutaneous leishmaniasis as caused by Leishmania major is a zoonotic infection with wide epidemiological impact. The L. major P46 virulence gene was shown to boost the parasite's virulence and extends its range of experimental hosts. Here we show that P46 is subject to significant geographical sequence variations that may reflect the adaption to different reservoir hosts. This view is supported by the results of passage experiments using P46 variants in different experimental hosts. Conversely, loss of P46 expression leads to attenuation both in vitro and in BALB/c mice. Although part of the L. major exosomal protein payload, P46 is not required for exosome-mediated immune modulation.


Assuntos
Interações Hospedeiro-Patógeno/genética , Leishmania major/genética , Leishmania major/patogenicidade , Leishmaniose Cutânea/parasitologia , Fatores de Virulência/genética , África/epidemiologia , Animais , Células Cultivadas , Modelos Animais de Doenças , Exossomos/parasitologia , Leishmania major/classificação , Leishmaniose Cutânea/epidemiologia , Macrófagos/parasitologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Oriente Médio/epidemiologia , Filogeografia
7.
Am J Med Genet A ; 158A(9): 2106-18, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22821884

RESUMO

Costello syndrome is caused by HRAS germline mutations affecting Gly(12) or Gly(13) in >90% of cases and these are associated with a relatively homogeneous phenotype. Rarer mutations in other HRAS codons were reported in patients with an attenuated or mild phenotype. Disease-associated HRAS missense mutations result in constitutive HRAS activation and increased RAF-MEK-ERK and PI3K-AKT signal flow. Here we report on a novel heterozygous HRAS germline alteration, c.266C>G (p.S89C), in a girl presenting with severe fetal hydrops and pleural effusion, followed by a more benign postnatal course. A sibling with the same mutation and fetal polyhydramnios showed a Dandy-Walker malformation; his postnatal course was complicated by severe feeding difficulties. Their apparently asymptomatic father is heterozygous for the c.266C>G change. By functional analyses we identified reduced levels of active HRAS(S89C) and diminished MEK, ERK and AKT phosphorylation in cells overexpressing HRAS(S89C) , which represent novel consequences of disease-associated HRAS mutations. Given our patients' difficult neonatal course and presence of this change in their asymptomatic father, we hypothesize that its harmful consequences may be time limited, with the late fetal stage being most sensitive. Alternatively, the phenotype may develop only in the presence of an additional as-yet-unknown genetic modifier. While the pathogenicity of the HRAS c.266C>G change remains unproven, our data may illustrate wide functional and phenotypic variability of germline HRAS mutations.


Assuntos
Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Transdução de Sinais , Sequência de Aminoácidos , Animais , Células COS , Chlorocebus aethiops , Fator de Crescimento Epidérmico/metabolismo , Feminino , Heterozigoto , Humanos , Recém-Nascido , Sistema de Sinalização das MAP Quinases , Dados de Sequência Molecular , Mutação de Sentido Incorreto , Fenótipo , Proteínas Proto-Oncogênicas p21(ras)/química , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA