RESUMO
Persons diagnosed with schizophrenia (SCZ) or bipolar I disorder (BPI) are at high risk for self-injurious behavior, suicidal ideation, and suicidal behaviors (SB). Characterizing associations between diagnosed health problems, prior pharmacological treatments, and polygenic scores (PGS) has potential to inform risk stratification. We examined self-reported SB and ideation using the Columbia Suicide Severity Rating Scale (C-SSRS) among 3,942 SCZ and 5,414 BPI patients receiving care within the Veterans Health Administration (VHA). These cross-sectional data were integrated with electronic health records (EHRs), and compared across lifetime diagnoses, treatment histories, follow-up screenings, and mortality data. PGS were constructed using available genomic data for related traits. Genome-wide association studies were performed to identify and prioritize specific loci. Only 20% of the veterans who reported SB had a corroborating ICD-9/10 EHR code. Among those without prior SB, more than 20% reported new-onset SB at follow-up. SB were associated with a range of additional clinical diagnoses, and with treatment with specific classes of psychotropic medications (e.g., antidepressants, antipsychotics, etc.). PGS for externalizing behaviors, smoking initiation, suicide attempt, and major depressive disorder were associated with SB. The GWAS for SB yielded no significant loci. Among individuals with a diagnosed mental illness, self-reported SB were strongly associated with clinical variables across several EHR domains. Analyses point to sequelae of substance-related and psychiatric comorbidities as strong correlates of prior and subsequent SB. Nonetheless, past SB was frequently not documented in health records, underscoring the value of regular screening with direct, in-person assessments, especially among high-risk individuals.
Assuntos
Transtorno Bipolar , Estudo de Associação Genômica Ampla , Esquizofrenia , Ideação Suicida , Veteranos , Humanos , Transtorno Bipolar/genética , Transtorno Bipolar/epidemiologia , Esquizofrenia/genética , Esquizofrenia/epidemiologia , Masculino , Feminino , Veteranos/psicologia , Estados Unidos/epidemiologia , Pessoa de Meia-Idade , Adulto , Estudo de Associação Genômica Ampla/métodos , Estudos Transversais , Fatores de Risco , Tentativa de Suicídio , Comportamento Autodestrutivo/genética , Comportamento Autodestrutivo/epidemiologia , Suicídio/estatística & dados numéricos , Suicídio/psicologia , Predisposição Genética para Doença/genética , Idoso , Registros Eletrônicos de Saúde , Herança Multifatorial/genéticaRESUMO
Objective: Persons diagnosed with schizophrenia (SCZ) or bipolar I disorder (BPI) are at high risk for self-injurious behavior, suicidal ideation, and suicidal behaviors (SB). Characterizing associations between diagnosed mental and physical health problems, prior pharmacological treatments, and aggregate genetic factors has potential to inform risk stratification and mitigation strategies. Methods: In this study of 3,942 SCZ and 5,414 BPI patients receiving VA care, self-reported SB and ideation were assessed using the Columbia Suicide Severity Rating Scale (C-SSRS). These cross-sectional data were integrated with electronic health records (EHR), and compared by lifetime diagnoses, treatment histories, follow-up screenings, and mortality data. Polygenic scores (PGS) for traits related to psychiatric disorders, substance use, and cognition were constructed using available genomic data, and exploratory genome-wide association studies were performed to identify and prioritize specific loci. Results: Only 20% of veterans who self-reported SB had a corroborating ICD-9/10 code in their EHR; and among those who denied prior behaviors, more than 20% reported new-onset SB at follow-up. SB were associated with a range of psychiatric and non-psychiatric diagnoses, and with treatment with specific classes of psychotropic medications (e.g., antidepressants, antipsychotics, etc.). PGS for externalizing behaviors, smoking, suicide attempt, and major depressive disorder were also associated with attempt and ideation. Conclusions: Among individuals with a diagnosed mental illness, a GWAS for SB did not yield any significant loci. Self-reported SB were strongly associated with clinical variables across several EHR domains. Overall, clinical and polygenic analyses point to sequelae of substance-use related behaviors and other psychiatric comorbidities as strong correlates of prior and subsequent SB. Nonetheless, past SB was frequently not documented in clinical settings, underscoring the value of regular screening based on direct, in-person assessments, especially among high-risk individuals.
RESUMO
BACKGROUND: Personalization of psychiatric treatment includes treatment of symptoms, cognition and functional deficits, suicide, and medical co-morbidities. VA Collaborative Study 572 examined a large sample of male and female veterans with schizophrenia (n=3,942) and with bipolar disorder (n=5,414) with phenotyping and genomic analyses. We present the results to date and future directions. METHODS: All veterans received a structured diagnostic interview and assessments of suicidal ideation and behavior, PTSD, and health. Veterans with schizophrenia were assessed for negative symptoms and lifetime depression. All were assessed with a cognitive and functional capacity assessment. Data for genome wide association studies were collected. Controls came from the VA Million Veteran Program. RESULTS: Suicidal ideation or behavior was present in 66%. Cognitive and functional deficits were consistent with previous studies. 40% of the veterans with schizophrenia had a lifetime major depressive episode and PTSD was present in over 30%. Polygenic risk score (PRS) analyses indicated that cognitive and functional deficits overlapped with PRS for cognition, education, and intelligence in the general population and PRS for suicidal ideation and behavior correlated with previous PRS for depression and suicidal ideation and behavior, as did the PRS for PTSD. DISCUSSION: Results to date provide directions for personalization of treatment in SMI, veterans with SMI, and veterans in general. The results of the genomic analyses suggest that cognitive deficits in SMI may be associated with general population features. Upcoming genomic analyses will reexamine the issues above, as well as genomic factors associated with smoking, substance abuse, negative symptoms, and treatment response.
RESUMO
While 17% of US adults use tobacco regularly, smoking rates among persons with schizophrenia are upwards of 60%. Research supports a shared etiological basis for smoking and schizophrenia, including findings from genome-wide association studies (GWAS). However, few studies have directly tested whether the same or distinct genetic variants also influence smoking behavior among schizophrenia cases. Using data from the Psychiatric Genomics Consortium (PGC) study of schizophrenia (35476 cases, 46839 controls), we estimated genetic correlations between these traits and tested whether polygenic risk scores (PRS) constructed from the results of smoking behaviors GWAS were associated with schizophrenia risk or smoking behaviors among schizophrenia cases. Results indicated significant genetic correlations of schizophrenia with smoking initiation (rgâ¯=â¯0.159; Pâ¯=â¯5.05â¯×â¯10-10), cigarettes-smoked-per-day (rgâ¯=â¯0.094; Pâ¯=â¯0.006), and age-of-onset of smoking (rgâ¯=â¯0.10; Pâ¯=â¯0.009). Comparing smoking behaviors among schizophrenia cases to the general population, we observe positive genetic correlations for smoking initiation (rgâ¯=â¯0.624, Pâ¯=â¯0.002) and cigarettes-smoked-per-day (rgâ¯=â¯0.689, Pâ¯=â¯0.120). Similarly, TAG-based PRS for smoking initiation and cigarettes-smoked-per-day were significantly associated with smoking initiation (Pâ¯=â¯3.49â¯×â¯10-5) and cigarettes-smoked-per-day (Pâ¯=â¯0.007) among schizophrenia cases. We performed the first GWAS of smoking behavior among schizophrenia cases and identified a novel association with cigarettes-smoked-per-day upstream of the TMEM106B gene on chromosome 7p21.3 (rs148253479, Pâ¯=â¯3.18â¯×â¯10-8, nâ¯=â¯3520). Results provide evidence of a partially shared genetic basis for schizophrenia and smoking behaviors. Additionally, genetic risk factors for smoking behaviors were largely shared across schizophrenia and non-schizophrenia populations. Future research should address mechanisms underlying these associations to aid both schizophrenia and smoking treatment and prevention efforts.
Assuntos
Estudo de Associação Genômica Ampla , Esquizofrenia , Adulto , Predisposição Genética para Doença/genética , Genômica , Humanos , Proteínas de Membrana/genética , Proteínas do Tecido Nervoso , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Esquizofrenia/epidemiologia , Esquizofrenia/genética , Fumar/genéticaRESUMO
BACKGROUND: Variation in liability to cannabis use disorder has a strong genetic component (estimated twin and family heritability about 50-70%) and is associated with negative outcomes, including increased risk of psychopathology. The aim of the study was to conduct a large genome-wide association study (GWAS) to identify novel genetic variants associated with cannabis use disorder. METHODS: To conduct this GWAS meta-analysis of cannabis use disorder and identify associations with genetic loci, we used samples from the Psychiatric Genomics Consortium Substance Use Disorders working group, iPSYCH, and deCODE (20â916 case samples, 363â116 control samples in total), contrasting cannabis use disorder cases with controls. To examine the genetic overlap between cannabis use disorder and 22 traits of interest (chosen because of previously published phenotypic correlations [eg, psychiatric disorders] or hypothesised associations [eg, chronotype] with cannabis use disorder), we used linkage disequilibrium score regression to calculate genetic correlations. FINDINGS: We identified two genome-wide significant loci: a novel chromosome 7 locus (FOXP2, lead single-nucleotide polymorphism [SNP] rs7783012; odds ratio [OR] 1·11, 95% CI 1·07-1·15, p=1·84â×â10-9) and the previously identified chromosome 8 locus (near CHRNA2 and EPHX2, lead SNP rs4732724; OR 0·89, 95% CI 0·86-0·93, p=6·46â×â10-9). Cannabis use disorder and cannabis use were genetically correlated (rg 0·50, p=1·50â×â10-21), but they showed significantly different genetic correlations with 12 of the 22 traits we tested, suggesting at least partially different genetic underpinnings of cannabis use and cannabis use disorder. Cannabis use disorder was positively genetically correlated with other psychopathology, including ADHD, major depression, and schizophrenia. INTERPRETATION: These findings support the theory that cannabis use disorder has shared genetic liability with other psychopathology, and there is a distinction between genetic liability to cannabis use and cannabis use disorder. FUNDING: National Institute of Mental Health; National Institute on Alcohol Abuse and Alcoholism; National Institute on Drug Abuse; Center for Genomics and Personalized Medicine and the Centre for Integrative Sequencing; The European Commission, Horizon 2020; National Institute of Child Health and Human Development; Health Research Council of New Zealand; National Institute on Aging; Wellcome Trust Case Control Consortium; UK Research and Innovation Medical Research Council (UKRI MRC); The Brain & Behavior Research Foundation; National Institute on Deafness and Other Communication Disorders; Substance Abuse and Mental Health Services Administration (SAMHSA); National Institute of Biomedical Imaging and Bioengineering; National Health and Medical Research Council (NHMRC) Australia; Tobacco-Related Disease Research Program of the University of California; Families for Borderline Personality Disorder Research (Beth and Rob Elliott) 2018 NARSAD Young Investigator Grant; The National Child Health Research Foundation (Cure Kids); The Canterbury Medical Research Foundation; The New Zealand Lottery Grants Board; The University of Otago; The Carney Centre for Pharmacogenomics; The James Hume Bequest Fund; National Institutes of Health: Genes, Environment and Health Initiative; National Institutes of Health; National Cancer Institute; The William T Grant Foundation; Australian Research Council; The Virginia Tobacco Settlement Foundation; The VISN 1 and VISN 4 Mental Illness Research, Education, and Clinical Centers of the US Department of Veterans Affairs; The 5th Framework Programme (FP-5) GenomEUtwin Project; The Lundbeck Foundation; NIH-funded Shared Instrumentation Grant S10RR025141; Clinical Translational Sciences Award grants; National Institute of Neurological Disorders and Stroke; National Heart, Lung, and Blood Institute; National Institute of General Medical Sciences.