Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Cell Dev Biol ; 10: 989820, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36172269

RESUMO

During mitosis, cells must spatiotemporally regulate gene expression programs to ensure accurate cellular division. Failures to properly regulate mitotic progression result in aneuploidy, a hallmark of cancer. Entry and exit from mitosis is largely controlled by waves of cyclin-dependent kinase (CDK) activity coupled to targeted protein degradation. The correct timing of CDK-based mitotic regulation is coordinated with the structure and function of microtubules. To determine whether mitotic gene expression is also regulated by the integrity of microtubules, we performed ribosome profiling and mRNA-sequencing in the presence and absence of microtubules in the budding yeast Saccharomyces cerevisiae. We discovered a coordinated translational and transcriptional repression of genes involved in cell wall biology processes when microtubules are disrupted. The genes targeted for repression in the absence of microtubules are enriched for downstream targets of a feed-forward pathway that controls cytokinesis and septum degradation and is regulated by the Cbk1 kinase, the Regulation of Ace2 Morphogenesis (RAM) pathway. We demonstrate that microtubule disruption leads to aberrant subcellular localization of Cbk1 in a manner that partially depends on the spindle position checkpoint. Furthermore, constitutive activation of the RAM pathway in the absence of microtubules leads to growth defects. Taken together, these results uncover a previously unknown link between microtubule function and the proper execution of mitotic gene expression programs to ensure that cell division does not occur prematurely.

2.
J Cell Biol ; 220(12)2021 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-34647959

RESUMO

Dividing cells detect and correct erroneous kinetochore-microtubule attachments during mitosis, thereby avoiding chromosome missegregation. The Aurora B kinase phosphorylates microtubule-binding elements specifically at incorrectly attached kinetochores, promoting their release and providing another chance for proper attachments to form. However, growing evidence suggests that the Mps1 kinase is also required for error correction. Here we directly examine how Mps1 activity affects kinetochore-microtubule attachments using a reconstitution-based approach that allows us to separate its effects from Aurora B activity. When endogenous Mps1 that copurifies with kinetochores is activated in vitro, it weakens their attachments to microtubules via phosphorylation of Ndc80, a major microtubule-binding protein. This phosphorylation contributes to error correction because phospho-deficient Ndc80 mutants exhibit genetic interactions and segregation defects when combined with mutants in other error correction pathways. In addition, Mps1 phosphorylation of Ndc80 is stimulated on kinetochores lacking tension. These data suggest that Mps1 provides an additional mechanism for correcting erroneous kinetochore-microtubule attachments, complementing the well-known activity of Aurora B.


Assuntos
Cinetocoros/metabolismo , Microtúbulos/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Trifosfato de Adenosina/metabolismo , Cinetocoros/química , Pontos de Checagem da Fase M do Ciclo Celular , Proteínas Nucleares/química , Fosforilação , Ligação Proteica , Proteínas de Saccharomyces cerevisiae/química , Transdução de Sinais
3.
Mol Biol Cell ; 31(26): 2868-2870, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33320706

RESUMO

Fifty years ago, the first isolation of conditional budding yeast mutants that were defective in cell division was reported. Looking back, we now know that the analysis of these mutants revealed the molecular mechanisms and logic of the cell cycle, identified key regulatory enzymes that drive the cell cycle, elucidated structural components that underly essential cell cycle processes, and influenced our thinking about cancer and other diseases. Here, we briefly summarize what was concluded about the coordination of the cell cycle 50 years ago and how that relates to our current understanding of the molecular events that have since been elucidated.


Assuntos
Ciclo Celular , Segregação de Cromossomos , Replicação do DNA , Mutação/genética , Saccharomyces cerevisiae/citologia , Proteínas de Saccharomyces cerevisiae/genética
4.
Curr Biol ; 30(22): 4491-4499.e5, 2020 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-32946748

RESUMO

To ensure the faithful inheritance of DNA, a macromolecular protein complex called the kinetochore sustains the connection between chromosomes and force-generating dynamic microtubules during cell division. Defects in this process lead to aneuploidy, a common feature of cancer cells and the cause of many developmental diseases [1-4]. One of the major microtubule-binding activities in the kinetochore is mediated by the conserved Ndc80 complex (Ndc80c) [5-7]. In budding yeast, the retention of kinetochores on dynamic microtubule tips also depends on the essential heterodecameric Dam1 complex (Dam1c) [8-15], which binds to the Ndc80c and is proposed to be a functional ortholog of the metazoan Ska complex [16, 17]. The load-bearing activity of the Dam1c depends on its ability to oligomerize, and the purified complex spontaneously self-assembles into microtubule-encircling oligomeric rings, which are proposed to function as collars that allow kinetochores to processively track the plus-end tips of microtubules and harness the forces generated by disassembling microtubules [10-15, 18-22]. However, it is unknown whether there are specific regulatory events that promote Dam1c oligomerization to ensure accurate segregation. Here, we used a reconstitution system to discover that Cdk1, the major mitotic kinase that drives the cell cycle, phosphorylates the Ask1 component of the Dam1c to increase its residence time on microtubules and enhance kinetochore-microtubule attachment strength. We propose that Cdk1 activity promotes Dam1c oligomerization to ensure that kinetochore-microtubule attachments are stabilized as kinetochores come under tension in mitosis.


Assuntos
Proteína Quinase CDC28 de Saccharomyces cerevisiae/metabolismo , Proteínas de Ciclo Celular/metabolismo , Cinetocoros/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Segregação de Cromossomos , Ensaios Enzimáticos , Proteínas Associadas aos Microtúbulos/genética , Mitose , Mutação , Fosforilação/fisiologia , Multimerização Proteica/fisiologia , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/genética
5.
Curr Biol ; 28(17): 2697-2704.e3, 2018 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-30174190

RESUMO

Kinesin-5 is a highly conserved homo-tetrameric protein complex responsible for crosslinking microtubules and pushing spindle poles apart. The budding yeast Kinesin-5, Cin8, is highly concentrated at kinetochores in mitosis before anaphase, but its functions there are largely unsolved. Here, we show that Cin8 localizes to kinetochores in a cell-cycle-dependent manner and concentrates near the microtubule binding domains of Ndc80 at metaphase. Cin8's kinetochore localization depends on the Ndc80 complex, kinetochore microtubules, and the Dam1 complex. Consistent with its kinetochore localization, a Cin8 deletion induces a loss of tension at the Ndc80 microtubule binding domains and a major delay in mitotic progression. Cin8 associates with Protein Phosphatase 1 (PP1), and mutants that inhibit its PP1 binding also induce a loss of tension at the Ndc80 microtubule binding domains and delay mitotic progression. Taken together, our results suggest that Cin8-PP1 plays a critical role at kinetochores to promote accurate chromosome segregation by controlling Ndc80 attachment to microtubules.


Assuntos
Segregação de Cromossomos/fisiologia , Regulação Fúngica da Expressão Gênica/fisiologia , Cinesinas/metabolismo , Proteína Fosfatase 1/metabolismo , Transporte Proteico/fisiologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Cromossomos Fúngicos , Regulação Enzimológica da Expressão Gênica , Cinesinas/genética , Cinetocoros , Proteína Fosfatase 1/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
6.
Genetics ; 205(1): 113-124, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27794026

RESUMO

The incorporation of histone variants into nucleosomes can alter chromatin-based processes. CENP-A is the histone H3 variant found exclusively at centromeres that serves as an epigenetic mark for centromere identity and is required for kinetochore assembly. CENP-A mislocalization to ectopic sites appears to contribute to genomic instability, transcriptional misregulation, and tumorigenesis, so mechanisms exist to ensure its exclusive localization to centromeres. One conserved process is proteolysis, which is mediated by the Psh1 E3 ubiquitin ligase in Saccharomyces cerevisiae (budding yeast). To determine whether there are features of the CENP-A nucleosome that facilitate proteolysis, we performed a genetic screen to identify histone H4 residues that regulate CENP-ACse4 degradation. We found that H4-R36 is a key residue that promotes the interaction between CENP-ACse4 and Psh1 Consistent with this, CENP-ACse4 protein levels are stabilized in H4-R36A mutant cells and CENP-ACse4 is enriched in the euchromatin. We propose that the defects in CENP-ACse4 proteolysis may be related to changes in Psh1 localization, as Psh1 becomes enriched at some 3' intergenic regions in H4-R36A mutant cells. Together, these data reveal a key residue in histone H4 that is important for efficient CENP-ACse4 degradation, likely by facilitating the interaction between Psh1 and CENP-ACse4.


Assuntos
Autoantígenos/metabolismo , Centrômero/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Histonas/metabolismo , Saccharomyces cerevisiae/metabolismo , Ubiquitina-Proteína Ligases/genética , Autoantígenos/genética , Proteína Centromérica A , Cromatina/metabolismo , Proteínas Cromossômicas não Histona/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Eucromatina , Histonas/genética , Cinetocoros/metabolismo , Nucleossomos/metabolismo , Ligação Proteica , Proteólise , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitinação
7.
Genetics ; 200(3): 681-2, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26170442

RESUMO

The Genetics Society of America's Edward Novitski Prize recognizes an extraordinary level of creativity and intellectual ingenuity in the solution of significant problems in genetics research. The 2015 winner, Sue Biggins, has made significant contributions to our understanding of how chromosomes attach to the mitotic spindle, a process essential for cell division and frequently impaired in cancer. Among other achievements, Biggins was the first to demonstrate that the Aurora B protein kinase is a key regulator of kinetochore function and that chromatin composition and centromere identity can be regulated by histone proteolysis. In 2010, Biggins and her colleagues were the first to purify kinetochores and, using this system, have already made several groundbreaking discoveries about the function and structure of these crucial components of the segregation machinery.


Assuntos
Distinções e Prêmios , Genética/história , História do Século XX , História do Século XXI , Cinetocoros , Sociedades Científicas , Fuso Acromático , Estados Unidos
8.
Nat Rev Mol Cell Biol ; 15(11): 736-47, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25303117

RESUMO

The spindle checkpoint ensures proper chromosome segregation during cell division. Unravelling checkpoint signalling has been a long-standing challenge owing to the complexity of the structures and forces that regulate chromosome segregation. New reports have now substantially advanced our understanding of checkpoint signalling mechanisms at the kinetochore, the structure that connects microtubules and chromatin. In contrast to the traditional view of a binary checkpoint response - either completely on or off - new findings indicate that the checkpoint response strength is variable. This revised perspective provides insight into how checkpoint bypass can lead to aneuploidy and informs strategies to exploit these errors for cancer treatments.


Assuntos
Pontos de Checagem do Ciclo Celular , Proteínas de Ciclo Celular/genética , Cromossomos/metabolismo , Mitose , Fuso Acromático/metabolismo , Aneuploidia , Proteínas de Ciclo Celular/metabolismo , Transformação Celular Neoplásica , Segregação de Cromossomos , Cromossomos/ultraestrutura , Regulação da Expressão Gênica , Humanos , Cinetocoros/metabolismo , Cinetocoros/ultraestrutura , Microtúbulos/metabolismo , Microtúbulos/ultraestrutura , Ligação Proteica , Transdução de Sinais , Análise Espaço-Temporal , Fuso Acromático/ultraestrutura
9.
Nat Struct Mol Biol ; 19(9): 925-9, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22885327

RESUMO

Chromosomes must be accurately partitioned to daughter cells to prevent aneuploidy, a hallmark of many tumors and birth defects. Kinetochores are the macromolecular machines that segregate chromosomes by maintaining load-bearing attachments to the dynamic tips of microtubules. Here, we present the structure of isolated budding-yeast kinetochore particles, as visualized by EM and electron tomography of negatively stained preparations. The kinetochore appears as an ~126-nm particle containing a large central hub surrounded by multiple outer globular domains. In the presence of microtubules, some particles also have a ring that encircles the microtubule. Our data, showing that kinetochores bind to microtubules via multivalent attachments, lay the foundation to uncover the key mechanical and regulatory mechanisms by which kinetochores control chromosome segregation and cell division.


Assuntos
Proteínas Fúngicas/metabolismo , Cinetocoros/metabolismo , Cinetocoros/ultraestrutura , Microtúbulos/metabolismo , Saccharomycetales/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/ultraestrutura , Cinetocoros/química , Microtúbulos/ultraestrutura , Modelos Moleculares , Saccharomycetales/química , Saccharomycetales/ultraestrutura
10.
Mol Cell ; 40(3): 455-64, 2010 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-21070971

RESUMO

Proper centromere function is critical to maintain genomic stability and to prevent aneuploidy, a hallmark of tumors and birth defects. A conserved feature of all eukaryotic centromeres is an essential histone H3 variant called CENP-A that requires a centromere targeting domain (CATD) for its localization. Although proteolysis prevents CENP-A from mislocalizing to euchromatin, regulatory factors have not been identified. Here, we identify an E3 ubiquitin ligase called Psh1 that leads to the degradation of Cse4, the budding yeast CENP-A homolog. Cse4 overexpression is toxic to psh1Δ cells and results in euchromatic localization. Strikingly, the Cse4 CATD is a key regulator of its stability and helps Psh1 discriminate Cse4 from histone H3. Taken together, we propose that the CATD has a previously unknown role in maintaining the exclusive localization of Cse4 by preventing its mislocalization to euchromatin via Psh1-mediated degradation.


Assuntos
Centrômero/metabolismo , Proteínas Cromossômicas não Histona/química , Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Histonas/metabolismo , Fatores de Alongamento de Peptídeos/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/enzimologia , Ubiquitina-Proteína Ligases/metabolismo , Sequência de Aminoácidos , Eucromatina/metabolismo , Dados de Sequência Molecular , Mutação/genética , Fatores de Alongamento de Peptídeos/química , Ligação Proteica , Isoformas de Proteínas/metabolismo , Processamento de Proteína Pós-Traducional , Estabilidade Proteica , Estrutura Terciária de Proteína , Transporte Proteico , Ubiquitina-Proteína Ligases/química , Ubiquitinação
11.
Dev Cell ; 13(3): 433-45, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17765685

RESUMO

It is critical to elucidate the pathways that mediate spindle assembly and therefore ensure accurate chromosome segregation during cell division. Our studies of a unique allele of the budding yeast Ipl1/Aurora protein kinase revealed that it is required for centrosome-mediated spindle assembly in the absence of the BimC motor protein Cin8. In addition, we found that the Ase1 spindle midzone-associated protein is required for bipolar spindle assembly. The cin8 ipl1 and cin8 ase1 double mutant cells exhibit similar defects, and Ase1 overexpression completely restores spindle assembly in cin8 ipl1 strains. Consistent with the possibility that Ipl1 regulates Ase1, an ase1 mutant lacking the Ipl1 consensus phosphorylation sites cannot assemble spindles in the absence of Cin8. In addition, Ase1 phosphorylation and localization were altered in an ipl1 mutant. We therefore propose that Ipl1/Aurora and Ase1 constitute a previously unidentified spindle assembly pathway that becomes essential in the absence of Cin8.


Assuntos
Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Fuso Acromático/enzimologia , Aurora Quinases , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas Associadas aos Microtúbulos/genética , Modelos Biológicos , Mutação , Fosforilação , Testes de Precipitina , Proteínas Quinases/genética , Proteínas Serina-Treonina Quinases , Saccharomyces cerevisiae/citologia , Proteínas de Saccharomyces cerevisiae/genética
12.
Curr Biol ; 14(21): 1968-72, 2004 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-15530401

RESUMO

Kinetochores are the specialized protein structures that form on centromeric DNA and direct chromosome segregation. It is critical that all chromosomes assemble a single kinetochore every cell cycle. One hallmark of all eukaryotic kinetochores is CENP-A, an essential centromeric histone H3 (CenH3) variant. Overexpression of CENP-A causes mislocalization to euchromatin, which could lead to deleterious consequences because CENP-A overexpression is associated with colorectal cancer . Although CENP-A protein levels are important for genomic stability, little is known about the mechanisms of CenH3 regulation. Here, we show that the levels of the budding yeast CenH3, Cse4, are regulated by ubiquitin-proteasome-mediated proteolysis. Because mutation of all Cse4 lysine residues did not completely stabilize the protein, we isolated a dominant lethal mutant, CSE4-351, that was stable. The Cse4-351 protein localized to euchromatin, suggesting that proteolysis prevents CenH3 euchromatic localization. When wild-type Cse4 was fused to a degron signal, the soluble Cse4 protein was rapidly degraded, but the centromere bound Cse4 was stable, indicating that centromere localization protects Cse4 from degradation. Taken together, these data identify proteolysis as one mechanism that contributes to the restricted centromere localization of the yeast CenH3.


Assuntos
Autoantígenos/metabolismo , Centrômero/metabolismo , Cromatina/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Ligação a DNA/metabolismo , Histonas/metabolismo , Cinetocoros/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteína Centromérica A , Eucromatina/metabolismo , Immunoblotting , Imunoprecipitação , Mutação/genética , Plasmídeos/genética , Conformação Proteica , Saccharomyces cerevisiae , Ubiquitina/metabolismo
13.
Curr Biol ; 13(11): R449-60, 2003 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-12781157

RESUMO

Accurate chromosome segregation is essential to ensure genomic stability because the aneuploidy that results from segregation errors leads to birth defects and contributes to the development of cancer. Chromosome segregation is directed by the kinetochore, the chromosomal site of attachment to dynamic polymers called microtubules (MTs). Although the fidelity of chromosome segregation depends on precise interactions between kinetochores and MTs, it is still unclear how this interaction is mediated and regulated. Here we discuss current progress in determining how kinetochores assemble and attach to MTs during mitosis as well as how they correct errors.


Assuntos
Segregação de Cromossomos/fisiologia , Cinetocoros/metabolismo , Cinetocoros/ultraestrutura , Microtúbulos/metabolismo , Mitose/fisiologia , Modelos Biológicos , Mapeamento Cromossômico , Variação Genética , Saccharomyces cerevisiae/metabolismo , Fuso Acromático/fisiologia
14.
Mol Biol Cell ; 13(2): 632-45, 2002 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-11854418

RESUMO

The budding yeast YCS4 gene encodes a conserved regulatory subunit of the condensin complex. We isolated an allele of this gene in a screen for mutants defective in sister chromatid separation or segregation. The phenotype of the ycs4-1 mutant is similar to topoisomerase II mutants and distinct from the esp1-1 mutant: the topological resolution of sister chromatids is compromised in ycs4-1 despite normal removal of cohesins from mitotic chromosomes. Consistent with a role in sister separation, YCS4 function is required to localize DNA topoisomerase I and II to chromosomes. Unlike its homologs in Xenopus and fission yeast, Ycs4p is associated with chromatin throughout the cell cycle; the only change in localization occurs during anaphase when the protein is enriched at the nucleolus. This relocalization may reveal the specific challenge that segregation of the transcriptionally hyperactive, repetitive array of rDNA genes can present during mitosis. Indeed, segregation of the nucleolus is abnormal in ycs4-1 at the nonpermissive temperature. Interrepeat recombination in the rDNA array is specifically elevated in ycs4-1 at the permissive temperature, suggesting that the Ycs4p plays a role at the array aside from its segregation. Furthermore, ycs4-1 is defective in silencing at the mating type loci at the permissive temperature. Taken together, our data suggest that there are mitotic as well as nonmitotic chromosomal abnormalities associated with loss of condensin function in budding yeast.


Assuntos
Adenosina Trifosfatases/genética , Cromossomos/genética , Proteínas de Ligação a DNA/genética , Mitose/genética , Saccharomycetales/genética , Cromátides/genética , Cromátides/fisiologia , Cromossomos/fisiologia , Complexos Multiproteicos , Mutação , Saccharomycetales/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA