Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Biomater Adv ; 144: 213196, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36455498

RESUMO

Modern bioengineering utilises biomimetic cell culture approaches to control cell fate during in vitro expansion. In this spirit, herein we assessed the influence of bidirectional surface topography, substrate rigidity, collagen type I coating and macromolecular crowding (MMC) in human bone marrow stem cell cultures. In the absence of MMC, surface topography was a strong modulator of cell morphology. MMC significantly increased extracellular matrix deposition, albeit in a globular manner, independently of the surface topography, substrate rigidity and collagen type I coating. Collagen type I coating significantly increased cell metabolic activity and none of the assessed parameters affected cell viability. At day 14, in the absence of MMC, none of the assessed genes was affected by surface topography, substrate rigidity and collagen type I coating, whilst in the presence of MMC, in general, collagen type I α1 chain, tenascin C, osteonectin, bone sialoprotein, aggrecan, cartilage oligomeric protein and runt-related transcription factor were downregulated. Interestingly, in the presence of the MMC, the 1000 kPa grooved substrate without collagen type I coating upregulated aggrecan, cartilage oligomeric protein, scleraxis homolog A, tenomodulin and thrombospondin 4, indicative of tenogenic differentiation. This study further supports the notion for multifactorial bioengineering to control cell fate in culture.


Assuntos
Medula Óssea , Colágeno Tipo I , Humanos , Colágeno Tipo I/metabolismo , Agrecanas , Medula Óssea/metabolismo , Células Cultivadas , Técnicas de Cultura de Células
2.
Adv Mater ; 33(40): e2008788, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34423493

RESUMO

Tendon disease constitutes an unmet clinical need and remains a critical challenge in the field of orthopaedic surgery. Innovative solutions are required to overcome the limitations of current tendon grafting approaches, and bioelectronic therapies show promise in treating musculoskeletal diseases, accelerating functional recovery through the activation of tissue regeneration-specific signaling pathways. Self-powered bioelectronic devices, particularly piezoelectric materials, represent a paradigm shift in biomedicine, negating the need for battery or external powering and complementing existing mechanotherapy to accelerate the repair processes. Here, the dynamic response of tendon cells to a piezoelectric collagen-analogue scaffold comprised of aligned nanoscale fibers made of the ferroelectric material poly(vinylidene fluoride-co-trifluoroethylene) is shown. It is demonstrated that motion-powered electromechanical stimulation of tendon tissue through piezo-bioelectric device results in ion channel modulation in vitro and regulates specific tissue regeneration signaling pathways. Finally, the potential of the piezo-bioelectronic device in modulating the progression of tendinopathy-associated processes in vivo, using a rat Achilles acute injury model is shown. This study indicates that electromechanical stimulation regulates mechanosensitive ion channel sensitivity and promotes tendon-specific over non-tenogenic tissue repair processes.


Assuntos
Eletrônica , Canais Iônicos/metabolismo , Tendões/fisiologia , Engenharia Tecidual/métodos , Animais , Colágeno/química , Módulo de Elasticidade , Estimulação Elétrica , Hidrocarbonetos Fluorados/química , Ratos , Regeneração/fisiologia , Transdução de Sinais , Tendões/citologia , Engenharia Tecidual/instrumentação , Alicerces Teciduais/química , Compostos de Vinila/química
3.
ACS Nano ; 14(8): 10027-10044, 2020 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-32658450

RESUMO

There is a pressing clinical need to develop cell-based bone therapies due to a lack of viable, autologous bone grafts and a growing demand for bone grafts in musculoskeletal surgery. Such therapies can be tissue engineered and cellular, such as osteoblasts, combined with a material scaffold. Because mesenchymal stem cells (MSCs) are both available and fast growing compared to mature osteoblasts, therapies that utilize these progenitor cells are particularly promising. We have developed a nanovibrational bioreactor that can convert MSCs into bone-forming osteoblasts in two- and three-dimensional, but the mechanisms involved in this osteoinduction process remain unclear. Here, to elucidate this mechanism, we use increasing vibrational amplitude, from 30 nm (N30) to 90 nm (N90) amplitudes at 1000 Hz and assess MSC metabolite, gene, and protein changes. These approaches reveal that dose-dependent changes occur in MSCs' responses to increased vibrational amplitude, particularly in adhesion and mechanosensitive ion channel expression and that energetic metabolic pathways are activated, leading to low-level reactive oxygen species (ROS) production and to low-level inflammation as well as to ROS- and inflammation-balancing pathways. These events are analogous to those that occur in the natural bone-healing processes. We have also developed a tissue engineered MSC-laden scaffold designed using cells' mechanical memory, driven by the stronger N90 stimulation. These mechanistic insights and cell-scaffold design are underpinned by a process that is free of inductive chemicals.


Assuntos
Células-Tronco Mesenquimais , Diferenciação Celular , Humanos , Inflamação , Osteogênese , Espécies Reativas de Oxigênio , Engenharia Tecidual , Alicerces Teciduais
4.
Adv Mater ; 29(39)2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28861921

RESUMO

Cells directly probe and respond to the physicomechanical properties of their extracellular environment, a dynamic process which has been shown to play a key role in regulating both cellular adhesive processes and differential cellular function. Recent studies indicate that stem cells show lineage-specific differentiation when cultured on substrates approximating the stiffness profiles of specific tissues. Although tissues are associated with a range of Young's modulus values for bulk rigidity, at the subcellular level, tissues are comprised of heterogeneous distributions of rigidity. Lithographic processes have been widely explored in cell biology for the generation of analytical substrates to probe cellular physicomechanical responses. In this work, it is shown for the first time that that direct-write e-beam exposure can significantly alter the rigidity of elastomeric poly(dimethylsiloxane) substrates and a new class of 2D elastomeric substrates with controlled patterned rigidity ranging from the micrometer to the nanoscale is described. The mechanoresponse of human mesenchymal stem cells to e-beam patterned substrates was subsequently probed in vitro and significant modulation of focal adhesion formation and osteochondral lineage commitment was observed as a function of both feature diameter and rigidity, establishing the groundwork for a new generation of biomimetic material interfaces.


Assuntos
Células-Tronco Mesenquimais , Células Cultivadas , Elastômeros , Elétrons , Humanos , Polímeros , Propriedades de Superfície
5.
Adv Mater ; 28(27): 5717-24, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27120512

RESUMO

Shape-memory polymers (SMPs) are morphologically responsive materials with potential for a variety of biomedical applications, particularly as devices for minimally invasive surgery and the delivery of therapeutics and cells for tissue engineering. A brief introduction to SMPs is followed by a discussion of the current progress toward the development of SMP-based biomaterials for clinically relevant biomedical applications.

6.
J Mater Sci Mater Med ; 26(2): 120, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25677116

RESUMO

Neuroprosthetic technologies for therapeutic neuromodulation have seen major advances in recent years but these advances have been impeded due to electrode failure or a temporal deterioration in the device recording or electrical stimulation potential. This deterioration is attributed to an intrinsic host tissue response, namely glial scarring or gliosis, which prevents the injured neurons from sprouting, drives neurite processes away from the neuroelectrode and increases signal impedance by increasing the distance between the electrode and its target neurons. To address this problem, there is a clinical need to reduce tissue encapsulation of the electrodes in situ and improve long-term neuroelectrode function. Nanotopographical modification has emerged as a potent methodology for the disruption of protein adsorption and cellular adhesion in vitro. This study investigates the use of block copolymer self-assembly technique for the generation of sub-20 nm nanowire features on silicon substrates. Critically, these nanostructures were observed to significantly reduce electrical impedance and increase conductivity. Human neuroblastoma SH-SY5Y cells cultured on nanowire substrates for up to 14 days were associated with enhanced focal adhesion reinforcement and a reduction in proliferation. We conclude that nanowire surface modulation may offer significant potential as an electrode functionalization strategy.


Assuntos
Microeletrodos , Nanofios/química , Nanofios/ultraestrutura , Neurônios/citologia , Neurônios/fisiologia , Silício/química , Linhagem Celular , Sobrevivência Celular/fisiologia , Condutividade Elétrica , Desenho de Equipamento , Análise de Falha de Equipamento , Humanos , Teste de Materiais
7.
Acta Biomater ; 10(2): 651-60, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24252447

RESUMO

The differentiation of progenitor cells is dependent on more than biochemical signalling. Topographical cues in natural bone extracellular matrix guide cellular differentiation through the formation of focal adhesions, contact guidance, cytoskeletal rearrangement and ultimately gene expression. Osteoarthritis and a number of bone disorders present as growing challenges for our society. Hence, there is a need for next generation implantable devices to substitute for, or guide, bone repair in vivo. Cellular responses to nanometric topographical cues need to be better understood in vitro in order to ensure the effective and efficient integration and performance of these orthopedic devices. In this study, the FDA-approved plastic polycaprolactone was embossed with nanometric grooves and the response of primary and immortalized osteoprogenitor cells observed. Nanometric groove dimensions were 240 nm or 540 nm deep and 12.5 µm wide. Cells cultured on test surfaces followed contact guidance along the length of groove edges, elongated along their major axis and showed nuclear distortion; they formed more focal complexes and lower proportions of mature adhesions relative to planar controls. Down-regulation of the osteoblast marker genes RUNX2 and BMPR2 in primary and immortalized cells was observed on grooved substrates. Down-regulation appeared to directly correlate with focal adhesion maturation, indicating the involvement of ERK 1/2 negative feedback pathways following integrin-mediated FAK activation.


Assuntos
Linhagem da Célula/efeitos dos fármacos , Adesões Focais/metabolismo , Nanoestruturas/química , Osteogênese/efeitos dos fármacos , Poliésteres/química , Poliésteres/farmacologia , Células-Tronco/citologia , Receptores de Proteínas Morfogenéticas Ósseas Tipo II/genética , Receptores de Proteínas Morfogenéticas Ósseas Tipo II/metabolismo , Movimento Celular/efeitos dos fármacos , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Adesões Focais/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Reação em Cadeia da Polimerase , Propriedades de Superfície
8.
Biomaterials ; 30(28): 5094-103, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19539986

RESUMO

The physiochemical characteristics of a material with in vivo applications are critical for the clinical success of the implant and regulate both cellular adhesion and differentiated cellular function. Topographical modification of an orthopaedic implant may be a viable method to guide tissue integration and has been shown in vitro to dramatically influence osteogenesis, inhibit bone resorption and regulate integrin mediated cell adhesion. Integrins function as force dependant mechanotransducers, acting via the actin cytoskeleton to translate tension applied at the tissue level to changes in cellular function via intricate signalling pathways. In particular the ERK/MAPK signalling cascade is a known regulator of osteospecific differentiation and function. Here we investigate the effects of nanoscale pits and grooves on focal adhesion formation in human osteoblasts (HOBs) and the ERK/MAPK signalling pathway in mesenchymal populations. Nanopit arrays disrupted adhesion formation and cellular spreading in HOBs and impaired osteospecific differentiation in skeletal stem cells. HOBs cultured on 10 microm wide groove/ridge arrays formed significantly less focal adhesions than cells cultured on planar substrates and displayed negligible differentiation along the osteospecific lineage, undergoing up-regulations in the expression of adipospecific genes. Conversely, osteospecific function was correlated to increased integrin mediated adhesion formation and cellular spreading as noted in HOBS cultured on 100 microm wide groove arrays. Here osteospecific differentiation and function was linked to focal adhesion growth and FAK mediated activation of the ERK/MAPK signalling pathway in mesenchymal populations.


Assuntos
Sistema de Sinalização das MAP Quinases , Nanoestruturas/química , Nanotecnologia/métodos , Osteoblastos/citologia , Adesão Celular , Células Cultivadas , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Microtecnologia , Osteoblastos/metabolismo
9.
J Biomed Mater Res A ; 91(1): 195-208, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18814275

RESUMO

Polymeric medical devices widely used in orthopedic surgery play key roles in fracture fixation and orthopedic implant design. Topographical modification and surface micro-roughness of these devices regulate cellular adhesion, a process fundamental in the initiation of osteoinduction and osteogenesis. Advances in fabrication techniques have evolved the field of surface modification; in particular, nanotechnology has allowed the development of nanoscale substrates for the investigation into cell-nanofeature interactions. In this study human osteoblasts (HOBs) were cultured on ordered nanoscale pits and random nano "craters" and "islands". Adhesion subtypes were quantified by immunofluorescent microscopy and cell-substrate interactions investigated via immuno-scanning electron microscopy. To investigate the effects of these substrates on cellular function 1.7 k microarray analysis was used to establish gene profiles of enriched STRO-1+ progenitor cell populations cultured on these nanotopographies. Nanotopographies affected the formation of adhesions on experimental substrates. Adhesion formation was prominent on planar control substrates and reduced on nanocrater and nanoisland topographies; nanopits, however, were shown to inhibit directly the formation of large adhesions. STRO-1+ progenitor cells cultured on experimental substrates revealed significant changes in genetic expression. This study implicates nanotopographical modification as a significant modulator of osteoblast adhesion and cellular function in mesenchymal populations.


Assuntos
Adesão Celular , Nanoestruturas/química , Osteoblastos/citologia , Transdução de Sinais , Células-Tronco/citologia , Alicerces Teciduais/química , Idoso , Idoso de 80 Anos ou mais , Células da Medula Óssea/citologia , Células da Medula Óssea/metabolismo , Cateninas/metabolismo , Células Cultivadas , Quimiocina CXCL12/genética , Quimiocina CXCL12/metabolismo , Citoesqueleto/metabolismo , Feminino , Regulação da Expressão Gênica , Humanos , Osteogênese , Células-Tronco/metabolismo , Propriedades de Superfície , Proteínas Wnt/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA