Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Front Immunol ; 12: 674643, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34335572

RESUMO

Bovine tuberculosis is an important animal and zoonotic disease caused by Mycobacterium bovis. The innate immune response is the first line of defense against pathogens and is also crucial for the development of an efficient adaptive immune response. In this study we used an in vitro co-culture model of antigen presenting cells (APC) and autologous lymphocytes derived from peripheral blood mononuclear cells to identify the cell populations and immune mediators that participate in the development of an efficient innate response capable of controlling the intracellular replication of M. bovis. After M. bovis infection, bovine immune cell cultures displayed upregulated levels of iNOS, IL-22 and IFN-γ and the induction of the innate immune response was dependent on the presence of differentiated APC. Among the analyzed M. bovis isolates, only a live virulent M. bovis isolate induced an efficient innate immune response, which was increased upon stimulation of cell co-cultures with the M. bovis culture supernatant. Moreover, we demonstrated that an allelic variation of the early secreted protein ESAT-6 (ESAT6 T63A) expressed in the virulent strain is involved in this increased innate immune response. These results highlight the relevance of the compounds secreted by live M. bovis as well as the variability among the assessed M. bovis strains to induce an efficient innate immune response.


Assuntos
Imunidade Inata/imunologia , Mycobacterium bovis/imunologia , Tuberculose Bovina/imunologia , Animais , Antígenos de Bactérias/imunologia , Bovinos , Técnicas de Cocultura , Citocinas/metabolismo , Interferon gama/metabolismo , Macrófagos , Cultura Primária de Células
2.
Vet Microbiol ; 247: 108758, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32768211

RESUMO

Members of the Mycobacterium tuberculosis complex (MTBC) are responsible for tuberculosis in several mammals. In this complex, Mycobacterium tuberculosis and Mycobacterium bovis, which are closely related, show host preference for humans and cattle, respectively. Although human and bovine tuberculosis are clinically similar, M. tuberculosis mostly causes latent infection in humans, whereas M. bovis frequently leads to an acute infection in cattle. This review attempts to connect the pathology in experimental animal models as well as the cellular responses to M. bovis and M. tuberculosis regarding the differences in protein expression and regulatory mechanisms of both pathogens that could explain their apparent divergent latency behaviour. The occurrence of latent bovine tuberculosis (bTB) would represent a serious complication for the eradication of the disease in cattle, with the risk of onward transmission to humans. Thus, understanding the physiological events that may lead to the state of latency in bTB could assist in the development of appropriate prevention and control tools.


Assuntos
Tuberculose Latente/microbiologia , Macrófagos/microbiologia , Mycobacterium bovis/fisiologia , Mycobacterium tuberculosis/fisiologia , Tuberculose Bovina/microbiologia , Animais , Bovinos , Doenças dos Bovinos/microbiologia , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Humanos , Camundongos , Mycobacterium bovis/genética , Mycobacterium tuberculosis/genética , Proteômica , Tuberculose/microbiologia
3.
Virulence ; 10(1): 1026-1033, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31782338

RESUMO

In this study, we characterized the role of Rv2617c in the virulence of Mycobacterium tuberculosis. Rv2617c is a protein of unknown function unique to M. tuberculosis complex (MTC) and Mycobacterium leprae. In vitro, this protein interacts with the virulence factor P36 (also named Erp) and KdpF, a protein linked to nitrosative stress. Here, we showed that knockout of the Rv2617c gene in M. tuberculosis CDC1551 reduced the replication of the pathogen in a mouse model of infection and favored the trafficking of mycobacteria to phagolysosomes. We also demonstrated that Rv2617c and P36 are required for resistance to in vitro hydrogen peroxide treatment in M. tuberculosis and Mycobacterium bovis, respectively. These findings indicate Rv2617c and P36 act in concert to prevent bacterial damage upon oxidative stress.


Assuntos
Proteínas de Bactérias/genética , Mycobacterium bovis/genética , Mycobacterium bovis/patogenicidade , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/patogenicidade , Estresse Oxidativo , Fatores de Virulência/genética , Animais , Pulmão/microbiologia , Macrófagos/microbiologia , Camundongos , Camundongos Endogâmicos BALB C , Virulência
4.
Vet Microbiol ; 222: 30-38, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30080670

RESUMO

Mycobacterium bovis is the causative agent of bovine tuberculosis and is a member of Mycobacterium tuberculosis complex, which causes tuberculosis in a number of mammals including humans. Previous studies have shown that the genes encoding the two-component system PhoPR, which regulates several genes involved in the virulence of M. tuberculosis, are polymorphic in M. bovis, when compared to M. tuberculosis, which results in a dysfunctional two-component system. In this study we investigated the role of PhoPR in two M. bovis strains with differing degrees of virulence. We found that the deletion of phoP in an M. bovis isolate reduced its capacity of inducing phagosomal arrest in bovine macrophages. By gene expression analysis, we demonstrated that, in both M. bovis strains, PhoP regulates the expression of a putative lipid desaturase Mb1404-Mb1405, a protein involved in redox stress AhpC, the sulfolipid transporter Mmpl8 and the secreted antigen ESAT-6. Furthermore, the lack of PhoP increased the sensitivity to acidic stress and alteration of the biofilm/pellicle formation of M. bovis. Both these phenotypes are connected to bacterial redox homeostasis. Therefore, the results of this study suggest a role of PhoPR in M. bovis to be linked to the mechanisms that mycobacteria display to maintain their redox balance.


Assuntos
Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Mycobacterium bovis/genética , Animais , Biofilmes/crescimento & desenvolvimento , Bovinos , Homeostase/genética , Humanos , Macrófagos/microbiologia , Mycobacterium bovis/patogenicidade , Mycobacterium tuberculosis/genética , Oxirredução , Fenótipo , Estresse Fisiológico/genética , Tuberculose Bovina , Virulência/genética
5.
Tuberculosis (Edinb) ; 103: 28-36, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28237031

RESUMO

Globally, about 4.5% of new tuberculosis (TB) cases are multi-drug-resistant (MDR), i.e. resistant to the two most powerful first-line anti-TB drugs. Indeed, 480,000 people developed MDR-TB in 2015 and 190,000 people died because of MDR-TB. The MDR Mycobacterium tuberculosis M family, which belongs to the Haarlem lineage, is highly prosperous in Argentina and capable of building up further drug resistance without impairing its ability to spread. In this study, we sequenced the whole genomes of a highly prosperous M-family strain (Mp) and its contemporary variant, strain 410, which produced only one recorded tuberculosis case in the last two decades. Previous reports have demonstrated that Mp induced dysfunctional CD8+ cytotoxic T cell activity, suggesting that this strain has the ability to evade the immune response against M. tuberculosis. Comparative analysis of Mp and 410 genomes revealed non-synonymous polymorphisms in eleven genes and five intergenic regions with polymorphisms between both strains. Some of these genes and promoter regions are involved in the metabolism of cell wall components, others in drug resistance and a SNP in Rv1861, a gene encoding a putative transglycosylase that produces a truncated protein in Mp. The mutation in Rv3787c, a putative S-adenosyl-l-methionine-dependent methyltransferase, is conserved in all of the other prosperous M strains here analysed and absent in non-prosperous M strains. Remarkably, three polymorphic promoter regions displayed differential transcriptional activity between Mp and 410. We speculate that the observed mutations/polymorphisms are associated with the reported higher capacity of Mp for modulating the host's immune response.


Assuntos
Proteínas de Bactérias/genética , Farmacorresistência Bacteriana Múltipla/genética , Mycobacterium tuberculosis/genética , Polimorfismo de Nucleotídeo Único , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia , Antituberculosos/uso terapêutico , Regulação Bacteriana da Expressão Gênica , Genoma Bacteriano , Genótipo , Interações Hospedeiro-Patógeno , Humanos , Mutação , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/imunologia , Mycobacterium tuberculosis/patogenicidade , Fenótipo , Regiões Promotoras Genéticas , Tuberculose Resistente a Múltiplos Medicamentos/diagnóstico , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/imunologia
6.
Infect Immun ; 85(3)2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28031264

RESUMO

Mycobacterium bovis causes tuberculosis in a wide variety of mammals, with strong tropism for cattle and eventually humans. P27, also called LprG, is among the proteins involved in the mechanisms of the virulence and persistence of M. bovis and Mycobacterium tuberculosis Here, we describe a novel function of P27 in the interaction of M. bovis with its natural host cell, the bovine macrophage. We found that a deletion in the p27-p55 operon impairs the replication of M. bovis in bovine macrophages. Importantly, we show for the first time that M. bovis arrests phagosome maturation in a process that depends on P27. This effect is P27 specific since complementation with wild-type p27 but not p55 fully restored the wild-type phenotype of the mutant strain; this indicates that P55 plays no important role during the early events of M. bovis infection. In addition, we also showed that the presence of P27 from M. smegmatis decreases the association of LAMP-3 with bead phagosomes, indicating that P27 itself blocks phagosome-lysosome fusion by modulating the traffic machinery in the cell host.


Assuntos
Lipoproteínas/metabolismo , Macrófagos/microbiologia , Macrófagos/fisiologia , Mycobacterium bovis/fisiologia , Fagossomos/metabolismo , Fagossomos/microbiologia , Animais , Bovinos , Pontos de Checagem do Ciclo Celular , Expressão Gênica , Células HeLa , Humanos , Lipoproteínas/genética , Viabilidade Microbiana , Mutação , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Óperon
7.
Autophagy ; 10(12): 2109-21, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25426782

RESUMO

Protective immunity against Mycobacterium tuberculosis (Mtb) requires IFNG. Besides, IFNG-mediated induction of autophagy suppresses survival of virulent Mtb in macrophage cell lines. We investigated the contribution of autophagy to the defense against Mtb antigen (Mtb-Ag) in cells from tuberculosis patients and healthy donors (HD). Patients were classified as high responders (HR) if their T cells produced significant IFNG against Mtb-Ag; and low responders (LR) when patients showed weak or no T cell responses to Mtb-Ag. The highest autophagy levels were detected in HD cells whereas the lowest quantities were observed in LR patients. Interestingly, upon Mtb-Ag stimulation, we detected a positive correlation between IFNG and MAP1LC3B-II/LC3-II levels. Actually, blockage of Mtb-Ag-induced IFNG markedly reduced autophagy in HR patients whereas addition of limited amounts of IFNG significantly increased autophagy in LR patients. Therefore, autophagy collaborates with human immune responses against Mtb in close association with specific IFNG secreted against the pathogen.


Assuntos
Antígenos de Bactérias/imunologia , Autofagia/efeitos dos fármacos , Interferon gama/metabolismo , Interferon gama/farmacologia , Mycobacterium tuberculosis/imunologia , Tuberculose/tratamento farmacológico , Autofagia/imunologia , Feminino , Humanos , Macrófagos/imunologia , Macrófagos/microbiologia , Masculino , Células Th1/efeitos dos fármacos , Células Th1/imunologia , Tuberculose/imunologia
8.
Cell Microbiol ; 16(9): 1425-40, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24779357

RESUMO

Some intracellular bacteria are known to cause long-term infections that last decades without compromising the viability of the host. Although of critical importance, the adaptations that intracellular bacteria undergo during this long process of residence in a host cell environment remain obscure. Here, we report a novel experimental approach to study the adaptations of mycobacteria imposed by a long-term intracellular lifestyle. Selected Mycobacterium bovis BCG through continuous culture in macrophages underwent an adaptation process leading to impaired phenolic glycolipids (PGL) synthesis, improved usage of glucose as a carbon source and accumulation of neutral lipids. These changes correlated with increased survival of mycobacteria in macrophages and mice during re-infection and also with the specific expression of stress- and survival-related genes. Our findings identify bacterial traits implicated in the establishment of long-term cellular infections and represent a tool for understanding the physiological states and the environment that bacteria face living in fluctuating intracellular environments.


Assuntos
Macrófagos/microbiologia , Infecções por Mycobacterium/microbiologia , Mycobacterium/fisiologia , Animais , Feminino , Glicolipídeos/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Mycobacterium/isolamento & purificação , Mycobacterium bovis/fisiologia
9.
BMC Microbiol ; 13: 200, 2013 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-24007602

RESUMO

BACKGROUND: Tuberculosis is one of the leading causes of mortality throughout the world. Mycobacterium tuberculosis, the agent of human tuberculosis, has developed strategies involving proteins and other compounds called virulence factors to subvert human host defences and damage and invade the human host. Among these virulence-related proteins are the Mce proteins, which are encoded in the mce1, mce2, mce3 and mce4 operons of M. tuberculosis. The expression of the mce2 operon is negatively regulated by the Mce2R transcriptional repressor. Here we evaluated the role of Mce2R during the infection of M. tuberculosis in mice and macrophages and defined the genes whose expression is in vitro regulated by this transcriptional repressor. RESULTS: We used a specialized transduction method for generating a mce2R mutant of M. tuberculosis H37Rv. Although we found equivalent replication of the MtΔmce2R mutant and the wild type strains in mouse lungs, overexpression of Mce2R in the complemented strain (MtΔmce2RComp) significantly impaired its replication. During in vitro infection of macrophages, we observed a significantly increased association of the late endosomal marker LAMP-2 to MtΔmce2RComp-containing phagosomes as compared to MtΔmce2R and the wild type strains. Whole transcriptional analysis showed that Mce2R regulates mainly the expression of the mce2 operon, in the in vitro conditions studied. CONCLUSIONS: The findings of the current study indicate that Mce2R weakly represses the in vivo expression of the mce2 operon in the studied conditions and argue for a role of the proteins encoded in Mce2R regulon in the arrest of phagosome maturation induced by M. tuberculosis.


Assuntos
Antígenos de Bactérias/biossíntese , Proteínas de Bactérias/biossíntese , Regulação Bacteriana da Expressão Gênica , Mycobacterium tuberculosis/fisiologia , Proteínas Repressoras/metabolismo , Fatores de Virulência/biossíntese , Animais , Modelos Animais de Doenças , Deleção de Genes , Perfilação da Expressão Gênica , Pulmão/microbiologia , Macrófagos/microbiologia , Camundongos , Camundongos Endogâmicos BALB C , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/crescimento & desenvolvimento , Mycobacterium tuberculosis/patogenicidade , Óperon , Transdução Genética , Tuberculose/microbiologia , Tuberculose/patologia
10.
Biomed Res Int ; 2013: 458278, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23484118

RESUMO

Infection of bovines with Mycobacterium bovis causes important financial hardship in many countries presenting also a risk for humans. M. bovis is known to be adapted to survive and thrive within the intramacrophage environment. In spite of its relevance, at present the information about macrophage expression patterns is scarce, particularly regarding the bovine host. In this study, transcriptomic analysis was used to detect genes differentially expressed in macrophages derived from peripheral blood mononuclear cells at early stages of infection with two Argentinean strains of M. bovis, a virulent and an attenuated strains. The results showed that the number of differentially expressed genes in the cells infected with the virulent strain (5) was significantly lower than those in the cells infected with the attenuated strain (172). Several genes were more strongly expressed in infected macrophages. Among them, we detected encoding transcription factors, anthrax toxin receptor, cell division and apoptosis regulator, ankyrin proteins, cytoskeleton proteins, protein of cell differentiation, and regulators of endocytic traffic of membrane. Quantitative real-time PCR of a selected group of differentially expressed genes confirmed the microarrays results. Altogether, the present results contribute to understanding the mechanisms involved in the early interaction of M. bovis with the bovine macrophage.


Assuntos
Regulação da Expressão Gênica , Macrófagos/metabolismo , Monócitos/metabolismo , Mycobacterium bovis/metabolismo , Transcrição Gênica , Tuberculose Bovina/metabolismo , Animais , Argentina , Bovinos , Macrófagos/imunologia , Macrófagos/microbiologia , Monócitos/imunologia , Monócitos/microbiologia , Mycobacterium bovis/imunologia , Mycobacterium bovis/isolamento & purificação , Tuberculose Bovina/imunologia , Tuberculose Bovina/microbiologia
11.
BMC Vet Res ; 7: 37, 2011 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-21745408

RESUMO

BACKGROUND: In many regions of the world, wild mammals act as reservoir of Mycobacterium bovis, a situation that prevents the eradication of bovine tuberculosis. In order to observe whether a strain isolated from a wild boar, previously tested as highly virulent in a mice model, is also virulent in cattle, we performed cattle experimental inoculation with this strain RESULTS: Groups of Friesian calves were either infected with the wild boar strain M. bovis 04-303 or with the bovine strain NCTC10772 as a control. We found that antigen-specific IFN-γ release in whole blood samples occurred earlier in animals infected with M. bovis 04-303. Both M. bovis strains resulted in a positive skin test, with animals infected with the wild boar isolate showing a stronger response. These results and the presence of more severe organ lesions, with granuloma and pneumonic areas in cattle demonstrate that the wild boar isolate is more virulent than the NCTC10772 strain. Additionally, we tested the infectivity of the M. bovis strains in guinea pigs and found that M. bovis 04-303 had the highest pathogenicity. CONCLUSIONS: M. bovis strains isolated from wild boars may be pathogenic for cattle, producing TB lesions.


Assuntos
Reservatórios de Doenças/veterinária , Mycobacterium bovis/imunologia , Sus scrofa/microbiologia , Tuberculose Bovina/microbiologia , Animais , Argentina/epidemiologia , Bioensaio/veterinária , Bovinos , Elementos de DNA Transponíveis/genética , DNA Bacteriano/química , DNA Bacteriano/genética , Reservatórios de Doenças/microbiologia , Feminino , Cobaias , Histocitoquímica/veterinária , Interferon gama/sangue , Fígado/microbiologia , Pulmão/microbiologia , Linfonodos/microbiologia , Masculino , Mycobacterium bovis/genética , Mycobacterium bovis/patogenicidade , Reação em Cadeia da Polimerase/veterinária , Tuberculose Bovina/epidemiologia , Tuberculose Bovina/imunologia , Tuberculose Bovina/transmissão , Virulência
12.
Virulence ; 2(3): 233-7, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21543883

RESUMO

Integrity of p27-p55 operon has been demonstrated to be crucial for replication of Mycobacterium tuberculosis, the main agent of human tuberculosis, in the mouse model of infection. However, the individual contribution of each gene of the operon for the virulence of pathogenic Mycobacterium spp. still remains unclear. The operon is formed by two genes, p27 and p55. p27 gene encodes a lipoprotein that binds triacylated glycolipids and modulates the host immune responses by inhibiting the MHC-II Ag processing. Besides, p55 encodes an efflux pump that, together with P27, is involved in resistance to drugs. In this study, we evaluated the individual contribution of P27 and P55 to the virulence of Mycobacterium bovis, the etiological agent for bovine tuberculosis. Knockout mutation of p27-p55 operon in M. bovis severely decreased the virulence of the bacteria when assessed in a progressive model of pulmonary tuberculosis in Balb/c mice. In addition, the mutant strain showed poor replication in a murine macrophagic cell line. Virulence and intracellular replication were only restored when the mutant strain was complemented with a copy of the whole operon. The reintroduction of p55 into the mutant strain partially restored the virulence of the bacteria while no complementation was achieved with p27 individual gene. 


Assuntos
Proteínas de Bactérias/genética , Deleção de Genes , Lipoproteínas/genética , Macrófagos/microbiologia , Proteínas de Membrana Transportadoras/genética , Viabilidade Microbiana , Mycobacterium bovis/patogenicidade , Tuberculose Bovina/microbiologia , Animais , Bovinos , Linhagem Celular , Contagem de Colônia Microbiana , Modelos Animais de Doenças , Teste de Complementação Genética , Pulmão/microbiologia , Camundongos , Camundongos Endogâmicos BALB C , Mycobacterium bovis/genética , Óperon , Tuberculose Bovina/patologia , Tuberculose Pulmonar/microbiologia , Tuberculose Pulmonar/patologia , Virulência , Fatores de Virulência/genética
13.
Protein Cell ; 1(9): 859-70, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21203928

RESUMO

Dendritic-cell-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN; CD209) has an important role in mediating adherence of Mycobacteria species, including M. tuberculosis and M. bovis BCG to human dendritic cells and macrophages, in which these bacteria can survive intracellularly. DC-SIGN is a C-type lectin, and interactions with mycobacterial cells are believed to occur via mannosylated structures on the mycobacterial surface. Recent studies suggest more varied modes of binding to multiple mycobacterial ligands. Here we identify, by affinity chromatography and mass-spectrometry, four novel ligands of M. bovis BCG that bind to DC-SIGN. The novel ligands are chaperone protein DnaK, 60 kDa chaperonin-1 (Cpn60.1), glyceraldehyde-3 phosphate dehydrogenase (GAPDH) and lipoprotein lprG. Other published work strongly suggests that these are on the cell surface. Of these ligands, lprG appears to bind DC-SIGN via typical proteinglycan interactions, but DnaK and Cpn60.1 binding do not show evidence of carbohydrate-dependent interactions. LprG was also identified as a ligand for DC-SIGNR (L-SIGN; CD299) and the M. tuberculosis orthologue of lprG has been found previously to interact with human toll-like receptor 2. Collectively, these findings offer new targets for combating mycobacterial adhesion and within-host survival, and reinforce the role of DCSIGN as an important host ligand in mycobacterial infection.


Assuntos
Moléculas de Adesão Celular/metabolismo , Lectinas Tipo C/metabolismo , Mycobacterium bovis/metabolismo , Receptores de Superfície Celular/metabolismo , Sequência de Aminoácidos , Aderência Bacteriana/fisiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Moléculas de Adesão Celular/genética , Cromatografia de Afinidade , Células Dendríticas/metabolismo , Células Dendríticas/microbiologia , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/fisiologia , Humanos , Técnicas In Vitro , Lectinas Tipo C/genética , Ligantes , Macrófagos/metabolismo , Macrófagos/microbiologia , Espectrometria de Massas , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Modelos Biológicos , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Dados de Sequência Molecular , Mycobacterium bovis/genética , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Mycobacterium tuberculosis/patogenicidade , Proteína A Associada a Surfactante Pulmonar/metabolismo , Receptores de Superfície Celular/genética
14.
Microbes Infect ; 11(12): 956-63, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19591956

RESUMO

The identification of factors involved in the interaction of Mycobacterium bovis with the hosts will lead to new strategies to control bovine tuberculosis. In this study we compared the transcriptional profile of an attenuated M. bovis strain and a virulent M. bovis strain as a means to elucidate the molecular basis for their differential phenotype. Microarray and RT-qPCR results demonstrated that the expression of mce4D, Mb2607/Mb2608 and Mb3706c were up-regulated in the virulent strain whereas alkB, Mb3277c and Mb1077c were expressed at higher levels in the attenuated strain. These differential expression profiles were confirmed for Mb2607/Mb2608, mce4D, Mb1077c, alkB and Mb3277c during the replication of bacteria inside macrophages.


Assuntos
Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Mycobacterium bovis/genética , Mycobacterium bovis/patogenicidade , Animais , Bovinos , Células Cultivadas , Macrófagos/microbiologia , Camundongos , Mycobacterium bovis/isolamento & purificação , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sus scrofa
15.
BMC Microbiol ; 8: 38, 2008 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-18304349

RESUMO

BACKGROUND: mce3 is one of the four virulence-related mce operons of Mycobacterium tuberculosis. In a previous work we showed that the overexpression of Mce3R in Mycobacterium smegmatis and M. tuberculosis abolishes the expression of lacZ fused to the mce3 promoter, indicating that Mce3R represses mce3 transcription. RESULTS: We obtained a knockout mutant strain of M. tuberculosis H37Rv by inserting a hygromycin cassette into the mce3R gene. The mutation results in a significant increase in the expression of mce3 genes either in vitro or in a murine cell macrophages line as it was determined using promoter-lacZ fusions in M. tuberculosis. The abundance of mce1, mce2 and mce4 mRNAs was not affected by this mutation as it was demonstrated by quantitative RT-PCR. The mce3R promoter activity in the presence of Mce3R was significantly reduced compared with that in the absence of the regulator, during the in vitro culture of M. tuberculosis. CONCLUSION: Mce3R repress the transcription of mce3 operon and self regulates its own expression but does not affect the transcription of mce1, mce2 and mce4 operons of M. tuberculosis.


Assuntos
Regulação Bacteriana da Expressão Gênica , Mycobacterium tuberculosis/genética , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Transcrição Gênica , Fatores de Virulência/biossíntese , Animais , Fusão Gênica Artificial , Linhagem Celular , Deleção de Genes , Perfilação da Expressão Gênica , Genes Reporter , Macrófagos/microbiologia , Camundongos , Mutagênese Insercional , Mycobacterium tuberculosis/metabolismo , RNA Bacteriano/biossíntese , RNA Mensageiro/biossíntese , beta-Galactosidase/genética , beta-Galactosidase/metabolismo
16.
Tuberculosis (Edinb) ; 86(3-4): 263-7, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16644283

RESUMO

A good candidate antigen to create a therapeutic vaccine against TB is the ESAT-6 protein. Antigens produced in plants have already been successfully used as experimental vaccines, and small single-stranded RNA plant viruses have emerged as promising tools to rapidly express large amounts of foreign proteins in susceptible host plants. Here, we present the expression of ESAT-6 protein in Nicotiana tabacum using a vector based on potato virus X (PVX). The complete ESAT-6 open reading frame is expressed as a fusion protein with the 2A peptide of Foot and Mouth Disease Virus and the amino terminal of the PVX coat protein (CP) (PVXESAT-6). This strategy allows the production of free CP and ESAT-6 as well as fused ESAT-2A-CP to obtain recombinant chimaeric virions expressing ESAT-6 at the surface to be used as particulate antigen in vaccination. ESAT-6 expression was tested in agroinfiltrated tobacco leaves and products of the expected molecular masses corresponding to cleaved CP and ESAT-2A-CP fusion protein were observed, with ESAT-6 yields ranging from 0.5% to 1% of total soluble protein. Our study describes for the first time the expression of the ESAT-6 protein in tobacco plants using a PVX-derived vector. This strategy should serve as a convenient, rapid, low-cost expression system and can also be used for the assessment of ESAT-6 production and function prior to stable plant transformation.


Assuntos
Antígenos de Bactérias/biossíntese , Proteínas de Bactérias/biossíntese , Vetores Genéticos , Mycobacterium tuberculosis/imunologia , Nicotiana/metabolismo , Potexvirus/genética , Antígenos de Bactérias/genética , Proteínas de Bactérias/genética , Folhas de Planta/metabolismo , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/genética
17.
Microbes Infect ; 7(3): 325-34, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15804490

RESUMO

On the Mycobacterium tuberculosis genome there are four mce operons, all of which are similar in sequence and organization, and code for putatively exported proteins. To investigate whether Mce proteins are essential for virulence, we generated knock-out mutants in mce1, mce2 and mce3 operons of M. tuberculosis and evaluated their ability to multiply in a mammalian host. The allelic replacement was confirmed in each mutant strain by Southern blotting. RT-PCR experiments demonstrated the lack of in vitro expression of mutated genes in Deltamce1 and Deltamce2 mutants. On the other hand, no expression of mce3 was detected in either the wild-type or mutant strains. Similar doubling time and growth characteristics in in vitro culture were observed for mutants and parental strains. The intratracheal route was used to infect BALB/c mice with the Deltamce3, Deltamce2 and Deltamce1 mutants. Ten weeks after infection, all mice infected with the Deltamce mutants survived, while those infected with the wild-type strain died. This long survival correlated with very low counts of colony-forming units (CFU) in the lungs. Deltamce1-infected mice developed very few and small granulomas, while animals infected with Deltamce3 or Deltamce2 mutants showed delayed granuloma formation. Mice infected with Deltamce1 did not develop pneumonia, while animals infected with Deltamce3 and Deltamce2 mutants showed small pneumonic patches. In spleens, bacterial counts of mutant strains were less reduced than in lungs, compared with those of wild-type. In contrast, no such attenuation was observed when the intraperitoneal route was used for infection. Moreover, Deltamce1 mutants appear to be more virulent in lungs after intraperitoneal inoculation. In conclusion, mce operons seem to affect the virulence of M. tuberculosis in mice, depending on the route of infection. Hypotheses are discussed to explain this last issue. Thus, mutants in these genes seem to be good candidates for vaccine testing.


Assuntos
Antígenos de Bactérias/genética , Proteínas de Bactérias/genética , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/patogenicidade , Óperon/genética , Animais , Antígenos de Bactérias/fisiologia , Proteínas de Bactérias/fisiologia , Sequência de Bases , Expressão Gênica , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Dados de Sequência Molecular , Mutação , Fatores de Tempo , Tuberculose Pulmonar/microbiologia , Virulência/genética
18.
Acta bioquím. clín. latinoam ; 35(4): 505-513, dic. 2001. ilus
Artigo em Espanhol | LILACS | ID: lil-305652

RESUMO

La tuberculosis bovina es en Argentina una enfermedad que provoca graves pérdidas económicas y que afecta a un 5 por ciento del ganado. En un trabajo previo de tipificación de cepas por RFLP mediante el uso de las sondas PGRS y DR se identificó una cepa altamente predominante que se llamó AA. A diferencia de la cepa salvaje AA, la cepa de referencia AN5, de origen europeo, que se utiliza para elaborar la tuberculina, es una cepa adaptada al crecimiento en laboratorio, que puede haber sufrido mutaciones en genes de antígenos o de virulencia. Para ello se analizó la producción de proteínas secretadas y del extracto celular, de la cepa salvaje AA comparada con la cepa de referencia AN5, con el propósito de identificar diferencias que puedan dar cuenta de la virulencia y para identificar nuevos antígenos. Se utilizaron técnicas como electroforesis en geles de policrilamida, geles de 2 dimensiones y Western blot utilizando antisueros específicos contra antígenos ya caracterizados y sueros de bovinos infectados con tuberculosis confirmada por aislamiento de M. bovis, empleando proteínas celulares y secretadas (a los 25 y 100 días de cultivo) de ambas cepas. Se pudieron identificar, una proteína secretada de aproximadamente 29 kDa y otra de 28 kDa del estracto celular que parecen ser exclusivas o producidas en mayor cantidad por la cepa AA. También, se identificaron otras pero cuyas bandas eran más débiles. En conclusión, algunas de las proteínas identificadas pueden servir para mejorar el diagnóstico de la tuberculosis bovina


Assuntos
Técnicas In Vitro , Mycobacterium bovis , Proteínas de Bactérias , Tuberculose Bovina , Antígenos de Bactérias/isolamento & purificação , Antígenos de Bactérias , Argentina , Western Blotting , Extratos Celulares , Proteínas de Bactérias/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA