Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Extracell Vesicles ; 8(1): 1597603, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31258878

RESUMO

Biological nanoparticles, including viruses and extracellular vesicles (EVs), are of interest to many fields of medicine as biomarkers and mediators of or treatments for disease. However, exosomes and small viruses fall below the detection limits of conventional flow cytometers due to the overlap of particle-associated scattered light signals with the detection of background instrument noise from diffusely scattered light. To identify, sort, and study distinct subsets of EVs and other nanoparticles, as individual particles, we developed nanoscale Fluorescence Analysis and Cytometric Sorting (nanoFACS) methods to maximise information and material that can be obtained with high speed, high resolution flow cytometers. This nanoFACS method requires analysis of the instrument background noise (herein defined as the "reference noise"). With these methods, we demonstrate detection of tumour cell-derived EVs with specific tumour antigens using both fluorescence and scattered light parameters. We further validated the performance of nanoFACS by sorting two distinct HIV strains to >95% purity and confirmed the viability (infectivity) and molecular specificity (specific cell tropism) of biological nanomaterials sorted with nanoFACS. This nanoFACS method provides a unique way to analyse and sort functional EV- and viral-subsets with preservation of vesicular structure, surface protein specificity and RNA cargo activity.

2.
Cancer Cell ; 24(1): 59-74, 2013 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-23845442

RESUMO

Sustained tumor progression has been attributed to a distinct population of tumor-propagating cells (TPCs). To identify TPCs relevant to lung cancer pathogenesis, we investigated functional heterogeneity in tumor cells isolated from Kras-driven mouse models of non-small-cell lung cancer (NSCLC). CD24(+)ITGB4(+)Notch(hi) cells are capable of propagating tumor growth in both a clonogenic and an orthotopic serial transplantation assay. While all four Notch receptors mark TPCs, Notch3 plays a nonredundant role in tumor cell propagation in two mouse models and in human NSCLC. The TPC population is enriched after chemotherapy, and the gene signature of mouse TPCs correlates with poor prognosis in human NSCLC. The role of Notch3 in tumor propagation may provide a therapeutic target for NSCLC.


Assuntos
Antígeno CD24/análise , Carcinoma Pulmonar de Células não Pequenas/etiologia , Integrina beta4/análise , Neoplasias Pulmonares/etiologia , Receptores Notch/fisiologia , Animais , Carcinoma Pulmonar de Células não Pequenas/patologia , Humanos , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Endogâmicos C57BL , Receptor Notch3 , Esferoides Celulares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA