Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Molecules ; 29(6)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38543034

RESUMO

The emergence and spread of drug-resistant Plasmodium falciparum parasites shed a serious concern on the worldwide control of malaria, the most important tropical disease in terms of mortality and morbidity. This situation has led us to consider the use of peptide-alkoxyamine derivatives as new antiplasmodial prodrugs that could potentially be efficient in the fight against resistant malaria parasites. Indeed, the peptide tag of the prodrug has been designed to be hydrolysed by parasite digestive proteases to afford highly labile alkoxyamines drugs, which spontaneously and instantaneously homolyse into two free radicals, one of which is expected to be active against P. falciparum. Since the parasite enzymes should trigger the production of the active drug in the parasite's food vacuoles, our approach is summarized as "to dig its grave with its fork". However, despite promising sub-micromolar IC50 values in the classical chemosensitivity assay, more in-depth tests evidenced that the anti-parasite activity of these compounds could be due to their cytostatic activity rather than a truly anti-parasitic profile, demonstrating that the antiplasmodial activity cannot be based only on measuring antiproliferative activity. It is therefore imperative to distinguish, with appropriate tests, a genuinely parasiticidal activity from a cytostatic activity.


Assuntos
Antimaláricos , Citostáticos , Malária Falciparum , Malária , Humanos , Antimaláricos/química , Citostáticos/uso terapêutico , Malária/tratamento farmacológico , Malária Falciparum/tratamento farmacológico , Plasmodium falciparum , Peptídeos/farmacologia , Peptídeos/uso terapêutico
2.
ACS Appl Bio Mater ; 4(2): 1330-1339, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35014484

RESUMO

Photodynamic therapy (PDT) is a promising technique to treat different kinds of disease especially cancer. PDT requires three elements: molecular oxygen, a photoactivatable molecule called the photosensitizer (PS), and appropriate light. Under illumination, the PSs generate, in the presence of oxygen, the formation of reactive oxygen species including singlet oxygen, toxic, which then destroys the surrounding tissues. Even if PDT is used with success to treat actinic keratosis or prostate cancer for example, PDT suffers from two major drawbacks: the lack of selectivity of most of the PSs currently used clinically as well as the need for oxygen to be effective. To remedy the lack of selectivity, targeting the tumor neovessels is a promising approach to destroy the vascularization and cause asphyxia of the tumor. KDKPPR peptide affinity for the neuropilin-1 (NRP-1) receptor overexpressed on endothelial cells has already been proven. To compensate for the lack of oxygen, we focused on photoactivatable alkoxyamines (Alks), molecules capable of generating toxic radicals by light activation. In this article, we describe the synthesis of a multifunctional platform combining three units: a PS for an oxygen-dependent PDT, a peptide to target tumor neovessels, and an Alk for an oxygen-independent activity. The synthesis of the compound was successfully carried out, and the study of its photophysical properties showed that the PS retained its capacity to form singlet oxygen and the affinity tests confirmed the affinity of the compound for NRP-1. Thanks to the electron paramagnetic resonance spectroscopy, a technique of choice for radical investigation, the radicals generated by the illumination of the Alk could be detected. The proof of concept was thus successfully established.


Assuntos
Sistemas de Liberação de Medicamentos , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/administração & dosagem , Fármacos Fotossensibilizantes/uso terapêutico , Espectroscopia de Ressonância de Spin Eletrônica , Modelos Moleculares , Estrutura Molecular , Oxigênio , Peptídeos , Fotoquímica
3.
Nat Prod Commun ; 6(3): 409-16, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21485283

RESUMO

Water distilled essential oils from leaves of Plectranthus tenuicaulis (Hook. f.) J. K. Morton collected in Gabon were analyzed using GC-FID and GC-MS. The main constituent, unusual within the genus Plectranthus, was isolated and formally identified as being the (+)-(R)-enantiomer of (E)-6,7-epoxyocimene [(E)-myroxide]. This enantiomer, which represents about 75% of the essential oil, has been previously identified as a pheromone emitted by the male fruit-spotting bug Amblypelta nitida; this insect is responsible of destruction of most fruit crops in tropical and subtropical areas. The potential application of P. tenuicaulis essential oil in crop protection programs is discussed and the atypical chemical profile of the gabonese essential oil is compared with those previously reported in the genus Plectranthus (or Coleus).


Assuntos
Alcenos/química , Óleos Voláteis/química , Plectranthus/química , Cromatografia Líquida , Gabão , Cromatografia Gasosa-Espectrometria de Massas , Espectroscopia de Ressonância Magnética , Folhas de Planta/química , Plectranthus/classificação , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA