Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 851(Pt 2): 157999, 2022 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-35988593

RESUMO

Microplastics (MPs) can adsorb persistent organic pollutants such as oil hydrocarbons and may facilitate their transfer to organisms (Trojan horse effect). The aim of this study was to examine the effects of a 21 day dietary exposure to polystyrene MPs of 4.5 µm at 1000 particles/mL, alone and with sorbed oil compounds from the water accommodated fraction (WAF) of a naphthenic North Sea crude oil at two dilutions (25 % and 100 %), on marine mussels. An additional group of mussels was exposed to 25 % WAF for comparison. PAHs were accumulated in mussels exposed to WAF but not in those exposed to MPs with sorbed oil compounds from WAF (MPs-WAF), partly due to the low concentration of PAHs in the studied crude oil. Exposure to MPs or to WAF alone altered the activity of enzymes involved in aerobic (isocitrate dehydrogenase) and biotransformation metabolism (glutathione S-transferase). Prevalence of oocyte atresia and volume density of basophilic cells were higher and absorption efficiency lower in mussels exposed to MPs and to WAF than in controls. After 21 days MPs caused DNA damage (Comet assay) in mussel hemocytes. In conclusion, a Trojan horse effect was not observed but both MPs and oil WAF caused an array of deleterious effects on marine mussels at different levels of biological organization.


Assuntos
Mytilus , Petróleo , Poluentes Químicos da Água , Animais , Microplásticos , Petróleo/toxicidade , Petróleo/metabolismo , Plásticos/toxicidade , Plásticos/metabolismo , Poliestirenos/metabolismo , Água/metabolismo , Poluentes Orgânicos Persistentes , Mar do Norte , Isocitrato Desidrogenase/metabolismo , Isocitrato Desidrogenase/farmacologia , Poluentes Químicos da Água/análise , Glutationa Transferase/metabolismo
2.
Chemosphere ; 238: 124588, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31545210

RESUMO

Few works have addressed the effects provoked by the exposure to cadmium containing nanoparticles (NPs) on adult zebrafish (Danio rerio). We studied the effects of CdS NPs (5 nm) or ionic cadmium (10 µg Cd/L) after 3 and 21 d of exposure and at 6 months post-exposure (mpe). Acute toxicity was recorded after exposure to both forms of cadmium. Significant cadmium accumulation was measured in the whole fish after both treatments and autometallography showed a higher accumulation of metal in the intestine than that in the liver. Histopathological alterations, such as inflammation in gills and vacuolization in the liver, were detected after the exposure to both cadmium forms and, in a lower extent, at 6 mpe. X-ray analysis proved the presence of CdS NPs in these organs. The hepatic transcriptome analysis revealed that gene ontology terms such as "immune response" or "actin binding" were over-represented after 21 d of exposure to ionic cadmium respect to CdS NPs treatment. Exposure to CdS NPs caused a significant effect on pathways involved in the immune response and oxidative stress, while the exposure to ionic cadmium affected significantly pathways involved in DNA damage and repair and in the energetic metabolism. Oxidative damage to liver proteins was detected after the exposure to ionic cadmium, while a stronger destabilization of the hepatocyte lysosomal membrane was recorded under exposure to CdS NPs. In summary, although ionic cadmium provoked stronger effects than CdS NPs, both cadmium forms exerted an array of lethal and sublethal effects to zebrafish.


Assuntos
Bioacumulação/fisiologia , Compostos de Cádmio/toxicidade , Cádmio/toxicidade , Sulfetos/toxicidade , Poluentes Químicos da Água/toxicidade , Peixe-Zebra/metabolismo , Animais , Dano ao DNA/efeitos dos fármacos , Reparo do DNA/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Brânquias/metabolismo , Nanopartículas Metálicas/toxicidade , Estresse Oxidativo/efeitos dos fármacos
3.
Artigo em Inglês | MEDLINE | ID: mdl-30940556

RESUMO

Toxicity of AgNPs has been widely studied in waterborne exposed aquatic organisms. However, toxic effects caused by AgNPs ingested through the diet and depending on the season are still unexplored. The first cell response after exposure to xenobiotics occurs at gene transcription level. Thus, the aim of this study was to assess transcription level effects in the digestive gland of female mussels after dietary exposure to AgNPs both in autumn and in spring. Mussels were fed daily for 21 days with Isochrysis galbana microalgae previously exposed for 24 h to a dose close to environmentally relevant concentrations of 1 µg Ag/L PVP/PEI coated 5 nm AgNPs (in spring) and to a higher dose of 10 µg Ag/L of the same AgNPs both in autumn and in spring. After 1 and 21 days, mussels RNA was hybridized in a custom microarray containing 7806 annotated genes. Mussels were more responsive to the high dose compared to the low dose of AgNPs and a higher number of probes were altered in autumn than in spring. In both seasons, significantly regulated genes were involved in the cytoskeleton and lipid transport and metabolism COG categories, among others, while genes involved in carbohydrate transport and metabolism were specifically altered in autumn. Overall, transcription patterns were differently altered depending on the exposure time and season, indicating that season should be considered in ecotoxicological studies of metal nanoparticles in mussels.


Assuntos
Nanopartículas Metálicas/toxicidade , Mytilus/efeitos dos fármacos , Polietilenoimina/química , Povidona/química , Prata/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Exposição Dietética/efeitos adversos , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Brânquias/efeitos dos fármacos , Gônadas/efeitos dos fármacos , Nanopartículas Metálicas/química , Prata/química , Transcriptoma/efeitos dos fármacos , Poluentes Químicos da Água/química
4.
Aquat Toxicol ; 210: 56-68, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30825730

RESUMO

Potential toxic effects of Ag NPs ingested through the food web and depending on the season have not been addressed in marine bivalves. This work aimed to assess differences in protein expression in the digestive gland of female mussels after dietary exposure to Ag NPs in autumn and spring. Mussels were fed daily with microalgae previously exposed for 24 h to 10 µg/L of PVP/PEI coated 5 nm Ag NPs. After 21 days, mussels significantly accumulated Ag in both seasons and Ag NPs were found within digestive gland cells and gills. Two-dimensional electrophoresis distinguished 104 differentially expressed protein spots in autumn and 142 in spring. Among them, chitinase like protein-3, partial and glyceraldehyde-3-phosphate dehydrogenase, that are involved in amino sugar and nucleotide sugar metabolism, carbon metabolism, glycolysis/gluconeogenesis and the biosynthesis of amino acids KEGG pathways, were overexpressed in autumn but underexpressed in spring. In autumn, pyruvate metabolism, citrate cycle, cysteine and methionine metabolism and glyoxylate and dicarboxylate metabolism were altered, while in spring, proteins related to the formation of phagosomes and hydrogen peroxide metabolism were differentially expressed. Overall, protein expression signatures depended on season and Ag NPs exposure, suggesting that season significantly influences responses of mussels to NP exposure.


Assuntos
Nanopartículas Metálicas/toxicidade , Mytilus/efeitos dos fármacos , Biossíntese de Proteínas/efeitos dos fármacos , Estações do Ano , Prata/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Sistema Digestório/efeitos dos fármacos , Sistema Digestório/metabolismo , Feminino , Brânquias/efeitos dos fármacos , Brânquias/metabolismo , Nanopartículas Metálicas/química , Microalgas/metabolismo , Mytilus/genética , Mytilus/metabolismo , Polietilenoimina/química , Povidona/química , Biossíntese de Proteínas/genética , Proteômica , Prata/química , Propriedades de Superfície , Transcriptoma/efeitos dos fármacos , Poluentes Químicos da Água/química
5.
Sci Total Environ ; 655: 48-60, 2019 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-30469068

RESUMO

Toxicity of silver nanoparticles (Ag NPs) to aquatic organisms has been widely studied. However, the potential toxic effects of Ag NPs ingested through the food web, especially at environmentally relevant concentrations, as well as the potential effects on the offspring remain unknown. The aims of this work were to screen the cytotoxicity of Poly N­vinyl­2­pirrolidone/Polyethyleneimine (PVP/PEI) coated 5 nm Ag NPs in hemocytes exposed in vitro and to assess the effects of dietary exposure to Ag NPs on mussels growth, immune status, gonad condition, reproductive success and offspring embryo development. For this, mussels Mytilus galloprovincialis were fed daily with microalgae Isochrysis galbana previously exposed for 24 h to a dose close to environmentally relevant concentrations (1 µg Ag/L Ag NPs) and to a high dose of 10 µg Ag/L Ag NPs. After 24 h of in vitro exposure, Ag NPs were cytotoxic to mussel hemocytes starting at 1 mg Ag/L (LC50: 2.05 mg Ag/L). Microalgae significantly accumulated Ag after the exposure to both doses and mussels fed for 21 days with microalgae exposed to 10 µg Ag/L Ag NPs significantly accumulated Ag in the digestive gland and gills. Sperm motility and fertilization success were not affected but exposed females released less eggs than non-exposed ones. The percentage of abnormal embryos was significantly higher than in control individuals after parental exposure to both doses. Overall, results indicate that Ag NPs taken up through the diet can significantly affect ecologically relevant endpoints such as reproduction success and embryo development in marine mussels.


Assuntos
Embrião não Mamífero/efeitos dos fármacos , Desenvolvimento Embrionário/efeitos dos fármacos , Nanopartículas Metálicas/toxicidade , Mytilus/efeitos dos fármacos , Prata/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Exposição Dietética/efeitos adversos , Embrião não Mamífero/anormalidades , Embrião não Mamífero/metabolismo , Feminino , Hemócitos/efeitos dos fármacos , Hemócitos/metabolismo , Nanopartículas Metálicas/química , Mytilus/crescimento & desenvolvimento , Mytilus/metabolismo , Aceleradores de Partículas , Tamanho da Partícula , Polietilenoimina/química , Povidona/química , Reprodução/efeitos dos fármacos , Prata/química , Propriedades de Superfície , Poluentes Químicos da Água/química
6.
Comp Biochem Physiol C Toxicol Pharmacol ; 206-207: 54-64, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29555404

RESUMO

Polar cod is an abundant Arctic key species, inhabiting an ecosystem that is subjected to rapid climate change and increased petroleum related activities. Few studies have investigated biological effects of crude oil on lipid metabolism in this species, despite lipids being a crucial compound for Arctic species to adapt to the high seasonality in food abundance in their habitat. This study examines the effects of dietary crude oil exposure on transcription levels of genes related to lipid metabolism (peroxisome proliferator-activated receptors [ppar-α, ppar-γ], retinoic X receptor [rxr-ß], palmitoyl-CoA oxidase [aox1], cytochrome P4507A1 [cyp7α1]), reproduction (vitellogenin [vtg-ß], gonad aromatase [cyp19a1]) and biotransformation (cytochrome P4501A1 [cyp1a1], aryl hydrocarbon receptor [ahr2]). Exposure effects were also examined through plasma chemistry parameters. Additional fish were exposed to a PPAR-α agonist (WY-14,643) to investigate the role of PPAR-α in their lipid metabolism. The dose-dependent up-regulation of cyp1a1 reflected the activation of genes related to PAH biotransformation upon crude oil exposure. The crude oil exposure did not significantly alter the mRNA expression of genes involved in lipid homeostasis except for cyp7α1 transcription levels. Plasma levels of cholesterol and alanine transaminase showed significant alterations in fish exposed to crude oil at the end of the experiment. WY exposure induced a down-regulation of ppar-α, an effect contrary to studies performed on other fish species. In conclusion, this study showed clear effects of dietary crude oil exposure at environmentally relevant concentrations on xenobiotic biotransformation but revealed only weak alterations in the lipid metabolism of polar cod.


Assuntos
Proteínas de Peixes/metabolismo , Gadiformes/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Petróleo/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Colesterol 7-alfa-Hidroxilase/antagonistas & inibidores , Colesterol 7-alfa-Hidroxilase/genética , Colesterol 7-alfa-Hidroxilase/metabolismo , Clima Frio , Citocromo P-450 CYP1A1/química , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1A1/metabolismo , Indução Enzimática/efeitos dos fármacos , Feminino , Proteínas de Peixes/agonistas , Proteínas de Peixes/antagonistas & inibidores , Proteínas de Peixes/genética , Gadiformes/crescimento & desenvolvimento , Fígado/crescimento & desenvolvimento , Fígado/metabolismo , Masculino , Noruega , Ovário/efeitos dos fármacos , Ovário/crescimento & desenvolvimento , Ovário/metabolismo , PPAR alfa/antagonistas & inibidores , PPAR alfa/genética , PPAR alfa/metabolismo , Pirimidinas/farmacologia , Reprodutibilidade dos Testes , Testículo/efeitos dos fármacos , Testículo/crescimento & desenvolvimento , Testículo/metabolismo
7.
Artigo em Inglês | MEDLINE | ID: mdl-28323199

RESUMO

The extensive use and release to the aquatic environment of silver nanoparticles (NPs) could lead to their incorporation into the food web. Brine shrimp larvae of 24h showed low sensitivity to the exposure to PVP/PEI-coated Ag NPs (5nm), with EC50 values at 24h of 19.63mgAgL-1, but they significantly accumulated silver after 24h of exposure to 100µgL-1 of Ag NPs. Thus, to assess bioaccumulation and effects of silver transferred by the diet in zebrafish, brine shrimp larvae were exposed to 100ngL-1 of Ag NPs as an environmentally relevant concentration or to 100µgL-1 as a potentially effective concentration and used to feed zebrafish for 21days. Autometallography revealed a dose- and time-dependent metal accumulation in the intestine and in the liver of zebrafish. Three-day feeding with brine shrimps exposed to 100ngL-1 of Ag NPs was enough to impair fish health as reflected by the significant reduction of lysosomal membrane stability and the presence of vacuolization and necrosis in the liver. However, dietary exposure to 100µgL-1 of Ag NPs for 3days did not significantly alter gene transcription levels, neither in the liver nor in the intestine. After 21days, biological processes such as lipid transport and localization, cellular response to chemical stimulus and response to xenobiotic stimulus were significantly altered in the liver. Overall, these results indicate an effective dietary transfer of silver and point out to liver as the main target organ for Ag NP toxicity in zebrafish after dietary exposure.


Assuntos
Artemia/metabolismo , Nanopartículas Metálicas/toxicidade , Polietilenoimina/toxicidade , Povidona/toxicidade , Prata/toxicidade , Poluentes Químicos da Água/toxicidade , Peixe-Zebra/metabolismo , Animais , Artemia/química , Artemia/efeitos dos fármacos , Artemia/crescimento & desenvolvimento , Contaminação de Alimentos , Mucosa Intestinal/metabolismo , Intestinos/química , Intestinos/efeitos dos fármacos , Intestinos/crescimento & desenvolvimento , Larva/química , Larva/efeitos dos fármacos , Larva/crescimento & desenvolvimento , Larva/metabolismo , Dose Letal Mediana , Metabolismo dos Lipídeos , Fígado/efeitos dos fármacos , Fígado/crescimento & desenvolvimento , Fígado/metabolismo , Fígado/patologia , Lisossomos/efeitos dos fármacos , Lisossomos/patologia , Nanopartículas Metálicas/análise , Nanopartículas Metálicas/química , Nanopartículas Metálicas/ultraestrutura , Microscopia Eletrônica de Transmissão , Necrose , Polietilenoimina/análise , Polietilenoimina/química , Povidona/análise , Povidona/química , Prata/análise , Prata/química , Propriedades de Superfície , Distribuição Tecidual , Testes de Toxicidade Aguda , Toxicocinética , Vacúolos/efeitos dos fármacos , Vacúolos/patologia , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/química , Peixe-Zebra/crescimento & desenvolvimento
8.
Mar Environ Res ; 123: 14-24, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27846414

RESUMO

Oil and chemical spills in the marine environment, although sporadic, are highly dangerous to biota inhabiting coastal and estuarine areas. Effects of spilled compounds in exposed organisms occur at different biological organization levels: from molecular, cellular or tissue levels to the physiological one. The present study aims to determine the specific hepatic gene transcription profiles observed in turbot juveniles under exposure to fuel oil n °6 and styrene vs controls using an immune enriched turbot (Scophthalmus maximus) oligo-microarray containing 2716 specific gene probes. After 3 days of exposure, fuel oil specifically induced aryl hydrocarbon receptor mediated transcriptional response through up-regulation of genes, such as ahrr and cyp1a1. More gene transcripts were regulated after 14 days of exposure involved in ribosomal biosynthesis, immune modulation, and oxidative response among the most significantly regulated functional pathways. On the contrary, gene transcription alterations caused by styrene did not highlight any significantly regulated molecular or metabolic pathway. This was also previously reported at cell and tissue level where no apparent responses were distinguishable. For the fuel oil experiment, obtained specific gene profiles could be related to changes in cell-tissue organization in the same individuals, such as increased hepatocyte vacuolization, decrease in melano-macrophage centers and the regulation of leukocyte numbers. In conclusion, the mode of action reflected by gene transcription profiles analyzed hereby in turbot livers could be linked with the responses previously reported at higher biological organization levels. Molecular alterations described hereby could be preceding observed alterations at cell and tissue levels.


Assuntos
Linguados/fisiologia , Óleos Combustíveis/toxicidade , Fígado/metabolismo , Estireno/toxicidade , Transcrição Gênica/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Animais , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1A1/metabolismo , Receptores de Hidrocarboneto Arílico/genética
9.
Artigo em Inglês | MEDLINE | ID: mdl-23474256

RESUMO

Bivalve molluscs accumulate chemical compounds from the environment that could cause alterations in lipid homeostasis and endocrine system. In vertebrates such cell processes are modulated by transcription factors belonging to the superfamily of nuclear receptors (NRs). The goal of this study was to clone fragments of mussel Mytilus galloprovincialis NR genes that could mediate cell responses such as peroxisome proliferation and endocrine disruption. PCR-based screening of mussel digestive gland cDNA using degenerate primers provided cDNA fragments or whole ORFs of retinoid X receptor (RXR), estrogen receptor (ER) and 5 proteins belonging to the NR1 subfamily highly similar to the arthropod ecdysone inducible protein E75. NR1G, whose whole ORF was cloned, is related to the nematode and trematode G group of NR1 receptors; NR1DEF is related to the D, E and F groups, and NR1Dv1, NR1Dv2 and NR1DΔ belong to the D group. mRNA transcripts for all these receptors were detected in gill, mantle and digestive gland. In all cases, except ER, transcript levels were lower in June than in January. NR1Dv1 and NR1DΔ did not show identical transcription levels, although both were at their lowest in digestive gland in June. On the contrary, NR1Dv2 and NR1DΔ transcription profiles were similar. Further studies are needed to determine the function(s) of mussel RXR, ER and novel NR1 subfamily receptors and their possible role in the regulation of physiological cell responses and/or adaptive response to xenobiotic exposures.


Assuntos
Mytilus/genética , Receptores Citoplasmáticos e Nucleares/genética , Receptores de Estrogênio/genética , Receptores X de Retinoides/genética , Sequência de Aminoácidos , Animais , Clonagem Molecular , Sistema Digestório/metabolismo , Feminino , Perfilação da Expressão Gênica , Brânquias/metabolismo , Dados de Sequência Molecular , Filogenia , Receptores Citoplasmáticos e Nucleares/classificação , Receptores de Estrogênio/classificação , Receptores X de Retinoides/classificação , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Estações do Ano , Homologia de Sequência de Aminoácidos
10.
Gene ; 498(1): 50-8, 2012 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-22343007

RESUMO

Xenobiotic transport proteins are involved in cellular defence against accumulation of xenobiotics participating in multixenobiotic resistance (MXR). In order to study the transcriptional regulation of MXR genes in fish exposed to common chemical pollutants we selected the thicklip grey mullet (Chelon labrosus), since mugilids are widespread in highly degraded estuarine environments where they have to survive through development and adulthood. Partial sequences belonging to genes coding for members of 3 different families of ATP binding cassette (ABC) transporter proteins (ABCB1; ABCB11; ABCC2; ABCC3; ABCG2) and a vault protein (major vault protein, MVP) were amplified and sequenced from mullet liver. Their liver and brain transcription levels were examined in juvenile mullets under exposure to perfluorooctane sulfonate (PFOS) and to fresh (F) and weathered (WF) Prestige-like heavy fuel oil for 2 and 16 days. In liver, PFOS significantly up-regulated transcription of abcb1, abcb11 and abcg2 while in brain only abcb11 was up-regulated. Both fuel treatments significantly down-regulated abcb11 in liver at day 2 while abcc2 was only down-regulated by WF. mvp was significantly up-regulated by F and down-regulated by WF at day 2 in the liver. At day 16 only a significant up-regulation of abcb1 in the F group was recorded. Brain abcc3 and abcg2 were down-regulated by both fuels at day 2, while abcb1 and abcc2 were only down-regulated by F exposure. After 16 days of exposure only abcb11 and abcg2 were regulated. In conclusion, exposure to organic xenobiotics significantly alters transcription levels of genes participating in xenobiotic efflux, especially after short periods of exposure. Efflux transporter gene transcription profiling could thus constitute a promising tool to assess exposure to common pollutants.


Assuntos
Ácidos Alcanossulfônicos/farmacocinética , Ácidos Alcanossulfônicos/toxicidade , Fluorocarbonos/farmacocinética , Fluorocarbonos/toxicidade , Óleos Combustíveis/toxicidade , Smegmamorpha/genética , Smegmamorpha/metabolismo , Xenobióticos/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Animais , Sequência de Bases , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Primers do DNA/genética , Proteínas de Peixes/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Partículas de Ribonucleoproteínas em Forma de Abóbada/genética , Poluentes Químicos da Água/farmacocinética , Poluentes Químicos da Água/toxicidade
11.
Mar Genomics ; 2(3-4): 201-13, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-21798189

RESUMO

In November 2002 the tanker Prestige released more than 60,000t of a heavy fuel oil which spread over Galician waters and the Biscay Bay, affecting coastal ecosystems. Polycyclic aromatic hydrocarbons are the main components of the Prestige fuel oil and induce biotransformation metabolism and peroxisome proliferation in marine organisms. In vertebrates, this later response involves peroxisome proliferator-activated receptors (PPARs), transcription factors belonging to the nuclear receptor superfamily, that act upon heterodimerization with the retinoid X receptor (RXR). In order to assess the possible biological effects of the Prestige oil spill in the Biscay Bay, male and female juvenile and adult European hakes Merluccius merluccius were sampled in June and December 2004 and 2005. PCR screening of hake liver cDNA with degenerate primers resulted in cloning and sequencing of cDNA fragments of PPARα (1011bp), PPARγ (812bp), RXR (270bp) and of the PPARα target gene palmitoyl-CoA oxidase (AOX1, 792bp). Fragments of another 9 toxicologically relevant genes were also cloned and sequenced. PPARα mRNA expression was not significantly different among groups. In juvenile females transcription of PPARγ, RXR and AOX1 significantly increased in June 2005 when compared to June 2004. In adult males levels of AOX1 decreased in the same period. AOX1 and 7-ethoxyresorufin O-deethylase (EROD) activities, measured as exposure biomarkers, differed between years only in males sampled in June. EROD activity was higher in 2004 than in 2005 in adults, whereas both juvenile and adults showed higher AOX1 activity in 2005. The lack of historical data previous to the accident or in areas not affected by the accident did not allow to relate observed variations in gene transcription levels and enzyme activities to the Prestige oil spill. Reported data could be useful for comparison purposes for future studies in European hake and contributes gene sequence information relevant for future toxicological studies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA