Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
2.
Pharmaceutics ; 15(4)2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-37111639

RESUMO

Uterine cancer is the fourth most common cancer in women. Despite various chemotherapy approaches, the desired effect has not yet been achieved. The main reason is each patient responds differently to standard treatment protocols. The production of personalized drugs and/or drug-loaded implants is not possible in today's pharmaceutical industry; 3D printers allow for the rapid and flexible preparation of personalized drug-loaded implants. However, the key point is the preparation of drug-loaded working material such as filament for 3D printers. In this study, two different anticancer (paclitaxel, carboplatin) drug-loaded PCL filaments with a 1.75 mm diameter were prepared with a hot-melt extruder. To optimize the filament for a 3D printer, different PCL Mn, cyclodextrins and different formulation parameters were tried, and a series of characterization studies of filaments were conducted. The encapsulation efficiency, drug release profile and in vitro cell culture studies have shown that 85% of loaded drugs retain their effectiveness, provide a controlled release for 10 days and cause a decrease in cell viability of over 60%. In conclusion, it is possible to prepare optimum dual anticancer drug-loaded filaments for FDM 3D printers. Drug-eluting personalized intra-uterine devices can be designed for the treatment of uterine cancer by using these filaments.

3.
Pharmaceutics ; 15(2)2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36839637

RESUMO

Chemotherapy is the most used method after surgery in the treatment of colon cancer. Cancer cells escape the recognition mechanism of immune system cells to survive and develop chemoresistance. Therefore, the use of immunotherapy in combination with chemotherapy can increase the effectiveness of the treatment. Nanoparticles have been used clinically to increase the accumulation of therapeutics in target tissues and reduce toxicity. In this paper, nanoplexes were formed via cationic cyclodextrin polymer, 5-Fluorouracil, and Interleukin-2 based on the opposite charge interaction of macromolecules without undergoing any structural changes or losing the biological activity of Interleukin-2. Anticancer activities of nanoplexes were determined in two-dimensional and three-dimensional cell culture setups. The dual drug-loaded cyclodextrin nanoplexes diffused deeper into the spheroids and accelerated apoptosis when compared with 5-FU solutions. In the colorectal tumor-bearing animal model, survival rate, antitumor activity, metastasis, and immune response parameters were assessed using a cyclodextrin derivative, which was found to be safe based on the ALT/AST levels in healthy mice. Histomorphometric analysis showed that the groups treated with the nanoplex formulation had significantly fewer initial tumors and lung foci when compared with the control. The dual drug-loaded nanoplex could be a promising drug delivery technique in the immunochemotherapy of colorectal cancer.

4.
Beilstein J Org Chem ; 19: 139-157, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36814451

RESUMO

Colorectal cancer (CRC) is the third most diagnosed cancer type globally and ranks second in cancer-related deaths. With the current treatment possibilities, a definitive, safe, and effective treatment approach for CRC has not been presented yet. However, new drug delivery systems show promise in this field. Amphiphilic cyclodextrin-based nanocarriers are innovative and interesting formulation approaches for targeting the colon through oral administration. In our previous studies, oral chemotherapy for colon tumors was aimed and promising results were obtained with formulation development studies, mucin interaction, mucus penetration, cytotoxicity, and permeability in 2D cell culture, and furthermore in vivo antitumoral and antimetastatic efficacy in early and late-stage colon cancer models and biodistribution after single dose oral administration. This study was carried out to further elucidate oral camptothecin (CPT)-loaded amphiphilic cyclodextrin nanoparticles for the local treatment of colorectal tumors in terms of their drug release behavior and efficacy in 3-dimensional tumor models to predict the in vivo efficacy of different nanocarriers. The main objective was to build a bridge between formulation development and in vitro phase and animal studies. In this context, CPT-loaded polycationic-ß-cyclodextrin nanoparticles caused reduced cell viability in CT26 and HT29 colon carcinoma spheroid tumors of mice and human origin, respectively. In addition, the release profile, which is one of the critical quality parameters in new drug delivery systems, was investigated mathematically by release kinetic modeling for the first time. The overall findings indicated that the strategy of orally targeting anticancer drugs such as CPT with positively charged poly-ß-CD-C6 nanoparticles to colon tumors for local and/or systemic efficacy is a promising approach.

5.
Int J Pharm ; 623: 121940, 2022 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-35724824

RESUMO

Immune system deficiencies are crucial in the progression of cancer, predominantly because immune cells are not stimulated by cytokines to eradicate cancer cells. Immunochemotherapy is currently considered an innovative approach that creates pathways in cancer treatment, sometimes also aiding in the efficacy of chemotherapeutics. The aim of this study was to prepare a cyclodextrin (CD) nanoplex based on charge interaction to deliver the anticancer drug 5-fluorouracil (5-FU) and Interleukin-2 (IL-2), thereby forming a nanoscale drug delivery system aimed at chemo-immunotherapy for colorectal cancers. The CD:IL-2 nanoplexes were obtained with a particle size below 100 nm and a cationic surface charge based on the extent of charge interaction of the cationic CD polymer with negatively charged IL-2. The loading capacity of CD nanoplexes was 40% for 5-FU and 99.8% for IL-2. Nanoplexes maintained physical stability in terms of particle size and zeta potential in aqueous solution for 1 week at + 4 °C. Moreover, the structural integrity of IL-2 loaded into CD nanoplexes was confirmed by SDS-PAGE analysis. The cumulative release rates of both 5-FU and IL-2 were found to be more than 80% in simulated biological fluids in 12 h. Cell culture studies demonstrate that CD polymers are safe on healthy L929 mouse fibroblast cells. Drug-loaded CD nanoplexes were determined to have a higher anticancer effect than free drug solution against CT26 mouse colon carcinoma cells. In addition, intestinal permeability studies supported the conclusion that CD nanoplexes could be promising candidates for oral chemotherapy as well. In conclusion, effective cancer therapy utilizing the absorptive/cellular uptake effect of CDs, the synergic effect and co-transport of chemotherapeutic drugs and immunotherapeutic molecules is a promising approach. Furthermore, the transport of IL-2 with this nano-sized system can reduce or avoid its toxicity problem in the clinic.


Assuntos
Neoplasias do Colo , Ciclodextrinas , Nanopartículas , Animais , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/patologia , Ciclodextrinas/uso terapêutico , Fluoruracila , Imunoterapia , Interleucina-2 , Camundongos , Nanopartículas/química
6.
Eur J Pharm Biopharm ; 170: 10-23, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34852262

RESUMO

Diseases of the pancreas include acute and chronic pancreatitis, exocrine pancreatic insufficiency, diabetes and pancreatic cancer. These pathologies can be difficult to treat due to the innate properties of the pancreas, its structure and localization. The need for effective targeting of the pancreatic tissue by means of nanoparticles delivering therapeutics is a major focus area covered and discussed in this review. Most common diseases of the pancreas do not have specific and direct medical treatment option, and existing treatment options are generally aimed at relieving symptoms. Diabetes has different treatment options for different subtypes based on insulin having stability problems and requiring injections reducing patient compliance. Pancreatic cancer progresses silently and can only be diagnosed in advanced stages. Therefore, survival rate of patients is very low. Gemcitabine and FOLFIRINOX treatment regimens, the most commonly used clinical standard treatments, are generally insufficient due to the chemoresistance that develops in cancer cells and also various side effects. Therefore new treatment options for pancreatic cancer are also under focus. Overcoming drug resistance and pancreatic targeting can be achieved with active and passive targeting methods, and a more effective and safer treatment regimen can be provided at lower drug doses. This review covers the current literature and clinical trials concerning pancreatic drug delivery systems in the nanoscale focusing on the challenges and opportunities provided by these smart delivery systems.


Assuntos
Sistemas de Liberação de Medicamentos , Nanopartículas , Pancreatopatias/tratamento farmacológico , Resistência a Medicamentos , Humanos
7.
Eur J Pharm Biopharm ; 169: 168-177, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34700001

RESUMO

Colorectal cancer (CRC) is the third most commonly diagnosed cancer in the world and is the second leading cause of cancer related deaths. New cases are increasingly diagnosed every day, but current therapeutic options are still insufficient for an effective treatment. In CRC treatment, there is a significant need for alternative treatment approaches that can both prevent relapse and provide strong antimetastatic effects as the intestines and colon are prone to metastasis to neighboring organs and tissues as well as the liver and the lung. In this study, optimized polycationic cyclodextrin (CD) nanoparticles for oral Camptothecin (CPT) delivery were comprehensively examined for in vivo performance in early and late stage tumor bearing mouse model in terms of antitumoral and antimetastatic efficacy of CPT bound to polycationic CD nanoparticles in comparison to free CPT. In addition, the gastrointestinal localization of a single administration of fluorescent dye loaded polycationic CD nanoparticles in the gastrointestinal tract at the end of 24 h after oral administration was also imaged and evaluated by in vivo imaging system against fluorescent dye intensity. Results showed that survival percentage was significantly improved in CRC-bearing mice compared to oral CPT solution, with significantly reduced colorectal tumor masses and number of liver metastatic foci (p < 0.05). It was also possible to differentiate between the effectiveness of nanoparticles in early or late stages of CRC. In vivo imaging studies have also confirmed that polycationic CD nanoparticles are able to deliver the therapeutic load up to the colon and tend to accumulate especially in tumor foci, indicating an effective local treatment strategy. In addition number of liver metastases were significantly decreased with the CPT-loaded polycationic CD nanoparticle formulation in both early and late stage tumor models. These findings indicated that CPT-loaded polycationic CD nanoparticles could be an efficient oral nanocarrier formulation for anticancer molecules that have limited application because of oral bioavailability and stability problems.


Assuntos
Camptotecina/farmacologia , Neoplasias Colorretais/tratamento farmacológico , Ciclodextrinas/farmacologia , Sistemas de Liberação de Medicamentos/métodos , Trato Gastrointestinal , Nanopartículas , Administração Oral , Animais , Antineoplásicos Fitogênicos/farmacologia , Disponibilidade Biológica , Neoplasias Colorretais/patologia , Trato Gastrointestinal/efeitos dos fármacos , Trato Gastrointestinal/metabolismo , Trato Gastrointestinal/patologia , Camundongos , Modelos Animais , Nanopartículas/química , Nanopartículas/uso terapêutico , Metástase Neoplásica/prevenção & controle , Polieletrólitos , Distribuição Tecidual , Resultado do Tratamento
8.
Pharm Dev Technol ; 26(7): 797-806, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34219578

RESUMO

The purpose of this study was to investigate the impact of anticancer drug erlotinib-randomly methylated-ß-cyclodextrin complex (ERL-RAMEB CD) on drug solubility and dissolution rate. Phase solubility study showed erlotinib displayed maximum solubility in RAMEB CD solution and the stability constant (Kc) was calculated to be 370 ± 16 M-1. The optimal formulation was obtained with ERL-RAMEB CD in a 1:1 molar ratio using the co-lyophilization technique. Differential scanning calorimetry (DSC) and Scanning electron microscopy (SEM) verified the inclusion of complex formation. In vitro dissolution study confirmed ERL-RAMEB CD as a favorable approach to increase drug dissolution with a 1.5-fold increase than free ERL at 1 h. An improved dissolution with ∼88.4% drug release at 1 h was observed, in comparison with Erlotinib with ∼58.7% release in 45 min. The in vitro cytotoxicity results indicated that the ERL-RAMEB CD inclusion complex reduced cell viability than free erlotinib. Caco-2 cell uptake that is indicative of drug intestinal permeability resulted in a 5-fold higher uptake of ERL-RAMEB CD inclusion complex than the ERL solution. Hence, ERL-RAMEB CD complexation displays a strong potential to increase dissolution and permeability of erlotinib leading eventually to enhanced oral bioavailability.


Assuntos
Antineoplásicos/administração & dosagem , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Cloridrato de Erlotinib/administração & dosagem , Neoplasias Pulmonares/tratamento farmacológico , Células A549/efeitos dos fármacos , Animais , Antineoplásicos/uso terapêutico , Células CACO-2/efeitos dos fármacos , Varredura Diferencial de Calorimetria , Linhagem Celular Tumoral/efeitos dos fármacos , Liberação Controlada de Fármacos , Cloridrato de Erlotinib/uso terapêutico , Humanos , Absorção Intestinal , Metilação , Camundongos , Microscopia Eletrônica de Varredura , Solubilidade , Resultado do Tratamento , beta-Ciclodextrinas/administração & dosagem , beta-Ciclodextrinas/uso terapêutico
9.
Molecules ; 26(11)2021 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-34205019

RESUMO

Clinically, different approaches are adopted worldwide for the treatment of cancer, which still ranks second among all causes of death. Immunotherapy for cancer treatment has been the focus of attention in recent years, aiming for an eventual antitumoral effect through the immune system response to cancer cells both prophylactically and therapeutically. The application of nanoparticulate delivery systems for cancer immunotherapy, which is defined as the use of immune system features in cancer treatment, is currently the focus of research. Nanomedicines and nanoparticulate macromolecule delivery for cancer therapy is believed to facilitate selective cytotoxicity based on passive or active targeting to tumors resulting in improved therapeutic efficacy and reduced side effects. Today, with more than 55 different nanomedicines in the market, it is possible to provide more effective cancer diagnosis and treatment by using nanotechnology. Cancer immunotherapy uses the body's immune system to respond to cancer cells; however, this may lead to increased immune response and immunogenicity. Selectivity and targeting to cancer cells and tumors may lead the way to safer immunotherapy and nanotechnology-based delivery approaches that can help achieve the desired success in cancer treatment.


Assuntos
Antineoplásicos Imunológicos/uso terapêutico , Sistema Imunitário/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Antineoplásicos Imunológicos/química , Antineoplásicos Imunológicos/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Redes Reguladoras de Genes/efeitos dos fármacos , Humanos , Imunoterapia , Nanopartículas , Neoplasias/imunologia
10.
Nanomaterials (Basel) ; 11(2)2021 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-33670527

RESUMO

The uniqueness of paclitaxel's antimitotic action mechanism has fueled research toward its application in more effective and safer cancer treatments. However, the low water solubility, recrystallization, and side effects hinder the clinical success of classic paclitaxel chemotherapy. The aim of this study was to evaluate the in vivo efficacy and biodistribution of paclitaxel encapsulated in injectable amphiphilic cyclodextrin nanoparticles of different surface charges. It was found that paclitaxel-loaded amphiphilic cyclodextrin nanoparticles showed an antitumoral effect earlier than the drug solution. Moreover, the blank nanoparticles reduced the tumor growth with a similar trend to the paclitaxel solution. At 24 h, the nanoparticles had not accumulated in the heart and lungs according to the biodistribution assessed by in vivo imaging. Therefore, our results indicated that the amphiphilic cyclodextrin nanoparticles are potentially devoid of cardiac toxicity, which limits the clinical use and commercialization of certain polymeric nanoparticles. In conclusion, the amphiphilic cyclodextrin nanoparticles with different surface charge increased the efficiency of paclitaxel in vitro and in vivo. Cyclodextrin nanoparticles could be a good candidate vehicle for intravenous paclitaxel delivery.

11.
Int J Pharm ; 598: 120379, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33592288

RESUMO

Hepatocellular carcinoma (HCC) is a highly metastatic primary liver cancer generating molecular alterations that end up escaping the apoptotic machinery and conferring multidrug resistance. Targeted medicines with increased and selective cytotoxicity and minimal drug resistance are essential for the treatment of HCC. In this study, a self-assembled polycationic (PC) amphiphilic ß-cyclodextrin (ßCDC6) nanoparticle formulation was characterized and its efficacy over HCC cell line HepG2 was evaluated in terms of cytotoxicity, apoptotic potential, chemosensitivity and mitochondrial balance utilizing biochemical, gene expression and proteomic approaches without encapsulating an anti-neoplastic agent. Blank PC ßCDC6 exerted an anti-proliferative effect on 3D multicellular HepG2 spheroid tumors. These nanoparticles were able to trigger apoptosis proved by caspase 3/7 activity, gene expression and flow cytometry studies. The subjection of PC restored the chemosensitivity of HepG2 cells by suppressing the function of p-glycoprotein. The proteomic studies with Q-TOF LC/MS revealed 73 proteins that are aberrantly encoded after cells were treated with the blank PC. Metabolomic analysis further confirmed the shift in certain biological pathways. Thus, we confirmed that the hepatocellular carcinoma-targeting ßCDC6 PC nanoparticles induce apoptosis, lower the rate of cell proliferation, hinder multidrug resistance and they are convenient carriers for eventual therapeutic administrations in HCC patients.


Assuntos
Carcinoma Hepatocelular , Ciclodextrinas , Neoplasias Hepáticas , Nanopartículas , Apoptose , Carcinoma Hepatocelular/tratamento farmacológico , Linhagem Celular Tumoral , Proliferação de Células , Células Hep G2 , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Proteômica
12.
Cell Death Dis ; 12(1): 56, 2021 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-33431819

RESUMO

Therapeutic agents used for non-small cell lung cancer (NSCLC) have limited curative efficacy and may trigger serious adverse effects. Cannabinoid ligands exert antiproliferative effect and induce apoptosis on numerous epithelial cancers. We confirmed that CB1 receptor (CB1R) is expressed in NSCLC cells in this study. Arachidonoylcyclopropylamide (ACPA) as a synthetic, CB1R-specific ligand decreased proliferation rate in NSCLC cells by WST-1 analysis and real-time proliferation assay (RTCA). The half-maximal inhibitory concentration (IC50) dose of ACPA was calculated as 1.39 × 10-12 M. CB1 antagonist AM281 inhibited the antiproliferative effect of ACPA. Flow cytometry and ultrastructural analyzes revealed significant early and late apoptosis with diminished cell viability. Nano-immunoassay and metabolomics data on activation status of CB1R-mediated pro-apoptotic pathways found that ACPA inhibited Akt/PI3K pathway, glycolysis, TCA cycle, amino acid biosynthesis, and urea cycle and activated JNK pathway. ACPA lost its chemical stability after 24 hours tested by liquid chromatography-mass spectrometry (LC-MS/MS) assay. A novel ACPA-PCL nanoparticle system was developed by nanoprecipitation method and characterized. Sustained release of ACPA-PCL nanoparticles also reduced proliferation of NSCLC cells. Our results demonstrated that low dose ACPA and ACPA-PCL nanoparticle system harbor opportunities to be developed as a novel therapy in NSCLC patients that require further in vivo studies beforehand to validate its anticancer effect.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/genética , Sistema de Sinalização das MAP Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Apoptose , Proliferação de Células , Humanos
13.
J Drug Target ; 29(4): 439-453, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33210947

RESUMO

Erlotinib (ERL), a tyrosine kinase inhibitor approved for therapeutic use in non-small cell lung cancer is further researched for eventual liver cancer treatment. However, conventional ERL has important bioavailability problems resulting from oral administration, poor solubility and gastrointestinal degradation into inactive metabolites. Alternative administration routes and nanoparticulate drug delivery systems are studied to prevent or reduce these drawbacks. In this study, ERL-loaded CD nanosphere and nanocapsule formulations capable of cholesterol depletion in resistant cancer cells were evaluated for ERL delivery. Drug loading and release profile depended largely on the surface charge of nanoparticles. Antiproliferative activity data obtained from 2D and 3D cell culture models demonstrated that polycationic ßCD nanocapsules were the most effective formulation for ERL delivery to lung and liver cancer cells. 3D tumour tumoral penetration studies further revealed that nanocapsule formulations penetrated deeper into the tumour through the multilayered cells. Furthermore, all formulations were able to extract membrane cholesterol from lung and liver cancer cell lines, indicating the induction of apoptosis and overcoming drug resistance. In conclusion, given their tumoral penetration and cell membrane cholesterol depletion abilities, amphiphilic CD nanocapsules emerge as promising alternatives to improve the safety and efficiency of ERL treatment of both liver and lung tumours.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Ciclodextrinas/administração & dosagem , Cloridrato de Erlotinib/administração & dosagem , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Nanopartículas/administração & dosagem , Células A549 , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/síntese química , Antineoplásicos/farmacocinética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Colesterol/administração & dosagem , Colesterol/síntese química , Colesterol/farmacocinética , Ciclodextrinas/síntese química , Ciclodextrinas/farmacocinética , Relação Dose-Resposta a Droga , Cloridrato de Erlotinib/síntese química , Cloridrato de Erlotinib/farmacocinética , Células Hep G2 , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Pulmonares/metabolismo , Camundongos , Nanopartículas/química , Nanopartículas/metabolismo , Esferoides Celulares/efeitos dos fármacos , Esferoides Celulares/metabolismo , Resultado do Tratamento , Células Tumorais Cultivadas
14.
Int J Pharm ; 584: 119468, 2020 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-32470483

RESUMO

Chemotherapeutic drugs for colorectal cancer(CRC) which is currently the third most lethal cancer globally, are administered intravenously (iv) due to their low oral bioavailability resulting from their physicochemical properties. Non-selective biodistribution and difficulties of parenteral administration reduce treatment efficacy. The aim of this work is to develop cyclodextrin (CD) based cationic nanoparticles (NPs) for CRC treatment with model drug camptothecin (CPT) that can be administered orally, protecting CPT through gastrointestinal tract (GIT), accumulating at mucus layer and providing an effective local treatment for the tumor area. NPs using two different amphiphilic CDs were prepared and coated with polyethylenimine (PEI) or chitosan (CS) to obtain positively charged surface for all formulations. Pre-formulation studies resulted in optimal formulation, CPT loaded Poly-ß-CD-C6 NPs, with 135 nm diameter and zeta potential of + 40 mV. In vitro release study was designed to represent gastrointestinal pH and transit time revealing 52% of encapsulated CPT successfully delivered all the way to simulated colon. CPT bound to Poly-ß-CD-C6 NPs exhibited higher cytotoxicity on HT-29 cells compared to equivalent CPT in solution. Caco-2 cell permeability studies showed 276% increase in CPT permeability and significantly higher mucosal penetration in cationic CD nanoparticle form.


Assuntos
Antineoplásicos Fitogênicos/administração & dosagem , Camptotecina/administração & dosagem , Neoplasias Colorretais/tratamento farmacológico , Portadores de Fármacos/administração & dosagem , Nanopartículas/administração & dosagem , beta-Ciclodextrinas/administração & dosagem , Administração Oral , Animais , Antineoplásicos Fitogênicos/química , Camptotecina/química , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Portadores de Fármacos/química , Composição de Medicamentos , Liberação Controlada de Fármacos , Humanos , Camundongos , Muco/química , Nanopartículas/química , beta-Ciclodextrinas/química
15.
Eur J Pharm Sci ; 130: 114-123, 2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-30690187

RESUMO

As research progresses on personalized medicines, it is clear that personalized and flexible formulations can provide effective treatment with reduced side effects especially for diseases like cancer, characteristic of high patient variability. 2D and 3D printers are frequently reported in the literature for the preparation of pharmaceutical products with adjusted dose and selected drug combinations. However, in-depth characterization studies of these formulations are rather limited. In this paper, ex vivo and mechanical characterization studies of antiviral and anticancer drug printed film formulations designed for personalized application were performed. Effects of the printing process with pharmaceutical formulations such as paclitaxel (PCX):cyclodextrin (CD) complex or cidofovir (CDV) encapsulated into poly(ethylene glycol)-polycaprolactone (PEG-PCL) nanoparticles on the films were evaluated through a series of mechanical characterization studies. Inkjet printing process was found to cause no significant change in the thicknesses of the film formulations, while mechanical strength and surface free energy increased and nano-sized voids in the film structure decreased. According to the mechanical characterization data, the unprinted film had maximum force (Fmax) value of 15.6 MPa whereas Fmax increased to 43.8 MPa for PCX:CD complex printed film and to 37.7 MPa for the antiviral CDV-PEG-PCL nanoparticle printed film. In the light of ex vivo findings of sheep cervix-uterine tissue, bioadhesive properties of film formulations significantly improved after inkjet printing with different drug formulations. It has also been shown that the anticancer formulation printed on the film was maintained at the cervix tissue surface for >12 h. This study has shown for the first time that inkjet printing process does not adversely affect the mechanical properties of the bioadhesive film formulations. It has also been shown that durable bioadhesive film formulations for personalized dosing can be prepared by combining nanotechnology and inkjet printing.


Assuntos
Adesivos/administração & dosagem , Antineoplásicos/administração & dosagem , Antivirais/administração & dosagem , Nanopartículas/administração & dosagem , Impressão Tridimensional , Neoplasias do Colo do Útero/tratamento farmacológico , Adesivos/síntese química , Adesivos/farmacocinética , Animais , Antineoplásicos/síntese química , Antineoplásicos/farmacocinética , Antivirais/síntese química , Antivirais/farmacocinética , Avaliação Pré-Clínica de Medicamentos/métodos , Feminino , Nanopartículas/química , Nanopartículas/metabolismo , Ovinos , Resultado do Tratamento , Neoplasias do Colo do Útero/metabolismo
16.
Eur J Pharm Sci ; 123: 377-386, 2018 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-30076952

RESUMO

Cyclodextrins (CD) are natural macrocyclic oligosaccharides linked by α(1,4) glycosidic bonds. Hydrophobic cavity of CDs are able to incorporate small molecules, ions, macromolecules which makes them excellent delegates for forming nanoparticulate carriers upon chemical modification to render amphiphilicity to CDs. In this study, blank 6OCaproßCD nanoparticle was prepared and administered to MCF-7 breast cancer cells. The effects of these nanoparticles on the cells were investigated in depth through biochemical and proteomic tests following 48 h of incubation. Proteomics studies revealed that apoptosis-related protein levels of hnRNP and CBX1 were increased while HDGF was not affected supporting the idea that 6OCaproßCD nanoparticles prevent cell proliferation. Gene expression studies were generally in correlation with protein levels since gene expression was significantly stimulated while protein levels were lower compared to the control group suggesting that a post-transcriptional modification must have occurred. Furthermore, 6OCaproßCD was observed to not trigger multidrug resistance as proved with RT-PCR that effectuates another exquisite characteristic of 6OCaproßCD nanoparticle as carrier of chemotherapeutic drugs. Metabolomic pathways of CD effect on MCF7 cells were elucidated with HMDB as serine biosynthesis, transmembrane transport of small molecules, metabolism of steroid hormones, estrogen biosynthesis and phospholipid biosynthesis. In conclusion, 6OCaproßCD is a promising nanoparticulate carrier for chemotherapeutic drugs with intrinsic apoptotic effect to be employed in treatment of breast cancer and further studies should be conducted in order to comprehend the exact mechanism of action.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Portadores de Fármacos , Genômica/métodos , Metabolômica/métodos , Nanopartículas , beta-Ciclodextrinas/farmacologia , Apoptose/efeitos dos fármacos , Apoptose/genética , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Membrana Celular/patologia , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Colesterol/metabolismo , Homólogo 5 da Proteína Cromobox , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Composição de Medicamentos , Metabolismo Energético/efeitos dos fármacos , Metabolismo Energético/genética , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Ribonucleoproteínas Nucleares Heterogêneas/genética , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Humanos , Células MCF-7 , Proteômica/métodos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética
17.
Nanomaterials (Basel) ; 8(2)2018 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-29373490

RESUMO

Amphiphilic cyclodextrins are biocompatible oligosaccharides that can be used for drug delivery especially for the delivery of drugs with solubility problems thanks to their unique molecular structures. In this paper, Paclitaxel was used as a model anticancer drug to determine the inclusion complex properties of amphiphilic cyclodextrins with different surface charge. Paclitaxel-loaded cyclodextrin nanoparticles were characterized in terms of mean particle diameter, zeta potential, encapsulation efficacy, drug release profile and cell culture studies. It was determined that the nanoparticles prepared from the inclusion complex according to characterization studies have a longer release profile than the conventionally prepared nanoparticles. In order to mimic the tumor microenvironment, breast cancer cells and healthy fibroblast cells were used in 3-dimensional (3D) cell culture studies. It was determined that the activities of nanoparticles prepared by conventional methods behave differently in 2-dimensional (2D) and 3D cell cultures. In addition, it was observed that the nanoparticles prepared from the inclusion complex have a stronger anti-tumoral activity in the 3D multicellular tumor model than the drug solution. Furthermore, polycationic amphiphilic cyclodextrin nanoparticles can diffuse and penetrate through multilayer cells in a 3D tumor model, which is crucial for an eventual antitumor effect.

18.
J Drug Target ; 26(1): 66-74, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28581827

RESUMO

PURPOSE: The aim of this study is to test folate-conjugated cyclodextrin nanoparticles (FCD-1 and FCD-2) as a vehicle for reducing toxicity and increasing the antitumor efficacy of paclitaxel especially for metastatic breast cancer. METHODS: For the evaluation of PCX-loaded FCD nanoparticles, animal studies were realised in terms of survival rate, tumour size, weight change, metastazis and histopathological examination. RESULTS: FCD-1 displayed significant advantages such as efficient targeting of folate receptor positive breast cancer cells and having considerably lower toxicity compared to that of Cremophor®. When loaded with paclitaxel, FCD-1 nanoparticles, which have smaller particle size, neutral zeta potential, high encapsulation efficiency and better loading capacity for controlled release, emerged as an effective formulation in terms of cytotoxicity and high cellular uptake. In an experimental breast cancer model, anticancer activity of these nanoparticles were compatible with that of paclitaxel in Cremophor® however repeated administrations of FCD-1 nanoparticles were better tolerated by the animals. These nanoparticles were able to localise in tumour site. Both paclitaxel-loaded FCD-1 and FCD-2 significantly reduced tumour burden while FCD-1 significantly improved the survival. CONCLUSIONS: Folate-conjugated amphiphilic cyclodextrin nanoparticles can be considered as promising Cremophor®-free, low-toxicity and efficient active drug delivery systems for paclitaxel.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Ciclodextrinas/química , Sistemas de Liberação de Medicamentos/métodos , Ácido Fólico/química , Nanopartículas/química , Paclitaxel/uso terapêutico , Animais , Linhagem Celular Tumoral , Feminino , Transportadores de Ácido Fólico/química , Transportadores de Ácido Fólico/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Paclitaxel/administração & dosagem
19.
Beilstein J Nanotechnol ; 8: 1457-1468, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28900599

RESUMO

Background: Paclitaxel is a potent anticancer drug that is effective against a wide spectrum of cancers. To overcome its bioavailability problems arising from very poor aqueous solubility and tendency to recrystallize upon dilution, paclitaxel is commercially formulated with co-solvents such as Cremophor EL® that are known to cause serious side effects during chemotherapy. Amphiphilic cyclodextrins are favored oligosaccharides as drug delivery systems for anticancer drugs, having the ability to spontaneously form nanoparticles without surfactant or co-solvents. In the past few years, polycationic, amphiphilic cyclodextrins were introduced as effective agents for gene delivery in the form of nanoplexes. In this study, the potential of polycationic, amphiphilic cyclodextrin nanoparticles were evaluated in comparison to non-ionic amphiphilic cyclodextrins and core-shell type cyclodextrin nanoparticles for paclitaxel delivery to breast tumors. Pre-formulation studies were used as a basis for selecting the suitable organic solvent and surfactant concentration for the novel polycationic cyclodextrin nanoparticles. The nanoparticles were then extensively characterized with particle size distribution, polydispersity index, zeta potential, drug loading capacity, in vitro release profiles and cytotoxicity studies. Results: Paclitaxel-loaded cyclodextrin nanoparticles were obtained in the diameter range of 80-125 nm (depending on the nature of the cyclodextrin derivative) where the smallest diameter nanoparticles were obtained with polycationic (PC) ßCDC6. A strong positive charge also helped to increase the loading capacity of the nanoparticles with paclitaxel up to 60%. Interestingly, cyclodextrin nanoparticles were able to stabilize paclitaxel in aqueous solution for 30 days. All blank cyclodextrin nanoparticles were demonstrated to be non-cytotoxic against L929 mouse fibroblast cell line. In addition, paclitaxel-loaded nanoparticles have a significant anticancer effect against MCF-7 human breast cancer cell line as compared with a paclitaxel solution in DMSO. Conclusion: According to the results of this study, both amphiphilic cyclodextrin derivatives provide suitable nanometer-sized drug delivery systems for safe and efficient intravenous paclitaxel delivery for chemotherapy. In the light of these studies, it can be said that amphiphilic cyclodextrin nanoparticles of different surface charge can be considered as a promising alternative for self-assembled nanometer-sized drug carrier systems for safe and efficient chemotherapy.

20.
Beilstein J Nanotechnol ; 8: 1446-1456, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28900598

RESUMO

Background: Brain tumors are the most common tumors among adolescents. Although some chemotherapeutics are known to be effective against brain tumors based on cell culture studies, the same effect is not observed in clinical trials. For this reason, the development of drug delivery systems is important to treat brain tumors and prevent tumor recurrence. The aim of this study was to develop core-shell polymeric nanoparticles with positive charge by employing a chitosan coating. Additionally, an implantable formulation for the chemotherapeutic nanoparticles was developed as a bioadhesive film to be applied at the tumor site following surgical operation for brain glioma treatment. To obtain positively charged, implantable nanoparticles, the effects of preparation technique, chitosan coating concentration and presence of surfactants were evaluated to obtain optimal nanoparticles with a diameter of less than 100 nm and a net positive surface charge to facilitate cellular internalization of drug-loaded nanoparticles. Hydroxypropyl cellulose films were prepared to incorporate these nanoparticle dispersions to complete the implantable drug delivery system. Results: The diameter of core-shell nanoparticles were in the range of 70-270 nm, depending on the preparation technique, polymer type and coating. Moreover, the chitosan coating significantly altered the surface charge of the nanoparticles to net positive values of +30 to +50 mV. The model drug docetaxel was successfully loaded into all particles, and the drug release rate from the nanoparticles was slowed down to 48 h by dispersing the nanoparticles in a hydroxypropyl cellulose film. Cell culture studies revealed that docetaxel-loaded nanoparticles cause higher cytotoxicity compared to the free docetaxel solution in DMSO. Conclusion: Docetaxel-loaded nanoparticles dispersed in a bioadhesive film were shown to be suitable for application of chemotherapeutics directly to the action site during surgical operation. The system was found to release chemotherapeutics for several days at the tumor site and neighboring tissue. This can be suggested to result in a more effective brain tumor treatment when compared to chemotherapeutics administered as an intravenous bolus infusion.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA