Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biomedicines ; 10(2)2022 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-35203571

RESUMO

Oxidative stress contributes to numerous diseases, including cancer. CSB is an ATP-dependent chromatin remodeler critical for oxidative stress relief. PARP1 is the major sensor for DNA breaks and fundamental for efficient single-strand break repair. DNA breaks activate PARP1, leading to the synthesis of poly(ADP-ribose) (PAR) on itself and neighboring proteins, which is crucial for the recruitment of DNA repair machinery. CSB and PARP1 interact; however, how CSB mechanistically participates in oxidative DNA damage repair mediated by PARP1 remains unclear. Using chromatin immunoprecipitation followed by quantitative PCR, we found that CSB and PARP1 facilitate each other's chromatin association during the onset of oxidative stress, and that CSB facilitates PARP1 removal when the level of chromatin-bound CSB increases. Furthermore, by monitoring chromatin PAR levels using Western blot analysis, we found that CSB sustains the DNA damage signal initiated by PARP1, and may prevent PARP1 overactivation by facilitating DNA repair. By assaying cell viability in response to oxidative stress, we further demonstrate that PARP1 regulation by CSB is a major CSB function in oxidatively-stressed cells. Together, our study uncovers a dynamic interplay between CSB and PARP1 that is critical for oxidative stress relief.

2.
SLAS Discov ; 25(8): 895-905, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32567455

RESUMO

Notch signaling is often involved in cancer cell initiation and proliferation. Aberrant Notch activation underlies more than 50% of T-cell acute lymphoblastic leukemia (T-ALL); accordingly, chemicals disrupting Notch signaling are of potential to treat Notch-dependent cancer. Here, we developed a flow cytometry-based high-throughput assay to identify compounds that disrupt the interactions of DNA and RBPJ, the major downstream effector of Notch signaling. From 1492 compounds, we identified 18 compounds that disrupt RBPJ-DNA interactions in a dose-dependent manner. Cell-based assays further revealed that auranofin downregulates Notch-dependent transcription and decreases RBPJ-chromatin interactions in cells. Most strikingly, T-ALL cells that depend on Notch signaling for proliferation are more sensitive to auranofin treatment, supporting the notion that auranofin downregulates Notch signaling by disrupting RBPJ-DNA interaction. These results validate the feasibility of our assay scheme to screen for additional Notch inhibitors and provide a rationale to further test the use of auranofin in treating Notch-dependent cancer.


Assuntos
Auranofina/farmacologia , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamento farmacológico , Receptores Notch/antagonistas & inibidores , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , DNA/efeitos dos fármacos , DNA/genética , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/genética , Citometria de Fluxo , Ensaios de Triagem em Larga Escala/métodos , Humanos , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/efeitos dos fármacos , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Receptores Notch/genética , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA