Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Am J Hum Genet ; 109(5): 909-927, 2022 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-35390279

RESUMO

Pontocerebellar hypoplasias (PCHs) are congenital disorders characterized by hypoplasia or early atrophy of the cerebellum and brainstem, leading to a very limited motor and cognitive development. Although over 20 genes have been shown to be mutated in PCHs, a large proportion of affected individuals remains undiagnosed. We describe four families with children presenting with severe neonatal brainstem dysfunction and pronounced deficits in cognitive and motor development associated with four different bi-allelic mutations in PRDM13, including homozygous truncating variants in the most severely affected individuals. Brain MRI and fetopathological examination revealed a PCH-like phenotype, associated with major hypoplasia of inferior olive nuclei and dysplasia of the dentate nucleus. Notably, histopathological examinations highlighted a sparse and disorganized Purkinje cell layer in the cerebellum. PRDM13 encodes a transcriptional repressor known to be critical for neuronal subtypes specification in the mouse retina and spinal cord but had not been implicated, so far, in hindbrain development. snRNA-seq data mining and in situ hybridization in humans show that PRDM13 is expressed at early stages in the progenitors of the cerebellar ventricular zone, which gives rise to cerebellar GABAergic neurons, including Purkinje cells. We also show that loss of function of prdm13 in zebrafish leads to a reduction in Purkinje cells numbers and a complete absence of the inferior olive nuclei. Altogether our data identified bi-allelic mutations in PRDM13 as causing a olivopontocerebellar hypoplasia syndrome and suggest that early deregulations of the transcriptional control of neuronal fate specification could contribute to a significant number of cases.


Assuntos
Encefalopatias , Peixe-Zebra , Animais , Encefalopatias/patologia , Tronco Encefálico , Cerebelo/anormalidades , Cerebelo/patologia , Deficiências do Desenvolvimento , Histona-Lisina N-Metiltransferase/genética , Humanos , Camundongos , Mutação/genética , Malformações do Sistema Nervoso , Neurogênese/genética , Células de Purkinje/metabolismo , Fatores de Transcrição/genética , Peixe-Zebra/metabolismo
2.
J Cell Mol Med ; 24(17): 9726-9736, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32767726

RESUMO

Gaucher disease (GD) is a genetic disease with mutations in the GBA gene that encodes glucocerebrosidase causing complications such as anaemia and bone disease. GD is characterized by accumulation of the sphingolipids (SL) glucosylceramide (GL1), glucosylsphingosine (Lyso-GL1), sphingosine (Sph) and sphingosine-1-phosphate (S1P). These SL are increased in the plasma of GD patients and the associated complications have been attributed to the accumulation of lipids in macrophages. Our recent findings indicated that red blood cells (RBCs) and erythroid progenitors may play an important role in GD pathophysiology. RBCs abnormalities and dyserythropoiesis have been observed in GD patients. Moreover, we showed higher SL levels in the plasma and in RBCs from untreated GD patients compared with controls. In this study, we quantified SL in 16 untreated GD patients and 15 patients treated with enzyme replacement therapy. Our results showed that the treatment significantly decreases SL levels in the plasma and RBCs. The increased SL content in RBCs correlates with abnormal RBC properties and with markers of disease activity. Because RBCs lack glucocerebrosidase activity, we investigated how lipid overload could occur in these cells. Our results suggested that SL overload in RBCs occurs both during erythropoiesis and during its circulation in the plasma.


Assuntos
Eritrócitos/metabolismo , Doença de Gaucher/sangue , Glucosilceramidase/genética , Esfingolipídeos/sangue , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores/sangue , Criança , Pré-Escolar , Eritropoese/genética , Feminino , Doença de Gaucher/genética , Doença de Gaucher/patologia , Humanos , Lisofosfolipídeos/sangue , Macrófagos/metabolismo , Masculino , Pessoa de Meia-Idade , Psicosina/análogos & derivados , Psicosina/sangue , Esfingosina/análogos & derivados , Esfingosina/sangue , Adulto Jovem
3.
Int J Mol Sci ; 21(4)2020 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-32069933

RESUMO

Gaucher disease (GD) is a rare lysosomal autosomal-recessive disorder due to deficiency of glucocerebrosidase; polyclonal gammopathy (PG) and/or monoclonal gammopathy (MG) can occur in this disease. We aimed to describe these immunoglobulin abnormalities in a large cohort of GD patients and to study the risk factors, clinical significance, and evolution. Data for patients enrolled in the French GD Registry were studied retrospectively. The risk factors of PG and/or MG developing and their association with clinical bone events and severe thrombocytopenia, two markers of GD severity, were assessed with multivariable Cox models and the effect of GD treatment on gammaglobulin levels with linear/logarithmic mixed models. Regression of MG and the occurrence of hematological malignancies were described. The 278 patients included (132 males, 47.5%) were followed up during a mean (SD) of 19 (14) years after GD diagnosis. PG occurred in 112/235 (47.7%) patients at GD diagnosis or during follow-up and MG in 59/187 (31.6%). Multivariable analysis retained age at GD diagnosis as the only independent risk factor for MG (> 30 vs. ≤30 years, HR 4.71, 95%CI [2.40-9.27]; p < 0.001). Risk of bone events or severe thrombocytopenia was not significantly associated with PG or MG. During follow-up, non-Hodgkin lymphoma developed in five patients and multiple myeloma in one. MG was observed in almost one third of patients with GD. Immunoglobulin abnormalities were not associated with the disease severity. However, prolonged surveillance of patients with GD is needed because hematologic malignancies may occur.


Assuntos
Doença de Gaucher/sangue , Imunoglobulinas/sangue , Paraproteinemias/sangue , Adulto , Estudos de Coortes , Feminino , Doença de Gaucher/complicações , Doença de Gaucher/tratamento farmacológico , Doença de Gaucher/patologia , Humanos , Linfoma não Hodgkin/sangue , Linfoma não Hodgkin/complicações , Linfoma não Hodgkin/patologia , Masculino , Pessoa de Meia-Idade , Mieloma Múltiplo/sangue , Mieloma Múltiplo/complicações , Mieloma Múltiplo/patologia , Paraproteinemias/complicações , Paraproteinemias/tratamento farmacológico , Paraproteinemias/patologia , Modelos de Riscos Proporcionais , Estudos Retrospectivos , Fatores de Risco , gama-Globulinas/administração & dosagem
4.
Hum Mutat ; 41(4): 837-849, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31898846

RESUMO

IFIH1 gain-of-function has been reported as a cause of a type I interferonopathy encompassing a spectrum of autoinflammatory phenotypes including Aicardi-Goutières syndrome and Singleton Merten syndrome. Ascertaining patients through a European and North American collaboration, we set out to describe the molecular, clinical and interferon status of a cohort of individuals with pathogenic heterozygous mutations in IFIH1. We identified 74 individuals from 51 families segregating a total of 27 likely pathogenic mutations in IFIH1. Ten adult individuals, 13.5% of all mutation carriers, were clinically asymptomatic (with seven of these aged over 50 years). All mutations were associated with enhanced type I interferon signaling, including six variants (22%) which were predicted as benign according to multiple in silico pathogenicity programs. The identified mutations cluster close to the ATP binding region of the protein. These data confirm variable expression and nonpenetrance as important characteristics of the IFIH1 genotype, a consistent association with enhanced type I interferon signaling, and a common mutational mechanism involving increased RNA binding affinity or decreased efficiency of ATP hydrolysis and filament disassembly rate.


Assuntos
Mutação com Ganho de Função , Estudos de Associação Genética , Genótipo , Helicase IFIH1 Induzida por Interferon/genética , Fenótipo , Alelos , Doenças Autoimunes do Sistema Nervoso/diagnóstico , Doenças Autoimunes do Sistema Nervoso/genética , Análise Mutacional de DNA , Feminino , Estudos de Associação Genética/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Helicase IFIH1 Induzida por Interferon/química , Masculino , Modelos Moleculares , Malformações do Sistema Nervoso/diagnóstico , Malformações do Sistema Nervoso/genética , Conformação Proteica , Relação Estrutura-Atividade
5.
Brain ; 142(10): 2996-3008, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31532509

RESUMO

Epilepsy of infancy with migrating focal seizures was first described in 1995. Fifteen years later, KCNT1 gene mutations were identified as the major disease-causing gene of this disease. Currently, the data on epilepsy of infancy with migrating focal seizures associated with KCNT1 mutations are heterogeneous and many questions remain unanswered including the prognosis and the long-term outcome especially regarding epilepsy, neurological and developmental status and the presence of microcephaly. The aim of this study was to assess data from patients with epilepsy in infancy with migrating focal seizures with KCNT1 mutations to refine the phenotype spectrum and the outcome. We used mind maps based on medical reports of children followed in the network of the French reference centre for rare epilepsies and we developed family surveys to assess the long-term outcome. Seventeen patients were included [age: median (25th-75th percentile): 4 (2-15) years, sex ratio: 1.4, length of follow-up: 4 (2-15) years]. Seventy-one per cent started at 6 (1-52) days with sporadic motor seizures (n = 12), increasing up to a stormy phase with long lasting migrating seizures at 57 (30-89) days. The others entered this stormy phase directly at 1 (1-23) day. Ten patients entered a consecutive phase at 1.3 (1-2.8) years where seizures persisted at least daily (n = 8), but presented different semiology: brief and hypertonic with a nocturnal (n = 6) and clustered (n = 6) aspects. Suppression interictal patterns were identified on the EEG in 71% of patients (n = 12) sometimes from the first EEG (n = 6). Three patients received quinidine without reported efficacy. Long-term outcome was poor with neurological sequelae and active epilepsy except for one patient who had an early and long-lasting seizure-free period. Extracerebral symptoms probably linked with KCNT1 mutation were present, including arteriovenous fistula, dilated cardiomyopathy and precocious puberty. Eight patients (47%) had died at 3 (1.5-15.4) years including three from suspected sudden unexpected death in epilepsy. Refining the electro-clinical characteristics and the temporal sequence of epilepsy in infancy with migrating focal seizures should help diagnosis of this epilepsy. A better knowledge of the outcome allows one to advise families and to define the appropriate follow-up and therapies. Extracerebral involvement should be investigated, in particular the cardiac system, as it may be involved in the high prevalence of sudden unexpected death in epilepsy in these cases.


Assuntos
Epilepsias Parciais/genética , Mutação , Proteínas do Tecido Nervoso/genética , Canais de Potássio Ativados por Sódio/genética , Morte Súbita Inesperada na Epilepsia , Adolescente , Mapeamento Encefálico/métodos , Criança , Pré-Escolar , Eletroencefalografia/métodos , Epilepsias Parciais/metabolismo , Feminino , Humanos , Estudos Longitudinais , Masculino , Proteínas do Tecido Nervoso/metabolismo , Fenótipo , Canais de Potássio/genética , Canais de Potássio/metabolismo , Canais de Potássio Ativados por Sódio/metabolismo
6.
Hum Mutat ; 39(1): 23-39, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29068161

RESUMO

The deleted in colorectal cancer (DCC) gene encodes the netrin-1 (NTN1) receptor DCC, a transmembrane protein required for the guidance of commissural axons. Germline DCC mutations disrupt the development of predominantly commissural tracts in the central nervous system (CNS) and cause a spectrum of neurological disorders. Monoallelic, missense, and predicted loss-of-function DCC mutations cause congenital mirror movements, isolated agenesis of the corpus callosum (ACC), or both. Biallelic, predicted loss-of-function DCC mutations cause developmental split brain syndrome (DSBS). Although the underlying molecular mechanisms leading to disease remain poorly understood, they are thought to stem from reduced or perturbed NTN1 signaling. Here, we review the 26 reported DCC mutations associated with abnormal CNS development in humans, including 14 missense and 12 predicted loss-of-function mutations, and discuss their associated clinical characteristics and diagnostic features. We provide an update on the observed genotype-phenotype relationships of congenital mirror movements, isolated ACC and DSBS, and correlate this to our current understanding of the biological function of DCC in the development of the CNS. All mutations and their associated phenotypes were deposited into a locus-specific LOVD (https://databases.lovd.nl/shared/genes/DCC).


Assuntos
Anormalidades Múltiplas/diagnóstico , Anormalidades Múltiplas/genética , Genes DCC , Estudos de Associação Genética , Mutação , Fenótipo , Agenesia do Corpo Caloso , Sequência de Aminoácidos , Sítios de Ligação , Sequência Conservada , Bases de Dados Genéticas , Humanos , Imageamento por Ressonância Magnética , Modelos Moleculares , Netrina-1/química , Netrina-1/metabolismo , Ligação Proteica , Conformação Proteica , Domínios Proteicos/genética , Síndrome
7.
Nat Genet ; 49(4): 511-514, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28250454

RESUMO

Brain malformations involving the corpus callosum are common in children with developmental disabilities. We identified DCC mutations in four families and five sporadic individuals with isolated agenesis of the corpus callosum (ACC) without intellectual disability. DCC mutations result in variable dominant phenotypes with decreased penetrance, including mirror movements and ACC associated with a favorable developmental prognosis. Possible phenotypic modifiers include the type and location of mutation and the sex of the individual.


Assuntos
Agenesia do Corpo Caloso/genética , Deficiências do Desenvolvimento/genética , Mutação/genética , Receptores de Superfície Celular/genética , Proteínas Supressoras de Tumor/genética , Anormalidades Múltiplas/genética , Encéfalo/patologia , Corpo Caloso/patologia , Receptor DCC , Família , Feminino , Humanos , Masculino , Malformações do Sistema Nervoso/genética , Células-Tronco Neurais/patologia , Penetrância , Fenótipo
8.
Int J Mol Sci ; 18(2)2017 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-28218669

RESUMO

Gaucher disease (GD, ORPHA355) is a rare, autosomal recessive genetic disorder. It is caused by a deficiency of the lysosomal enzyme, glucocerebrosidase, which leads to an accumulation of its substrate, glucosylceramide, in macrophages. In the general population, its incidence is approximately 1/40,000 to 1/60,000 births, rising to 1/800 in Ashkenazi Jews. The main cause of the cytopenia, splenomegaly, hepatomegaly, and bone lesions associated with the disease is considered to be the infiltration of the bone marrow, spleen, and liver by Gaucher cells. Type-1 Gaucher disease, which affects the majority of patients (90% in Europe and USA, but less in other regions), is characterized by effects on the viscera, whereas types 2 and 3 are also associated with neurological impairment, either severe in type 2 or variable in type 3. A diagnosis of GD can be confirmed by demonstrating the deficiency of acid glucocerebrosidase activity in leukocytes. Mutations in the GBA1 gene should be identified as they may be of prognostic value in some cases. Patients with type-1 GD-but also carriers of GBA1 mutation-have been found to be predisposed to developing Parkinson's disease, and the risk of neoplasia associated with the disease is still subject to discussion. Disease-specific treatment consists of intravenous enzyme replacement therapy (ERT) using one of the currently available molecules (imiglucerase, velaglucerase, or taliglucerase). Orally administered inhibitors of glucosylceramide biosynthesis can also be used (miglustat or eliglustat).


Assuntos
Doença de Gaucher/fisiopatologia , Doença de Gaucher/terapia , Doença de Gaucher/diagnóstico , Doença de Gaucher/epidemiologia , Humanos , Redes e Vias Metabólicas , Modelos Biológicos , Monitorização Fisiológica , Prognóstico
9.
Am J Med Genet A ; 167A(2): 296-312, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25604658

RESUMO

Aicardi-Goutières syndrome is an inflammatory disease occurring due to mutations in any of TREX1, RNASEH2A, RNASEH2B, RNASEH2C, SAMHD1, ADAR or IFIH1. We report on 374 patients from 299 families with mutations in these seven genes. Most patients conformed to one of two fairly stereotyped clinical profiles; either exhibiting an in utero disease-onset (74 patients; 22.8% of all patients where data were available), or a post-natal presentation, usually within the first year of life (223 patients; 68.6%), characterized by a sub-acute encephalopathy and a loss of previously acquired skills. Other clinically distinct phenotypes were also observed; particularly, bilateral striatal necrosis (13 patients; 3.6%) and non-syndromic spastic paraparesis (12 patients; 3.4%). We recorded 69 deaths (19.3% of patients with follow-up data). Of 285 patients for whom data were available, 210 (73.7%) were profoundly disabled, with no useful motor, speech and intellectual function. Chilblains, glaucoma, hypothyroidism, cardiomyopathy, intracerebral vasculitis, peripheral neuropathy, bowel inflammation and systemic lupus erythematosus were seen frequently enough to be confirmed as real associations with the Aicardi-Goutieres syndrome phenotype. We observed a robust relationship between mutations in all seven genes with increased type I interferon activity in cerebrospinal fluid and serum, and the increased expression of interferon-stimulated gene transcripts in peripheral blood. We recorded a positive correlation between the level of cerebrospinal fluid interferon activity assayed within one year of disease presentation and the degree of subsequent disability. Interferon-stimulated gene transcripts remained high in most patients, indicating an ongoing disease process. On the basis of substantial morbidity and mortality, our data highlight the urgent need to define coherent treatment strategies for the phenotypes associated with mutations in the Aicardi-Goutières syndrome-related genes. Our findings also make it clear that a window of therapeutic opportunity exists relevant to the majority of affected patients and indicate that the assessment of type I interferon activity might serve as a useful biomarker in future clinical trials.


Assuntos
Adenosina Desaminase/genética , Doenças Autoimunes do Sistema Nervoso/diagnóstico , Doenças Autoimunes do Sistema Nervoso/genética , RNA Helicases DEAD-box/genética , Exodesoxirribonucleases/genética , Proteínas Monoméricas de Ligação ao GTP/genética , Mutação , Malformações do Sistema Nervoso/diagnóstico , Malformações do Sistema Nervoso/genética , Fenótipo , Fosfoproteínas/genética , Ribonuclease H/genética , Estudos de Associação Genética , Genótipo , Humanos , Helicase IFIH1 Induzida por Interferon , Interferons/sangue , Interferons/líquido cefalorraquidiano , Pterinas/líquido cefalorraquidiano , Proteína 1 com Domínio SAM e Domínio HD
10.
Blood ; 121(3): 546-55, 2013 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-23212518

RESUMO

Gaucher disease (GD) is a lysosomal storage disorder caused by glucocerebrosidase deficiency. It is notably characterized by splenomegaly, complex skeletal involvement, ischemic events of the spleen and bones, and the accumulation of Gaucher cells in several organs. We hypothesized that red blood cells (RBCs) might be involved in some features of GD and studied the adhesive and hemorheologic properties of RBCs from GD patients. Hemorheologic analyses revealed enhanced blood viscosity, increased aggregation, and disaggregation threshold of GD RBCs compared with control (CTR) RBCs. GD RBCs also exhibited frequent morphologic abnormalities and lower deformability. Under physiologic flow conditions, GD RBCs adhered more strongly to human microvascular endothelial cells and to laminin than CTR. We showed that Lu/BCAM, the unique erythroid laminin receptor, is overexpressed and highly phosphorylated in GD RBCs, and may play a major role in the adhesion process. The demonstration that GD RBCs have abnormal rheologic and adhesion properties suggests that they may trigger ischemic events in GD, and possibly phagocytosis by macrophages, leading to the appearance of pathogenic Gaucher cells.


Assuntos
Eritrócitos/patologia , Eritrócitos/fisiologia , Doença de Gaucher/patologia , Doença de Gaucher/fisiopatologia , Adulto , Adesão Celular/fisiologia , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Eritrócitos Anormais/patologia , Eritrócitos Anormais/fisiologia , Feminino , Humanos , Laminina/metabolismo , Macrófagos/patologia , Macrófagos/fisiologia , Masculino , Oxirredutases/metabolismo , Fagocitose/fisiologia , Fosforilação/fisiologia , Reologia , Adulto Jovem
11.
J Allergy Clin Immunol ; 128(2): 382-9.e1, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21665257

RESUMO

BACKGROUND: Ataxia-telangiectasia (A-T) is a rare genetic disease caused by germline biallelic mutations in the ataxia-telangiectasia mutated gene (ATM) that result in partial or complete loss of ATM expression or activity. The course of the disease is characterized by neurologic manifestations, infections, and cancers. OBJECTIVE: We studied A-T progression and investigated whether manifestations were associated with the ATM genotype. METHODS: We performed a retrospective cohort study in France of 240 patients with A-T born from 1954 to 2005 and analyzed ATM mutations in 184 patients, along with neurologic manifestations, infections, and cancers. RESULTS: Among patients with A-T, the Kaplan-Meier 20-year survival rate was 53.4%; the prognosis for these patients has not changed since 1954. Life expectancy was lower among patients with mutations in ATM that caused total loss of expression or function of the gene product (null mutations) compared with that seen in patients with hypomorphic mutations because of earlier onset of cancer (mainly hematologic malignancies). Cancer (hazard ratio, 2.7; 95% CI, 1.6-4.5) and respiratory tract infections (hazard ratio, 2.3; 95% CI, 1.4-3.8) were independently associated with mortality. Cancer (hazard ratio, 5.8; 95% CI, 2.9-11.6) was a major risk factor for mortality among patients with null mutations, whereas respiratory tract infections (hazard ratio, 4.1; 95% CI, 1.8-9.1) were the leading cause of death among patients with hypomorphic mutations. CONCLUSION: Morbidity and mortality among patients with A-T are associated with ATM genotype. This information could improve our prognostic ability and lead to adapted therapeutic strategies.


Assuntos
Ataxia Telangiectasia/genética , Ataxia Telangiectasia/mortalidade , Proteínas de Ciclo Celular/genética , Proteínas de Ligação a DNA/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Supressoras de Tumor/genética , Adolescente , Adulto , Ataxia Telangiectasia/epidemiologia , Ataxia Telangiectasia/fisiopatologia , Proteínas Mutadas de Ataxia Telangiectasia , Criança , Pré-Escolar , Estudos de Coortes , Feminino , França/epidemiologia , Genótipo , Humanos , Lactente , Recém-Nascido , Leucemia/genética , Linfoma/genética , Masculino , Morbidade , Mutação , Infecções Respiratórias/genética , Estudos Retrospectivos , Taxa de Sobrevida , Adulto Jovem
12.
Mov Disord ; 20(10): 1366-9, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15986423

RESUMO

GM1 gangliosidosis is due to beta-galactosidase deficiency. Only patients with type 3 disease survive into adulthood and develop movement disorders. Clinical descriptions of this form are rare, particularly in non-Japanese patients. We describe four new patients and systematically analyze all previous reports found by a literature search and contacts with the authors for additional information. Generalized dystonia remained the predominant feature throughout the disease course and was often associated with akinetic-rigid parkinsonism. GM1 gangliosidosis must be considered as a cause of early-onset generalized dystonia, particularly in patients with short stature and skeletal dysplasia.


Assuntos
Distonia/etiologia , Gangliosidose GM1/complicações , Transtornos Parkinsonianos/etiologia , Adolescente , Adulto , Alelos , Estatura , Doenças do Desenvolvimento Ósseo/diagnóstico por imagem , Distonia/diagnóstico , Éxons/genética , Feminino , Gangliosidose GM1/diagnóstico , Gangliosidose GM1/genética , Humanos , Mutação Puntual/genética , Radiografia , Gravação de Videoteipe , beta-Galactosidase/deficiência , beta-Galactosidase/genética
13.
J Soc Biol ; 196(2): 141-9, 2002.
Artigo em Francês | MEDLINE | ID: mdl-12360743

RESUMO

Gaucher disease is an uncommon autosomic recessive disorder. The disease is caused by a deficiency in the activity of the lysosomal enzyme glucocerebrosidase which is responsible for the degradation of glucosylceramide, résulting from the breakdown of red and white cell-membranes. In the absence of enzyme glucosylceramide accumulates in the lysosomes of macrophages. This accumulation leads to hepatomegaly, splenomegaly with subsequent haematologic abnormalities (leucopenia, anemia, thrombopenia) and bone manifestations. Three types of Gaucher disease are described: type 1 is the most common, type 2 and 3 are associated with neurologic symptoms. Macrophages are the likely cellular source of biochemical abnormalities: elevated blood level of ferritin, angiotensin converting enzyme, immunoglobulins and haemostasis abnormalities. Lysosomal perturbations lead to increased blood level of tartrate resistant acid phosphatase and chitotriosidase. Enzyme replacement therapy is available in France since 1991. In 2002, 136 patients are treated. The efficacy is overt on the asthenia, organomegaly and haematological manifestations. Bone pains disappear or decrease in intensity, however bone complications may be irreversible justifying treatment initiations before the appearance of lesions that may lead to serious functional impairment.


Assuntos
Doença de Gaucher , Glucosilceramidase/deficiência , Biomarcadores/sangue , Doenças Ósseas Metabólicas/etiologia , Doenças Ósseas Metabólicas/patologia , Transplante de Medula Óssea , França , Doença de Gaucher/sangue , Doença de Gaucher/classificação , Doença de Gaucher/enzimologia , Doença de Gaucher/epidemiologia , Doença de Gaucher/patologia , Doença de Gaucher/terapia , Terapia Genética , Glucosilceramidase/genética , Glucosilceramidase/uso terapêutico , Hepatomegalia/etiologia , Hepatomegalia/patologia , Humanos , Lisossomos/química , Lisossomos/ultraestrutura , Macrófagos/química , Macrófagos/patologia , Esplenectomia/efeitos adversos , Esplenomegalia/etiologia , Esplenomegalia/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA