Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Appl Physiol (1985) ; 118(11): 1344-55, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-25749448

RESUMO

The mechanisms responsible for exercise-induced reductions in baseline heart rate (HR), known as training bradycardia, remain controversial. Therefore, changes in cardiac autonomic regulation and intrinsic sinoatrial nodal (SAN) rate were evaluated using dogs randomly assigned to either a 10- to 12-wk exercise training (Ex, n = 15) or an equivalent sedentary period (Sed, n = 10). Intrinsic HR was revealed by combined autonomic nervous system (ANS) blockade (propranolol + atropine, iv) before and after completion of the study. At the end of the study, SAN function was further evaluated by examining the SAN recovery time (SNRT) following rapid atrial pacing and the response to adenosine in anesthetized animals. As expected, both the response to submaximal exercise and baseline HR significantly (P < 0.01) decreased, and heart rate variability (HRV; e.g., high-frequency R-R interval variability) significantly (P < 0.01) increased in the Ex group but did not change in the Sed group. Atropine also induced significantly (P < 0.01) greater reductions in HRV in the Ex group compared with the Sed group; propranolol elicited similar HR and HRV changes in both groups. In contrast, neither intrinsic HR (Ex before, 141.2 ± 6.7; Ex after, 146.0 ± 8.0 vs. Sed before, 143.3 ± 11.1; Sed after, 141.0 ± 11.3 beats per minute), the response to adenosine, corrected SNRT, nor atrial fibrosis and atrial fibrillation inducibility differed in the Ex group vs. the Sed group. These data suggest that in a large-animal model, training bradycardia results from an enhanced cardiac parasympathetic regulation and not from changes in intrinsic properties of the SAN.


Assuntos
Bradicardia/etiologia , Frequência Cardíaca , Sistema Nervoso Parassimpático/fisiopatologia , Esforço Físico , Nó Sinoatrial/inervação , Adaptação Fisiológica , Antagonistas Adrenérgicos/farmacologia , Animais , Antiarrítmicos/farmacologia , Bradicardia/fisiopatologia , Bradicardia/terapia , Estimulação Cardíaca Artificial , Antagonistas Colinérgicos/farmacologia , Cães , Feminino , Masculino , Distribuição Aleatória , Recuperação de Função Fisiológica , Fatores de Tempo
2.
Circulation ; 130(4): 315-24, 2014 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-24838362

RESUMO

BACKGROUND: Although sinoatrial node (SAN) dysfunction is a hallmark of human heart failure (HF), the underlying mechanisms remain poorly understood. We aimed to examine the role of adenosine in SAN dysfunction and tachy-brady arrhythmias in chronic HF. METHODS AND RESULTS: We applied multiple approaches to characterize SAN structure, SAN function, and adenosine A1 receptor expression in control (n=17) and 4-month tachypacing-induced chronic HF (n=18) dogs. Novel intramural optical mapping of coronary-perfused right atrial preparations revealed that adenosine (10 µmol/L) markedly prolonged postpacing SAN conduction time in HF by 206 ± 99 milliseconds (versus 66 ± 21 milliseconds in controls; P=0.02). Adenosine induced SAN intranodal conduction block or microreentry in 6 of 8 dogs with HF versus 0 of 7 controls (P=0.007). Adenosine-induced SAN conduction abnormalities and automaticity depression caused postpacing atrial pauses in HF versus control dogs (17.1 ± 28.9 versus 1.5 ± 1.3 seconds; P<0.001). Furthermore, 10 µmol/L adenosine shortened atrial repolarization and led to pacing-induced atrial fibrillation in 6 of 7 HF versus 0 of 7 control dogs (P=0.002). Adenosine-induced SAN dysfunction and atrial fibrillation were abolished or prevented by adenosine A1 receptor antagonists (50 µmol/L theophylline/1 µmol/L 8-cyclopentyl-1,3-dipropylxanthine). Adenosine A1 receptor protein expression was significantly upregulated during HF in the SAN (by 47 ± 19%) and surrounding atrial myocardium (by 90 ± 40%). Interstitial fibrosis was significantly increased within the SAN in HF versus control dogs (38 ± 4% versus 23 ± 4%; P<0.001). CONCLUSIONS: In chronic HF, adenosine A1 receptor upregulation in SAN pacemaker and atrial cardiomyocytes may increase cardiac sensitivity to adenosine. This effect may exacerbate conduction abnormalities in the structurally impaired SAN, leading to SAN dysfunction, and potentiate atrial repolarization shortening, thereby facilitating atrial fibrillation. Atrial fibrillation may further depress SAN function and lead to tachy-brady arrhythmias in HF.


Assuntos
Bradicardia/fisiopatologia , Insuficiência Cardíaca/fisiopatologia , Receptor A1 de Adenosina/biossíntese , Nó Sinoatrial/fisiopatologia , Taquicardia/fisiopatologia , Imagens com Corantes Sensíveis à Voltagem/métodos , Potenciais de Ação/efeitos dos fármacos , Adenosina/administração & dosagem , Adenosina/farmacologia , Adenosina/toxicidade , Antagonistas do Receptor A1 de Adenosina/farmacologia , Antagonistas do Receptor A1 de Adenosina/uso terapêutico , Animais , Fibrilação Atrial/etiologia , Fibrilação Atrial/fisiopatologia , Bradicardia/etiologia , Estimulação Cardíaca Artificial/efeitos adversos , Cães , Relação Dose-Resposta a Droga , Fibrose , Sistema de Condução Cardíaco/efeitos dos fármacos , Sistema de Condução Cardíaco/fisiopatologia , Insuficiência Cardíaca/genética , Receptor A1 de Adenosina/genética , Receptor A1 de Adenosina/fisiologia , Nó Sinoatrial/efeitos dos fármacos , Nó Sinoatrial/patologia , Taquicardia/etiologia , Teofilina/farmacologia , Teofilina/uso terapêutico , Regulação para Cima , Xantinas/farmacologia , Xantinas/uso terapêutico
3.
Pharmacol Ther ; 140(1): 53-80, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23735203

RESUMO

Although epidemiological studies provide strong evidence for an inverse relationship between omega-3 polyunsaturated fatty acids (n-3 PUFAs) and cardiac mortality, inconsistent and often conflicting results have been obtained from both animal studies and clinical prevention trials. Despite these heterogeneous results, some general conclusions can be drawn from these studies: 1) n-PUFAs have potent effects on ion channels and calcium regulatory proteins that vary depending on the route of administration. Circulating (acute administration) n-3 PUFAs affect ion channels directly while incorporation (long-term supplementation) of these lipids into cell membranes indirectly alter cardiac electrical activity via alteration of membrane properties. 2) n-3 PUFAs reduce baseline HR and increase HRV via alterations in intrinsic pacemaker rate rather than from changes in cardiac autonomic neural regulation. 3) n-3 PUFAs may be only effective if given before electrophysiological or structural remodeling has begun and have no efficacy against atrial fibrillation. 5) Despite initial encouraging results, more recent clinical prevention and animal studies have not only failed to reduce sudden cardiac death but actually increased mortality in angina patients and increased rather than decreased malignant arrhythmias in animal models of regional ischemia. 6) Given the inconsistent benefits reported in clinical and experimental studies and the potential adverse actions on cardiac rhythm noted during myocardial ischemia, n-3 PUFA must be prescribed with caution and generalized recommendations to increase fish intake or to take n-3 PUFA supplements need to be reconsidered.


Assuntos
Ácidos Graxos Ômega-3/farmacologia , Coração/efeitos dos fármacos , Animais , Fibrilação Atrial/tratamento farmacológico , Ácidos Graxos Ômega-3/uso terapêutico , Coração/fisiologia , Frequência Cardíaca/efeitos dos fármacos , Humanos , Fibrilação Ventricular/tratamento farmacológico
4.
Heart Rhythm ; 10(1): 110-8, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22985657

RESUMO

BACKGROUND: In patients with sinoatrial nodal (SAN) dysfunction, atrial pauses lasting several seconds may follow rapid atrial pacing or paroxysmal tachycardia (tachy-brady arrhythmias). Clinical studies suggest that adenosine may play an important role in SAN dysfunction, but the mechanism remains unclear. OBJECTIVE: To define the mechanism of SAN dysfunction induced by the combination of adenosine and tachycardia. METHODS: We studied the mechanism of SAN dysfunction produced by a combination of adenosine and rapid atrial pacing in isolated coronary-perfused canine atrial preparations by using high-resolution optical mapping (n = 9). Sinus cycle length and sinoatrial conduction time (SACT) were measured during adenosine (1-100 µM) and DPCPX (1 µM; A1 receptor antagonist; n = 7) perfusion. Sinoatrial node recovery time was measured after 1 minute of "slow" pacing (3.3 Hz) or tachypacing (7-9 Hz). RESULTS: Adenosine significantly increased sinus cycle length (477 ± 62 ms vs 778 ± 114 ms; P<.01) and SACT during sinus rhythm (41 ± 11 ms vs 86 ± 16 ms; P<.01) in a dose-dependent manner. Adenosine dramatically affected SACT of the first SAN beat after tachypacing (41 ± 5 ms vs 221 ± 98 ms; P<.01). Moreover, at high concentrations of adenosine (10-100 µM), termination of tachypacing or atrial flutter/fibrillation produced atrial pauses of 4.2 ± 3.4 seconds (n = 5) owing to conduction block between the SAN and the atria, despite a stable SAN intrinsic rate. Conduction block was preferentially related to depressed excitability in SAN conduction pathways. Adenosine-induced changes were reversible on washout or DPCPX treatment. CONCLUSIONS: These data directly demonstrate that adenosine contributes to post-tachycardia atrial pauses through SAN exit block rather than slowed pacemaker automaticity. Thus, these data suggest an important modulatory role of adenosine in tachy-brady syndrome.


Assuntos
Adenosina/farmacologia , Bradicardia/tratamento farmacológico , Bradicardia/fisiopatologia , Bloqueio Cardíaco/induzido quimicamente , Bloqueio Cardíaco/fisiopatologia , Sistema de Condução Cardíaco/efeitos dos fármacos , Sistema de Condução Cardíaco/fisiopatologia , Nó Sinoatrial/efeitos dos fármacos , Nó Sinoatrial/fisiopatologia , Taquicardia/tratamento farmacológico , Taquicardia/fisiopatologia , Potenciais de Ação/efeitos dos fármacos , Análise de Variância , Animais , Estimulação Cardíaca Artificial , Cães , Relação Dose-Resposta a Droga , Espectroscopia de Luz Próxima ao Infravermelho
5.
Front Physiol ; 3: 71, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22470351

RESUMO

The consumption of omega-3 polyunsaturated fatty acids (n-3 PUFAs) has been reported to reduce cardiac mortality following myocardial infarction as well as to decrease resting heart rate (HR) and increase HR variability (HRV). However, it has not been established whether n-3 PUFAs exhibit the same actions on HR and HRV in individuals known to be either susceptible or resistant to ventricular fibrillation (VF). Therefore, HR and HRV (high frequency and total R-R interval variability) were evaluated before and 3 months after n-3 PUFA treatment in dogs with healed myocardial infarction that were either susceptible (VF+, n = 31) or resistant (VF-, n = 31) to ventricular tachyarrhythmias induced by a 2-min coronary artery occlusion during the last minute of a submaximal exercise test. HR and HRV were evaluated at rest, during submaximal exercise and in response to acute myocardial ischemia at rest before and after either placebo (1 g/day, corn oil, VF+, n = 9; VF- n = 8) or n-3 PUFA (docosahexaenoic acid + eicosapentaenoic acid ethyl esters, 1-4 g/day, VF+, n = 22; VF-, n = 23) treatment for 3 months. The n-3 PUFA treatment elicited similar increases in red blood cell membrane, right atrial, and left ventricular n-3 PUFA levels in both the VF+ and VF- dogs. The n-3 PUFA treatment also provoked similar reductions in baseline HR and increases in baseline HRV in both groups that resulted in parallel shifts in the response to either exercise or acute myocardial ischemia (that is, the change in these variables induced by physiological challenges was not altered after n-3 PUFA treatment). These data demonstrate that dietary n-3 PUFA decreased HR and increased HRV to a similar extent in animals known to be prone to or resistant to malignant cardiac tachyarrhythmias.

6.
Front Physiol ; 2: 3, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21423413

RESUMO

AIM: Increased sodium/calcium exchanger activity (NCX1, an important regulator of cardiomyocyte cystolic calcium) may provoke arrhythmias. Exercise training can decrease NCX1 expression in animals with heart failure improving cytosolic calcium regulation, and could thereby reduce the risk for ventricular fibrillation (VF). METHODS: To test this hypothesis, a 2-min coronary occlusion was made during the last minute of exercise in dogs with healed myocardial infarctions; 23 had VF (S, susceptible) and 13 did not (R, resistant). The animals were randomly assigned to either 10-week exercise training (progressively increasing treadmill running; S n = 9; R n = 8) or 10-week sedentary (S n = 14; R n = 5) groups. At the end of the 10-week period, the exercise + ischemia test provoked VF in sedentary but not trained susceptible dogs. On a subsequent day, cardiac tissue was harvested and NCX1 protein expression was determined by Western blot. RESULTS: In the sedentary group, NCX1 expression was significantly (ANOVA, P < 0.05) higher in susceptible compared to resistant dogs. In contrast, NCX1 levels were similar in the exercise trained resistant and susceptible animals. CONCLUSION: These data suggest that exercise training can restore a more normal NCX1 level in dogs susceptible to VF, improving cystolic calcium regulation and could thereby reduce the risk for sudden death following myocardial infarction.

7.
Curr Opin Investig Drugs ; 11(9): 1048-58, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20730700

RESUMO

Despite being the most common arrhythmia currently treated by cardiologists, safe and effective treatments for atrial fibrillation (AF) remain elusive. To address this issue, Astellas Pharma Inc, Merck & Co Inc and Cardiome Pharma Corp are developing vernakalant (RSD-1235), a drug which dose-dependently inhibits sodium channels and several potassium repolarizing currents. Of particular note, vernakalant inhibits I(Kur) (K(v)1.5), a current that is more predominant in atrial than in ventricular tissue. Consistent with this observation, vernakalant produced increases in atrial refractory period with minimal actions on QTc interval or ventricular refractory period in both humans and animals. Intravenous vernakalant terminated recent-onset AF in several animal models, and also in patients with short-duration AF or AF following cardiac surgery enrolled in phase II and III clinical trials. Vernakalant was well tolerated and adverse reactions were transient and mild. Thus, vernakalant holds considerable promise for the treatment of recent-onset AF; however, given its relatively short half-life, continuous dosing may be required in order to maintain sinus rhythm following conversion from AF. The efficacy and safety of vernakalant for the long-term management of AF remains to be determined. Phase III clinical trials with intravenous vernakalant are ongoing, and phase II clinical trials are also being conducted with an oral formulation intended for chronic use.


Assuntos
Anisóis/uso terapêutico , Fibrilação Atrial/tratamento farmacológico , Canal de Potássio Kv1.5/antagonistas & inibidores , Bloqueadores dos Canais de Potássio/uso terapêutico , Pirrolidinas/uso terapêutico , Bloqueadores dos Canais de Sódio/uso terapêutico , Animais , Anisóis/efeitos adversos , Anisóis/metabolismo , Anisóis/farmacocinética , Fibrilação Atrial/metabolismo , Ensaios Clínicos como Assunto , Cães , Avaliação Pré-Clínica de Medicamentos , Humanos , Macaca fascicularis , Masculino , Bloqueadores dos Canais de Potássio/efeitos adversos , Bloqueadores dos Canais de Potássio/metabolismo , Bloqueadores dos Canais de Potássio/farmacocinética , Pirrolidinas/efeitos adversos , Pirrolidinas/metabolismo , Pirrolidinas/farmacocinética , Coelhos , Bloqueadores dos Canais de Sódio/efeitos adversos , Bloqueadores dos Canais de Sódio/metabolismo , Bloqueadores dos Canais de Sódio/farmacocinética
8.
Am J Physiol Heart Circ Physiol ; 297(4): H1171-93, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19684184

RESUMO

Sudden cardiac death resulting from ventricular tachyarrhythmias remains the leading cause of death in industrially developed countries, accounting for between 300,000 and 500,000 deaths each year in the United States. Yet, despite the enormity of this problem, both the identification of factors contributing to ventricular fibrillation as well as the development of safe and effective antiarrhythmic agents remain elusive. Subnormal cardiac parasympathetic regulation coupled with an elevated cardiac sympathetic activation may allow for the formation of malignant ventricular arrhythmias. In particular, myocardial infarction can reduce cardiac parasympathetic regulation and alter beta-adrenoceptor subtype expression enhancing beta(2)-adrenoceptor sensitivity that can lead to intracellular calcium dysregulation and arrhythmias. As such, myocardial infarction can induce a remodeling of cardiac autonomic regulation that may be required to maintain cardiac pump function. If alterations in cardiac autonomic regulation play an important role in the genesis of life-threatening arrhythmias, then one would predict that interventions designed to either augment parasympathetic activity and/or reduce cardiac adrenergic activity would also protect against ventricular fibrillation. Recently, studies using a canine model of sudden death demonstrate that endurance exercise training (treadmill running) enhanced cardiac parasympathetic regulation (increased heart rate variability), restored a more normal beta-adrenoceptor balance (i.e., reduced beta(2)-adrenoceptor sensitivity and expression), and protected against ventricular fibrillation induced by acute myocardial ischemia. Thus exercise training may reverse the autonomic neural remodeling induced by myocardial infarction and thereby enhance the electrical stability of the heart in individuals shown to be at an increased risk for sudden cardiac death.


Assuntos
Sistema Nervoso Autônomo/fisiopatologia , Morte Súbita Cardíaca/prevenção & controle , Terapia por Exercício , Coração/inervação , Infarto do Miocárdio/terapia , Resistência Física , Taquicardia Ventricular/terapia , Animais , Cálcio/metabolismo , Morte Súbita Cardíaca/etiologia , Modelos Animais de Doenças , Cães , Frequência Cardíaca , Humanos , Infarto do Miocárdio/complicações , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/mortalidade , Infarto do Miocárdio/fisiopatologia , Miócitos Cardíacos/metabolismo , Receptores Adrenérgicos beta 2/metabolismo , Fatores de Risco , Taquicardia Ventricular/etiologia , Taquicardia Ventricular/metabolismo , Taquicardia Ventricular/mortalidade , Taquicardia Ventricular/fisiopatologia
9.
Pharmacol Ther ; 120(1): 54-70, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18708091

RESUMO

The activation of cardiac cell membrane ATP-sensitive potassium channels during myocardial ischemia promotes potassium efflux, reductions in action potential duration, and heterogeneities in repolarization, thereby creating a substrate for re-entrant arrhythmias. Drugs that block this channel should be particularly effective anti-arrhythmic agents. Indeed, non-selective ATP-sensitive potassium channel antagonists, (e.g., glibenclamide) can prevent arrhythmias associated with myocardial ischemia. However, these non-selective antagonists have important non-cardiac actions that promote insulin release and hypoglycemia (pancreatic beta-cells), reduce coronary blood flow (vascular smooth muscle cells), prevent ischemia preconditioning (cardiac mitochondrial channels) and depress cardiac contractile function. The ATP-sensitive potassium channel consists of a pore forming inward rectifying potassium channel (Kir6.1 or Kir6.2) and a regulatory subunit (sulfonylurea receptors, SUR1, SUR2A &SUR2B). The Kir6.2/SUR2A combination appears to be preferentially expressed on cardiac cell membranes. As such, it should be possible to develop agents selective for cardiac sarcolemmal ATP-sensitive potassium channels. The novel compounds HMR 1883 (or its sodium salt HMR 1098) or HMR 1402 have been shown to block selectively the cardiac sarcolemmal ATP-sensitive potassium channels. These drugs attenuated ischemically-induced changes in cardiac electrical properties and prevented malignant arrhythmias without the untoward effects of other drugs. Since the ATP-sensitive potassium channel only becomes active as ATP levels fall, these drugs have the added advantage that they would have effects only on ischemic tissue with little or no effect noted on normal tissue. Thus, selective antagonists of the cardiac cell surface ATP-sensitive potassium channel may represent a new class of ischemia selective anti-arrhythmic medications.


Assuntos
Antiarrítmicos/uso terapêutico , Arritmias Cardíacas/tratamento farmacológico , Arritmias Cardíacas/fisiopatologia , Canais KATP/antagonistas & inibidores , Miocárdio/metabolismo , Bloqueadores dos Canais de Potássio/uso terapêutico , Sarcolema/efeitos dos fármacos , Animais , Humanos
10.
Exp Physiol ; 93(8): 931-44, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18376003

RESUMO

Parasympathetic activity during acute coronary artery occlusion (CAO) can protect against ischaemia-induced malignant arrhythmias; nonetheless, the mechanism mediating this protection remains unclear. During CAO, myocardial electrotonic uncoupling is associated with autonomically mediated immediate (i.e. type 1A) arrhythmias and can modulate pro-arrhythmic dispersion of repolarization. Therefore, the effects of acutely enhanced or decreased cardiac parasympathetic activity on early electrotonic coupling during CAO, as measured by myocardial electrical impedance (MEI), were investigated. Anaesthetized dogs were instrumented for MEI measurements, and left circumflex coronary arterial occlusions were performed in intact (CTRL) and vagotomized (VAG) animals. The CAO was followed by either vagotomy (CTRL) or vagal nerve stimulation (VNS, 10 Hz, 10 V) in the VAG dogs. Vagal nerve stimulation was studied in two additional sets of animals. In one set heart rate (HR) was maintained by pacing (220 beats min(-1)), while in the other set bilateral stellectomy preceded CAO. The MEI increased after CAO in all animals. A larger MEI increase was observed in vagotomized animals (+85 +/- 9 Omega, from 611 +/- 24 Omega, n = 16) when compared with intact control dogs (+43 +/- 5 Omega, from 620 +/- 20 Omega, n = 7). Acute vagotomy during ischaemia abruptly increased HR (from 155 +/- 11 to 193 +/- 15 beats min(-1)) and MEI (+12 +/- 1.1 Omega, from 663 +/- 18 Omega). In contrast, VNS during ischaemia (n = 11) abruptly reduced HR (from 206 +/- 6 to 73 +/- 9 beats min(-1)) and MEI (-16 +/- 2 Omega, from 700 +/- 44 Omega). These effects of VNS were eliminated by pacing but not by bilateral stellectomy. Vagal nerve stimulation during CAO also attenuated ECG-derived indices of ischaemia (e.g. ST segment, 0.22 +/- 0.03 versus 0.15 +/- 0.03 mV) and of rate-corrected repolarization dispersion [terminal portion of T wave (TPEc), 84.5 +/- 4.2 versus 65.8 +/- 5.9 ms; QTc, 340 +/- 8 versus 254 +/- 16 ms]. Vagal nerve stimulation during myocardial ischaemia exerts negative chronotropic effects, limiting early ischaemic electrotonic uncoupling and dispersion of repolarization, possibly via a decreased myocardial metabolic demand.


Assuntos
Estimulação Elétrica , Frequência Cardíaca/fisiologia , Isquemia Miocárdica/fisiopatologia , Nervo Vago/fisiologia , Animais , Modelos Animais de Doenças , Cães , Impedância Elétrica , Eletrocardiografia , Sistema Nervoso Parassimpático/fisiologia , Nervo Vago/cirurgia
11.
J Cardiovasc Pharmacol ; 51(4): 352-8, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18427277

RESUMO

AVE0118 is a novel drug that blocks the transient outward current (Ito), the ultra rapid component of the delayed rectifier current (IKur), and the acetylcholine dependent potassium channel (IKach). The latter 2 channels are more abundant in atrial tissue. It is possible that AVE0118 could reduce regional differences in repolarization and thereby prevent malignant arrhythmias provoked by ischemia. To test this hypothesis, ventricular fibrillation was induced by a 2-minute occlusion of the left circumflex coronary artery during the last min of exercise in dogs with healed myocardial infarctions (n = 9). On a subsequent day, this exercise plus ischemia test was repeated after pretreatment with AVE0118 (1.0 mg/kg, IV). AVE0118 did not change QTc (Van de Water's correction) interval [245 +/- 6.0 ms (control) versus 242 +/- 2.3 ms (AVE)] and attenuated the dispersion of repolarization as measured by the duration of the descending portion of the T wave (Tpeak - Tend) induced by ischemia [ischemic changes: +11.1 +/- 2.4 ms (no drug) versus +2.2 +/- 3.7 ms (AVE)]. AVE0118 also significantly reduced the incidence of ventricular fibrillation, protecting 7 of 9 animals. Thus, AVE0118 abolished ischemically induced repolarization abnormalities and prevented malignant arrhythmias induced by ischemia without altering QTc interval.


Assuntos
Compostos de Bifenilo/uso terapêutico , Canais de Potássio de Retificação Tardia/antagonistas & inibidores , Fibrilação Ventricular/prevenção & controle , Animais , Compostos de Bifenilo/farmacologia , Morte Súbita Cardíaca/prevenção & controle , Cães , Eletrocardiografia , Feminino , Frequência Cardíaca/efeitos dos fármacos , Masculino , Isquemia Miocárdica/complicações , Fibrilação Ventricular/etiologia , Fibrilação Ventricular/fisiopatologia
12.
Pharmacol Ther ; 111(3): 808-35, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16483666

RESUMO

Sudden cardiac death resulting from ventricular tachyarrhythmias remains the leading cause of death in industrially developed countries, accounting for between 300,000 and 500,000 deaths each year in the United States. Yet, despite the enormity of this problem, the development of safe and effective anti-arrhythmic agents remains elusive. The identification of effective anti-arrhythmic agents is critically dependent upon the use of appropriate animal models of human disease. During the last 25 years, a canine model of sudden cardiac death has proven to be useful in both the identification of factors contributing to ventricular fibrillation (VF) and the evaluation of potential anti-arrhythmic therapies. The present review provides a detailed retrospective analysis of the data obtained with this model. Briefly, VF was reliably and reproducibly induced by the combination of acute myocardial ischemia at site distant from a previous myocardial infarction during submaximal exercise (to activate the autonomic nervous system). This exercise plus ischemia test identified 2 stable populations of dogs: those that development malignant arrhythmias (susceptible, n=303) and those that rarely developed even single premature ventricular activation (resistant, n=209). The susceptible animals exhibited an elevated sympathetic activation (due to an enhanced beta2-adrenoceptor responsiveness) and a subnormal parasympathetic regulation. Several interventions have proven to be particularly effective in preventing VF in the susceptible dogs; including calcium channel antagonists, left stellate ganglion disruption, ATP-sensitive potassium channel antagonists, beta-adrenoceptor antagonists, and non-pharmacological interventions (endurance exercise training and dietary omega-3 fatty acids).


Assuntos
Antiarrítmicos/uso terapêutico , Morte Súbita Cardíaca/etiologia , Fibrilação Ventricular/tratamento farmacológico , Animais , Sistema Nervoso Autônomo/fisiologia , Pressão Sanguínea , Cálcio/metabolismo , Modelos Animais de Doenças , Cães , Eletrocardiografia , Exercício Físico , Óleos de Peixe/farmacologia , Coração/inervação , Frequência Cardíaca , Humanos , Sulfonamidas/uso terapêutico , Tioureia/análogos & derivados , Tioureia/uso terapêutico , Fibrilação Ventricular/etiologia , Fibrilação Ventricular/fisiopatologia
13.
Am J Physiol Heart Circ Physiol ; 291(1): H429-35, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16501028

RESUMO

A large heart rate (HR) increase at the onset of exercise has been linked to an increased risk for adverse cardiovascular events, including cardiac death. However, the relationship between changes in cardiac autonomic regulation induced by exercise onset and the confirmed susceptibility to ventricular fibrillation (VF) has not been established. Therefore, a retrospective analysis of the HR response to exercise onset was made in mongrel dogs with healed myocardial infarctions that were either susceptible (S, n = 131) or resistant (R, n = 114) to VF (induced by a 2-min occlusion of the left circumflex artery during the last minute of exercise). The ECG was recorded, and time series analysis of HR variability (vagal activity index, the 0.24-1.04-Hz frequency component of R-R interval variability) was measured before and 30, 60, and 120 s after the onset of exercise (treadmill running). Exercise elicited significantly (ANOVA, P < 0.0001) greater increases in HR in susceptible dogs at all three times (e.g., at 60 s: R, 46.8 +/- 2.3 vs. S, 57.1 +/- 2.2 beats/min). However, the vagal activity index decreased to a similar extent in both groups of dogs (at 60 s: R, -2.8 +/- 0.1 vs. S, -3.0 +/- 0.2 ln ms2). Beta-adrenoceptor blockade (BB, propranolol 1.0 mg/kg iv) reduced the HR increase and eliminated the differences noted between the groups [at 60 s: R (n = 26), 40.4 +/- 3.2 vs. S (n = 31), 37.5 +/- 2.4 beats/min]. After BB, exercise once again elicited similar declines in vagal activity in both groups (at 60 s: R, -3.6 +/- 0.5 vs. S, -3.2 +/- 0.4 ln ms2). When considered together, these data suggest that at the onset of exercise HR increases to a greater extent in animals prone to VF compared with dogs resistant to this malignant arrhythmia due to an enhanced cardiac sympathetic activation in the susceptible dogs.


Assuntos
Frequência Cardíaca , Ventrículos do Coração/inervação , Ventrículos do Coração/fisiopatologia , Infarto do Miocárdio/fisiopatologia , Esforço Físico , Sistema Nervoso Simpático/fisiopatologia , Fibrilação Ventricular/fisiopatologia , Animais , Modelos Animais de Doenças , Suscetibilidade a Doenças/fisiopatologia , Cães , Teste de Esforço , Feminino , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA