Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Front Chem ; 12: 1380266, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38576849

RESUMO

Introduction: Cancer is the second most prevalent cause of mortality in the world, despite the availability of several medications for cancer treatment. Therefore, the cancer research community emphasized on computational techniques to speed up the discovery of novel anticancer drugs. Methods: In the current study, QSAR-based virtual screening was performed on the Zinc15 compound library (271 derivatives of methotrexate (MTX) and phototrexate (PTX)) to predict their inhibitory activity against dihydrofolate reductase (DHFR), a potential anticancer drug target. The deep learning-based ADMET parameters were employed to generate a 2D QSAR model using the multiple linear regression (MPL) methods with Leave-one-out cross-validated (LOO-CV) Q2 and correlation coefficient R2 values as high as 0.77 and 0.81, respectively. Results: From the QSAR model and virtual screening analysis, the top hits (09, 27, 41, 68, 74, 85, 99, 180) exhibited pIC50 ranging from 5.85 to 7.20 with a minimum binding score of -11.6 to -11.0 kcal/mol and were subjected to further investigation. The ADMET attributes using the message-passing neural network (MPNN) model demonstrated the potential of selected hits as an oral medication based on lipophilic profile Log P (0.19-2.69) and bioavailability (76.30% to 78.46%). The clinical toxicity score was 31.24% to 35.30%, with the least toxicity score (8.30%) observed with compound 180. The DFT calculations were carried out to determine the stability, physicochemical parameters and chemical reactivity of selected compounds. The docking results were further validated by 100 ns molecular dynamic simulation analysis. Conclusion: The promising lead compounds found endorsed compared to standard reference drugs MTX and PTX that are best for anticancer activity and can lead to novel therapies after experimental validations. Furthermore, it is suggested to unveil the inhibitory potential of identified hits via in-vitro and in-vivo approaches.

2.
Sci Rep ; 14(1): 8487, 2024 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605059

RESUMO

Breast cancer has rapidly increased in prevalence in recent years, making it one of the leading causes of mortality worldwide. Among all cancers, it is by far the most common. Diagnosing this illness manually requires significant time and expertise. Since detecting breast cancer is a time-consuming process, preventing its further spread can be aided by creating machine-based forecasts. Machine learning and Explainable AI are crucial in classification as they not only provide accurate predictions but also offer insights into how the model arrives at its decisions, aiding in the understanding and trustworthiness of the classification results. In this study, we evaluate and compare the classification accuracy, precision, recall, and F1 scores of five different machine learning methods using a primary dataset (500 patients from Dhaka Medical College Hospital). Five different supervised machine learning techniques, including decision tree, random forest, logistic regression, naive bayes, and XGBoost, have been used to achieve optimal results on our dataset. Additionally, this study applied SHAP analysis to the XGBoost model to interpret the model's predictions and understand the impact of each feature on the model's output. We compared the accuracy with which several algorithms classified the data, as well as contrasted with other literature in this field. After final evaluation, this study found that XGBoost achieved the best model accuracy, which is 97%.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/diagnóstico , Teorema de Bayes , Bangladesh/epidemiologia , Mama , Aprendizado de Máquina , Hidrolases
3.
AMB Express ; 14(1): 46, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664337

RESUMO

Hepatocellular carcinoma (HCC) stands as the most common cancer type, arising from various causes, and responsible for a substantial number of cancer-related fatalities. Recent advancements in viral metagenomics have empowered scientists to delve into the intricate diversity of the virosphere, viral evolution, interactions between viruses and their hosts, and the identification of viral causes behind disease outbreaks, the development of specific symptoms, and their potential role in altering the host's physiology. The present study had the objective of "Molecular Characterization of HBV, HCV, anelloviruses, CMV, SENV-D, SENV-H, HEV, and HPV viruses among individuals suffering from HCC." A total of 381 HCC patients contributed 10 cc of blood each for this study. The research encompassed the assessment of tumor markers, followed by molecular characterization of HBV, HCV, Anelloviruses (TTV, TTMV, and TTMDV), SENV-H and SENV-D viruses, HEV, CMV, and HPV, as well as histopathological examinations. The outcomes of this study revealed that majority of the HCC patients 72.4% (276/381) were male as compared to females. HCV infection, at 76.4% (291 out of 381), exhibited a significant association (p < 0.05) with HCC. Most patients displayed singular lesions in the liver, with Child Pugh Score Type B being the predominant finding in 45.2% of cases. Plasma virome analysis indicated the prevalence of TTMDV (75%), followed by TTMV (70%) and TTV (42.1%) among anelloviruses in HCC patients. Similarly, SENV-H (52%) was followed by SENV-D (20%), with co-infections at 15%. The presence of CMV and HEV among the HCC patients was recorded 5% each however 3.5% of the patients showed the presence of HPV. In conclusion, this study underscores that HCC patients serve as reservoirs for various pathogenic and non-pathogenic viruses, potentially contributing to the development, progression, and severity of the disease.

4.
Sci Rep ; 14(1): 6768, 2024 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-38514638

RESUMO

Breast cancer, the prevailing malignant tumor among women, is linked to progesterone and its receptor (PR) in both tumorigenesis and treatment responsiveness. Despite thorough investigation, the precise molecular mechanisms of progesterone in breast cancer remain unclear. The human progesterone receptor (PR) serves as an essential therapeutic target for breast cancer treatment, warranting the rapid design of small molecule therapeutics that can effectively inhibit HPR. By employing cutting-edge computational techniques like molecular screening, simulation, and free energy calculation, the process of identifying potential lead molecules from natural products has been significantly expedited. In this study, we employed pharmacophore-based virtual screening and molecular simulations to identify natural product-based inhibitors of human progesterone receptor (PR) in breast cancer treatment. High-throughput molecular screening of traditional Chinese medicine (TCM) and zinc databases was performed, leading to the identification of potential lead compounds. The analysis of binding modes for the top five compounds from both database provides valuable structural insights into the inhibition of HPR for breast cancer treatment. The top five hits exhibited enhanced stability and compactness compared to the reference compound. In conclusion, our study provides valuable insights for identifying and refining lead compounds as HPR inhibitors.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Simulação de Dinâmica Molecular , Simulação de Acoplamento Molecular , Farmacóforo , Receptores de Progesterona , Progesterona/uso terapêutico , Detecção Precoce de Câncer , Ligantes
5.
Front Chem ; 12: 1291230, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38476652

RESUMO

Background: Ulcerative colitis is a chronic immune-mediated inflammatory bowel disease that involves inflammation and ulcers of the colon and rectum. To date, no definite cure for this disease is available. Objective: The objective of the current study was to assess the effect of Calliandra haematocephala on inflammatory mediators and oxidative stress markers for the exploration of its anti-ulcerative colitis activity in rat models of acetic acid-induced ulcerative colitis. Methods: Methanolic and n-hexane extracts of areal parts of the plant were prepared by cold extraction method. Phytochemical analysis of both extracts was performed by qualitative analysis, quantitative methods, and high-performance liquid chromatography (HPLC). Prednisone at 2 mg/kg dose and plant extracts at 250, 500, and 750 mg/kg doses were given to Wistar rats for 11 days, which were given acetic acid on 8th day through the trans-rectal route for the induction of ulcerative colitis. A comparison of treatment groups was done with a normal control group and a colitis control group. To evaluate the anti-ulcerative colitis activity of Calliandra haematocephala, different parameters such as colon macroscopic damage, ulcer index, oxidative stress markers, histopathological examination, and mRNA expression of pro and anti-inflammatory mediators were evaluated. mRNA expression analysis was carried out by reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR). Results: The phytochemical evaluation revealed polyphenols, flavonoids, tannins, alkaloids, and sterols in both extracts of the plant. Results of the present study exhibited that both extracts attenuated the large bowel inflammation and prevented colon ulceration at all tested doses. Macroscopic damage and ulcer scoreswere significantly decreased by both extracts. Malondialdehyde (MDA) levels and nitrite/nitrate concentrations in colon tissues were returned to normal levels while superoxide dismutase (SOD) activity was significantly improved by all doses. Histopathological examination exhibited that both extracts prevented the inflammatory changes, cellular infiltration, and colon thickening. Gene expression analysis by RT-qPCR revealed the downregulation of pro-inflammatory markers such as tumor necrosis factor-alpha (TNF-α) and cyclooxygenase-2 (COX-2) whereas the anti-inflammatory cytokines including Interleukin-4 (IL-4) and Interleukin-10 (IL-10) were found to be upregulated in treated rats. Conclusion: It was concluded based on study outcomes that methanolic and n-hexane extracts of Calliandra haematocephala exhibited anti-ulcerative colitis activity through modulation of antioxidant defense mechanisms and the immune system. In this context, C. haematocephala can be considered as a potential therapeutic approach for cure of ulcerative colitis after bioassay-directed isolation of bioactive phytochemicals and clinical evaluation.

6.
Front Chem ; 12: 1334028, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38435667

RESUMO

Cistus albidus: L., also known as Grey-leaved rockrose and locally addressed as stab or tûzzâla lbîda, is a plant species with a well-established reputation for its health-promoting properties and traditional use for the treatment of various diseases. This research delves into exploring the essential oil extracted from the aerial components of Cistus albidus (referred to as CAEO), aiming to comprehend its properties concerning antioxidation, anti-inflammation, antimicrobial efficacy, and cytotoxicity. Firstly, a comprehensive analysis of CAEO's chemical composition was performed through Gas Chromatography-Mass Spectrometry (GC-MS). Subsequently, four complementary assays were conducted to assess its antioxidant potential, including DPPH scavenging, ß-carotene bleaching, ABTS scavenging, and total antioxidant capacity assays. The investigation delved into the anti-inflammatory properties via the 5-lipoxygenase assay and the antimicrobial effects of CAEO against various bacterial and fungal strains. Additionally, the research investigated the cytotoxic effects of CAEO on two human breast cancer subtypes, namely, MCF-7 and MDA-MB-231. Chemical analysis revealed camphene as the major compound, comprising 39.21% of the composition, followed by α-pinene (19.01%), bornyl acetate (18.32%), tricyclene (6.86%), and melonal (5.44%). Notably, CAEO exhibited robust antioxidant activity, as demonstrated by the low IC50 values in DPPH (153.92 ± 4.30 µg/mL) and ß-carotene (95.25 ± 3.75 µg/mL) assays, indicating its ability to counteract oxidative damage. The ABTS assay and the total antioxidant capacity assay also confirmed the potent antioxidant potential with IC50 values of 120.51 ± 3.33 TE µmol/mL and 458.25 ± 3.67 µg AAE/mg, respectively. In terms of anti-inflammatory activity, CAEO displayed a substantial lipoxygenase inhibition at 0.5 mg/mL. Its antimicrobial properties were broad-spectrum, although some resistance was observed in the case of Escherichia coli and Staphylococcus aureus. CAEO exhibited significant dose-dependent inhibitory effects on tumor cell lines in vitro. Additionally, computational analyses were carried out to appraise the physicochemical characteristics, drug-likeness, and pharmacokinetic properties of CAEO's constituent molecules, while the toxicity was assessed using the Protox II web server.

7.
J Cosmet Dermatol ; 23(3): 1045-1054, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38050657

RESUMO

OBJECTIVE: The current study aimed to provide preliminary insights into potential biopharmaceutical applications of Carica papaya seed extract by evaluating its phytochemical and biological profiles. Furthermore, the study aimed to develop a stable oil-in-water (O/W) emulsion for the effective delivery of antioxidant-rich biologicals for cosmetic purposes. METHODS: The hydroethanolic (ethanol 80%: 20% water) extract of C. papaya seeds was prepared via maceration technique. The chemical composition was carried out through preliminary phytochemical screening and estimation of total phenolic contents (TPC) and total flavonoid contents (TFC). The biological profile of the extract was explored using various in-vitro antioxidant methods. The homogenization procedure was used to create a cream of O/W and various tests were applied to assess the stability of the emulsion. By keeping the emulsion at different storage conditions (8 ± 0.5°C, 25 ± 0.5°C, 40 ± 0.5°C, and 40 ± 0.5°C ± 75% relative humidity [RH]) for a period of 28 days), the physical stability parameters of the emulsion, including pH, viscosity, centrifugation, phase separation, and conductivity, as well as rheological parameters and organoleptic parameters (odor, color, liquefaction, and creaming), were assessed. RESULTS: The preliminary phytochemical screening assay revealed the presence of various plant secondary metabolites including alkaloids, phenolics, flavonoids, tannins, saponins, and quinones. The extract was found to be rich in TPC and TFC. The in vitro antioxidant study gave maximum activity in the DPPH method. The plant extract containing cosmetic cream exhibited remarkable stability during the entire research. Data gathered indicated that no phase separation or liquefaction was seen after the experimental period. Throughout the experimental period, a small variation in the pH and conductivity values of the base and formulation was seen. CONCLUSION: The findings suggest that the seed extract of C. papaya is a rich source of polyphenols with antioxidant potential and can be a promising alternative for the treatment of various ailments. The stability of emulsion paves the way for its utilization as a carrier for the delivery of 3% C. papaya seed extract and applications in cosmetics products.


Assuntos
Produtos Biológicos , Carica , Humanos , Antioxidantes , Emulsões , Emolientes , Flavonoides , Compostos Fitoquímicos , Extratos Vegetais/farmacologia , Água
8.
Pharmaceuticals (Basel) ; 16(12)2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-38139768

RESUMO

Pterostilbene (PTS) is a naturally occurring phytoalexin. PTS displays limited water solubility, which consequently results in its diminished oral bioavailability. Therefore, a ternary inclusion complex (TIC) of PTS with ß-cyclodextrin (ßCD) in the presence of ternary substance Pluronic® F-127 (PLF) was prepared using microwave technology. The PTS-TIC was characterized by dissolution performance. Further, the prepared TIC was characterized by DSC, FTIR, NMR, XRD, and SEM analysis. Additionally, the antioxidant activity of PTS and PTS-TIC was also evaluated. Phase-solubility studies revealed that PTS's solubility in water was increased by 6.72 times when ßCD/PLF was present. In comparison with PTS, prepared PTS-TIC produced a considerable improvement in PTS release. After 1 h, 74.03 ± 4.47% of PTS was released from PTS-TIC. Outcomes of DSC, FTIR, NMR, XRD, and SEM analysis revealed that the PTS was enclosed in the ßCD cavity. In terms of antioxidant properties, the PTS-TIC formulation demonstrated superior activity compared to PTS, possibly attributed to the improved solubility of PTS resulting from the formation of TIC using microwave technology. It was concluded that microwave technology proved to be an extremely beneficial means of interacting PTS with ßCD. In addition to increasing the solubility of PTS, the findings are also expected to improve its bioavailability by increasing its solubility. As a result, this study could provide insight into potential methods for enhancing the solubility of polyphenolic substances like PTS.

9.
Sci Rep ; 13(1): 16565, 2023 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-37783745

RESUMO

The present study deals with the advanced in-silico analyses of several Apigenin derivatives to explore human papillomavirus-associated cervical cancer and DNA polymerase theta inhibitor properties by molecular docking, molecular dynamics, QSAR, drug-likeness, PCA, a dynamic cross-correlation matrix and quantum calculation properties. The initial literature study revealed the potent antimicrobial and anticancer properties of Apigenin, prompting the selection of its potential derivatives to investigate their abilities as inhibitors of human papillomavirus-associated cervical cancer and DNA polymerase theta. In silico molecular docking was employed to streamline the findings, revealing promising energy-binding interactions between all Apigenin derivatives and the targeted proteins. Notably, Apigenin 4'-O-Rhamnoside and Apigenin-4'-Alpha-L-Rhamnoside demonstrated higher potency against the HPV45 oncoprotein E7 (PDB ID 2EWL), while Apigenin and Apigenin 5-O-Beta-D-Glucopyranoside exhibited significant binding energy against the L1 protein in humans. Similarly, a binding affinity range of - 7.5 kcal/mol to - 8.8 kcal/mol was achieved against DNA polymerase theta, indicating the potential of Apigenin derivatives to inhibit this enzyme (PDB ID 8E23). This finding was further validated through molecular dynamic simulation for 100 ns, analyzing parameters such as RMSD, RMSF, SASA, H-bond, and RoG profiles. The results demonstrated the stability of the selected compounds during the simulation. After passing the stability testing, the compounds underwent screening for ADMET, pharmacokinetics, and drug-likeness properties, fulfilling all the necessary criteria. QSAR, PCA, dynamic cross-correlation matrix, and quantum calculations were conducted, yielding satisfactory outcomes. Since this study utilized in silico computational approaches and obtained outstanding results, further validation is crucial. Therefore, additional wet-lab experiments should be conducted under in vivo and in vitro conditions to confirm the findings.


Assuntos
Papillomavirus Humano , Neoplasias do Colo do Útero , Humanos , Feminino , Apigenina/farmacologia , Simulação de Acoplamento Molecular , Desenho de Fármacos , Simulação de Dinâmica Molecular , DNA Polimerase teta
10.
Pharmaceuticals (Basel) ; 16(10)2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37895877

RESUMO

Curcumin's applications in the treatment of conditions including osteoarthritis, dementia, malignancies of the pancreas, and malignancies of the intestines have drawn increasing attention. It has several wonderful qualities, including being an anti-inflammatory agent, an anti-mutagenic agent, and an antioxidant, and has substantially reduced inherent cytotoxicity outcomes. Although curcumin possesses multiple known curative properties, due to its limited bioavailability, it is necessary to develop efficient strategies to overcome these hurdles. To establish an effective administration method, various niosomal formulations were optimized using the Box-Behnken design and assessed in the current investigation. To examine the curcumin niosomes, zeta sizer, zeta potential, entrapment efficiency, SEM, antioxidant potential, cytotoxicity, and release studies were performed. The optimized curcumin niosomes exhibited an average particle size of 169.4 nm, a low PDI of 0.189, and high entrapment efficiency of 85.4%. The release profile showed 79.39% curcumin after 24 h and had significantly higher antioxidant potential as compared with that of free curcumin. The cytotoxicity results of curcumin niosomes presented increased mortality in human ovarian cancer A2780.

11.
Pharmaceutics ; 15(10)2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37896151

RESUMO

Sinapic acid (SA) is a bioactive phenolic acid; its diverse properties are its anti-inflammatory, antioxidant, anticancer, and antibacterial activities. The bioactive compound SA is poorly soluble in water. Our goal was to formulate SA-transethosomes using thin-film hydration. The prepared formulations were examined for various parameters. In addition, the optimized formulation was evaluated for surface morphology, in-vitro penetration studies across the Strat M®, and its antioxidant activity. The optimized formulation (F5) exhibited 74.36% entrapment efficacy. The vesicle size, zeta potential, and polydispersity index were found to be 111.67 nm, -7.253 mV, and 0.240, respectively. The surface morphology showed smooth and spherical vesicles of SA-transethosomes. In addition, the prepared SA-transethosomes exhibited enhanced antioxidant activity. The SA-transethosomes demonstrated considerably greater penetration across the Strat M® membrane during the study. The flux of SA and SA-transethosomes through the Strat M® membrane was 1.03 ± 0.07 µg/cm2/h and 2.93 ± 0.16 µg/cm2/h. The enhancement ratio of SA-transethosomes was 2.86 ± 0.35 compared to the control. The SA-transethosomes are flexible nano-sized vesicles and are able to penetrate the entrapped drug in a higher concentration. Hence, it was concluded that SA-transethosome-based approaches have the potential to be useful for accentuating the penetrability of SA across the skin.

12.
Saudi Pharm J ; 31(11): 101819, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37860687

RESUMO

Dasatinib (DAS) is a narrow therapeutic index drug and novel oral multitarget inhibitor of tyrosine kinase and approved for the first-line therapy for chronic myelogenous leukemia (CML) and Philadelphia chromosome (Ph + ) acute lymphoblastic leukemia (ALL). DAS, a known potent substrate of cytochrome (CYP) 3A, P-glycoprotein (Pgp) and breast cancer resistance protein (BCRP) and is subject to auto-induction. The dietary supplementation of sinapic acid (SA) or concomitant use of SA containing herbs/foods may alter the pharmacokinetics as well as pharmacodynamics of DAS, that may probably lead to potential interactions. Protein expression in rat hepatic and intestinal tissues, as well as the in vivo pharmacokinetics of DAS and the roles of CYP3 A2 and drug transporters Pgp-MDR1 and BCPR/ABCG2, suggested a likely interaction mechanism. The single dose of DAS (25 mg/kg) was given orally to rats with or without SA pretreatment (20 mg/kg p.o. per day for 7 days, n = 6). The plasma concentration of DAS was estimated by using Ultra-High-Performance Liquid Chromatography Mass spectrometry (UHPLC-MS/MS). The in vivo pharmacokinetics and protein expression study demonstrate that SA pretreatment has potential to alter the DAS pharmacokinetics. The increase in Cmax, AUC and AUMC proposes increase in bioavailability and rate of absorption via modulation of CYP3 A2, PgP-MDR1 and BCPR/ABCG2 protein expression. Thus, the concomitant use of SA alone or with DAS may cause serious life-threatening drug interactions.

13.
Front Cell Infect Microbiol ; 13: 1253095, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37731820

RESUMO

Purpose: The current study aimed to develop a topical herbal emulgel containing Carthamus tinctorius L. (CT) oil extract, which has been scientifically proven for its antibacterial and antioxidant activities for the ailment of bacterial skin infections. Method: The CT emulgel was formulated by response surface methodology (RSM) and was evaluated by various parameters like extrudability, spreadability, pH, viscosity, and antibacterial and antioxidant activities. Molecular docking was also performed using AutoDock. Results: Among all formulated CT emulgels, F9 and F8 were optimized. Optimized formulations had shown good spreadability and extrudability characteristics. Sample F8 had % inhibition of 42.131 ± 0.335, 56.720 ± 0.222, and 72.440 ± 0.335 at different concentrations. Sample F9 had % inhibition of 26.312 ± 0.280, 32.461 ± 0.328, and 42.762 ± 0.398 at concentrations of 250 µg/ml, 500 µg/ml, and 1,000 µg/ml, respectively, which shows that both samples F8 and F9 have significant antioxidant potential. Optimized CT emulgels F8 and F9 had significant antibacterial activity against Staphylococcus aureus and Escherichia coli at p-value = 0.00, the Emulgel-F8 shows zone of inhibition of 24 mm for E-coli and 19 mm for S-aureus. Emulgel-F9 shows zone of inhibition of 22 mm for E-coli and 15 mm for S-aureus while pure CT- Oil extract shows zone of inhibition of 25 mm for E-coli and 20 mm for S-aureus and ciprofloxacin used as standard shows 36mm zone of inhibition against both E-coli and S-aureus. The comparative investigation through molecular docking binding affinities and interactions of ligands with various target proteins provides insights into the molecular processes behind ligand binding and may have significance for drug discovery and design for the current study. Conclusion: The current study suggests that C. tinctorius L.-based emulgel has good antioxidant and antibacterial activities against E. coli for the treatment of bacterial skin infections.


Assuntos
Carthamus tinctorius , Dermatopatias Bacterianas , Antioxidantes/farmacologia , Escherichia coli , Simulação de Acoplamento Molecular , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Staphylococcus aureus , Extratos Vegetais/farmacologia
14.
Saudi Pharm J ; 31(9): 101693, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37559870

RESUMO

This study developed a novel, sensitive and selective LC-MS/MS method for the concurrent determination of DCB and VTX in rat plasma using encorafenib as internal standard (IS). To identify DCB, VTX, and IS, the positive multiple reaction monitoring (MRM) mode was used. Chromatographic separation was carried out using a reversed-phase Agilent Eclipse plus C18 column (100 mm × 2.1 mm, 3.5 µm) and an isocratic mobile phase made up of water with 0.1% formic acid and acetonitrile (50:50, v/v, pH 3.2) at a flow rate of 0.30 mL/min for 3.0 min. Prior to analysis, the DCB and VTX with the IS were extracted from plasma using the solid-phase extraction (SPE) method. High recovery rates for DCB, VTX and IS were achieved using the C18 cartridge without interference from plasma endogenous. The developed method was validated as per the FDA guidelines over a linear concentration range in rat plasma from 5-3000 and 5-1000 ng/mL for DCB and VTX, respectively with r2 ≥ 0.998. For both drugs, the lower limits of detection (LLOD) were 2.0 ng/mL. After the HLOQ sample was injected, less than 20% of the LLOQ of DCB, VTX, and less than 5% of the IS carry-over in the blank sample was attained. The overall recoveries of DCB and VTX from rat plasma were in the range of 90.68-97.56%, and the mean RSD of accuracy and precision results was ≤6.84%. For the first time, the newly developed approach was effectively used in a pharmacokinetic study on the simultaneous oral administration of DCB and VTX in rats that received 15.0 mg/kg of DCB and 100.0 mg/kg of VTX.

15.
Front Microbiol ; 14: 1206816, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37538847

RESUMO

Background: The alarming increase in tick-borne pathogens such as human Babesia microti is an existential threat to global public health. It is a protozoan parasitic infection transmitted by numerous species of the genus Babesia. Second, monkeypox has recently emerged as a public health crisis, and the virus has spread around the world in the post-COVID-19 period with a very rapid transmission rate. These two novel pathogens are a new concern for human health globally and have become a significant obstacle to the development of modern medicine and the economy of the whole world. Currently, there are no approved drugs for the treatment of this disease. So, this research gap encourages us to find a potential inhibitor from a natural source. Methods and materials: In this study, a series of natural plant-based biomolecules were subjected to in-depth computational investigation to find the most potent inhibitors targeting major pathogenic proteins responsible for the diseases caused by these two pathogens. Results: Among them, most of the selected natural compounds are predicted to bind tightly to the targeted proteins that are crucial for the replication of these novel pathogens. Moreover, all the molecules have outstanding ADMET properties such as high aqueous solubility, a higher human gastrointestinal absorption rate, and a lack of any carcinogenic or hepatotoxic effects; most of them followed Lipinski's rule. Finally, the stability of the compounds was determined by molecular dynamics simulations (MDs) for 100 ns. During MDs, we observed that the mentioned compounds have exceptional stability against selected pathogens. Conclusion: These advanced computational strategies reported that 11 lead compounds, including dieckol and amentoflavone, exhibited high potency, excellent drug-like properties, and no toxicity. These compounds demonstrated strong binding affinities to the target enzymes, especially dieckol, which displayed superior stability during molecular dynamics simulations. The MM/PBSA method confirmed the favorable binding energies of amentoflavone and dieckol. However, further in vitro and in vivo studies are necessary to validate their efficacy. Our research highlights the role of Dieckol and Amentoflavone as promising candidates for inhibiting both monkeypox and Babesia microti, demonstrating their multifaceted roles in the control of these pathogens.

16.
Front Chem ; 11: 1197665, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37441272

RESUMO

Breast cancer covers a large area of research because of its prevalence and high frequency all over the world. This study is based on drug discovery against breast cancer from a series of imidazole derivatives. A 3D-QSAR and activity atlas model was developed by exploring the dataset computationally, using the machine learning process of Flare. The dataset of compounds was divided into active and inactive compounds according to their biological and structural similarity with the reference drug. The obtained PLS regression model provided an acceptable r 2 = 0.81 and q2 = 0.51. Protein-ligand interactions of active molecules were shown by molecular docking against six potential targets, namely, TTK, HER2, GR, NUDT5, MTHFS, and NQO2. Then, toxicity risk parameters were evaluated for hit compounds. Finally, after all these screening processes, compound C10 was recognized as the best-hit compound. This study identified a new inhibitor C10 against cancer and provided evidence-based knowledge to discover more analogs.

17.
Pharmaceuticals (Basel) ; 16(6)2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37375759

RESUMO

Apigenin is a phytochemical obtained from Chamomilla recutita. Its role in interstitial cystitis is not yet known. The present study is aimed at understanding the uroprotective and spasmolytic effects of apigenin in cyclophosphamide-induced interstitial cystitis. The uroprotective role of apigenin was analyzed by qRT-PCR, macroscopic analysis, Evans blue dye leakage, histological evaluation, and molecular docking. The spasmolytic response was measured by adding cumulative concentrations of apigenin to isolated bladder tissue pre-contracted with KCl (80 mM) and carbachol (10-9-10-4) on non-incubated and pre-incubated tissues with atropine, 4DAMP, methoctramine, glibenclamide, barium chloride, nifedipine, indomethacin, and propranolol. Apigenin inhibited pro-inflammatory cytokines (IL-6, TNF-α and TGF 1-ß) and oxidant enzymes (iNOS) while increasing antioxidant enzymes (SOD, CAT, and GSH) in CYP-treated groups compared to the control. Apigenin restored normal tissue of the bladder by decreasing pain, edema, and hemorrhage. Molecular docking further confirmed the antioxidant and anti-inflammatory properties of apigenin. Apigenin produced relaxation against carbachol-mediated contractions, probably via blockade of M3 receptors, KATP channels, L-type calcium channels, and prostaglandin inhibition. While the blockade of M2 receptors, KIR channels, and ß-adrenergic receptors did not contribute to an apigenin-induced spasmolytic effect, apigenin presented as a possible spasmolytic and uroprotective agent with anti-inflammatory, antioxidant effects by attenuating TGF-ß/iNOS-related tissue damage and bladder muscle overactivity. Thus, it is a potential agent likely to be used in treatment of interstitial cystitis.

18.
Sci Rep ; 13(1): 10088, 2023 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-37344519

RESUMO

Cancer is among the top causes of death, accounting for an estimated 9.6 million deaths in 2018, it appeared that approximately 500,000 people die from cancer in the United States alone annually. The SHP2 plays a major role in regulation of cell growth, proliferation, and differentiation, and functional upregulation of this enzyme is linked to oncogenesis and developmental disorders. SHP2 activity has been linked to several cancer types for which no drugs are currently available. In our study, we aimed to design peptide inhibitors against the SHP2 mutant. The crystal structure of the human Src SH2-PQpYEEIPI peptide mutant was downloaded from the protein databank. We generated several peptides from the native wild peptide using an in silico mutagenesis method, which showed that changes (P302W, Y304F, E306Q, and Q303A) might boost the peptide's affinity for binding to SHP2. Furthermore, the dynamical stability and binding affinities of the mutated peptide were confirmed using Molecular dynamics simulation and Molecular Mechanics with Generalized Born and Surface Area Solvation free energy calculations. The proposed substitution greatly enhanced the binding affinity at the residue level, according to a study that decomposed energy into its component residues. Our proposed peptide may prevent the spread of cancer by inhibiting SHP2, according to our detailed analyses of binding affinities.


Assuntos
Neoplasias , Proteína Tirosina Fosfatase não Receptora Tipo 11 , Humanos , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Neoplasias/genética , Peptídeos/genética , Peptídeos/farmacologia , Mutagênese , Simulação de Dinâmica Molecular
19.
Front Chem ; 11: 1173624, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37153521

RESUMO

The HRAS gene plays a crucial role in regulating essential cellular processes for life, and this gene's misregulation is linked to the development of various types of cancers. Nonsynonymous single nucleotide polymorphisms (nsSNPs) within the coding region of HRAS can cause detrimental mutations that disrupt wild-type protein function. In the current investigation, we have employed in-silico methodologies to anticipate the consequences of infrequent genetic variations on the functional properties of the HRAS protein. We have discovered a total of 50 nsSNPs, of which 23 were located in the exon region of the HRAS gene and denoting that they were expected to cause harm or be deleterious. Out of these 23, 10 nsSNPs ([G60V], [G60D], [R123P], [D38H], [I46T], [G115R], [R123G], [P11OL], [A59L], and [G13R]) were identified as having the most delterious effect based on results of SIFT analysis and PolyPhen2 scores ranging from 0.53 to 69. The DDG values -3.21 kcal/mol to 0.87 kcal/mol represent the free energy change associated with protein stability upon mutation. Interestingly, we identified that the three mutations (Y4C, T58I, and Y12E) were found to improve the structural stability of the protein. We performed molecular dynamics (MD) simulations to investigate the structural and dynamic effects of HRAS mutations. Our results showed that the stable model of HRAS had a significantly lower energy value of -18756 kj/mol compared to the initial model of -108915 kj/mol. The RMSD value for the wild-type complex was 4.40 Å, and the binding energies for the G60V, G60D, and D38H mutants were -107.09 kcal/mol, -109.42 kcal/mol, and -107.18 kcal/mol, respectively as compared to wild-type HRAS protein had -105.85 kcal/mol. The result of our investigation presents convincing corroboration for the potential functional significance of nsSNPs in augmenting HRAS expression and adding to the activation of malignant oncogenic signalling pathways.

20.
Life (Basel) ; 13(5)2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37240812

RESUMO

In Morocco, many applications in ethnomedicine on Ajuga iva (L.) have been recognized as able to treat various pathologies such as diabetes, stress, and microbial infections. The objective of this work is to carry out phytochemical, biological, and pharmacological investigations on the extracts of Ajuga iva leaves in order to confirm its therapeutic effects. The phytochemical screening carried out on the different extracts of Ajuga iva showed its richness in primary (lipids and proteins) and secondary metabolites (flavonoids, tannins, reducing compounds, oses, and holoside. The best contents of polyphenols, flavonoids, and tannins evaluated by spectrophotometric methods were found in the hydroethanolic extract (69.850 ± 2.783 mg EAG/g DE, 17.127 ± 0.474 mg EQ/g DE, 5.566 ± 0.000 mg EQC/g DE), respectively. Analysis of the chemical composition of the aqueous extract by LC/UV/MS revealed 32 polyphenolic compounds including ferulic acid (19.06%), quercetin (10.19%), coumaric acid (9.63%), and apigenin-7-(2-O-apiosylglucoside) (6.8%). The antioxidant activity of Ajuga iva extracts was evaluated by three methods (DPPH*, FRAP, CAT). The hydroethanolic extract recorded the strongest reducing power: DPPH* (IC50 = 59.92 ± 0.7 µg/mL), FRAP (EC50 = 196.85 ± 1.54 (µg/mL), and CAT (199.21 ± 0.37 mg EAG/gE). A strong correlation between phenolic compounds and antioxidant activities was confirmed by the determination of Pearson's coefficient. The antimicrobial activity of Ajuga iva studied by the microtiter method revealed potent antifungal and antibacterial qualities against Candida parapsilosis and Staphylococcus aureus BLACT. An in vivo oral glucose tolerance test (OGTT) using normal rats revealed that the antihyperglycemic action of the aqueous extract significantly reduced postprandial hyperglycaemia at (30 min, p < 0.01) and area under the curve (AUC glucose), p < 0.01. Similarly, the aqueous extract, tested on pancreatic α-amylase enzyme activity in vitro and in vivo significantly inhibited pancreatic α-amylase activity with IC50 = 1.52 ± 0.03 mg/mL. In conclusion, the extract from Ajuga iva could be a good source of bioactive molecules, which exhibit potent antioxidant and antimicrobial activity, as well as strong antidiabetic activity, for applications in the pharmaceutical industry.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA