Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biomed Res Int ; 2022: 7233997, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35528154

RESUMO

Objective: The present study was aimed at evaluating the antitumor effects of royal jelly (RJ) obtained from Apis mellifera compared with cyclophosphamide against the Ehrlich solid tumors (EST) in mice. Methods: Tumor growth inhibition, body weight, the serum level of alpha-fetoprotein (AFP) and carcinoembryonic antigen tumor (CAE), liver and kidney enzymes, tumor lipid peroxidation (LPO), nitric oxide (NO), antioxidant enzymes (glutathione peroxidase (GPx), catalase enzyme (CAT), and superoxide dismutase enzyme activity (SOD)), tumor necrosis factor alpha level (TNF-α), and the apoptosis-regulatory genes expression were assessed in EST mice treated with RJ (200 and 400 mg/kg orally once a day for 2 weeks). Results: The results showed that treatment of EST-suffering mice with RJ at the doses of 200 and 400 mg/kg causes significant reduction in tumor volume and inhibition rate, body weight, tumor markers (AFP and CEA), serum level of liver and kidney, LPO and NO, TNF-α level, as well as the expression level of Bcl-2 in comparison with the EST mice receiving the normal saline; whereas RJ at the doses of 200 and 400 mg/kg/day significantly increased (p < 0.05) the level of antioxidant enzymes of GPx, CAT, and SOD and the expression level of caspase-3 and Bax genes. Conclusion: The findings revealed that oral administration of royal jelly especially at the doses of 200 and 400 mg/kg exhibited promising antitumor effects against EST in mice through induction of apoptosis as well as its antioxidant and anti-inflammatory effects, which suggest it as a novel anticancer agent against tumor; however, additional surveys especially in clinical setting are necessary to approve these findings.


Assuntos
Antioxidantes , Neoplasias , Animais , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Abelhas , Peso Corporal , Ácidos Graxos , Camundongos , Neoplasias/tratamento farmacológico , Estresse Oxidativo , Superóxido Dismutase/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , alfa-Fetoproteínas/metabolismo
2.
Environ Sci Pollut Res Int ; 29(46): 69798-69817, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35576029

RESUMO

Ochratoxin A (OTA) is one of the most dangerous and that pollute agricultural products, inducing a variety of toxic effects in humans and animals. The current study explored the protective effect of different concentrations of Aspergillus awamori (A. awamori) against OTA (0.3 mg/kg diet) induced renal and cardiac damage by exploring its mechanism of action in 60 New Zealand white male rabbits. Dietary supplementation of A. awamori at the selected doses of 50, 100, and 150 mg/kg diet, respectively, for 2 months significantly improved the rabbit's growth performance; modulated the suppressed immune response and restored the altered hematological parameters; reduced the elevated levels of renal injury biomarkers such as urea, creatinine, and alkaline phosphatase; and increased serum total proteins concentrations. Moreover, it also declined enzymatic activities of cardiac injury biomarkers, including AST, LDH, and CK-MB. A. awamori alleviated OTA-induced degenerative and necrotic changes in the kidney and heart of rabbits. Interestingly, A. awamori upregulated Nrf2/OH-1 signaling pathway. Therefore enhanced TAC, CAT, and SOD enzyme activities and reduced OTA-induced oxidative and nitrosative stress by declining iNOS gene expression and consequently lowered MDA and NO levels. In addition to attenuating renal and cardiac inflammation via reducing IL-1ß, TNF-α gene expressions in a dose-dependent response. In conclusion,this is the first report to pinpoint that dietary incorporation of A. awamori counteracted OTA-induced renal and cardiac damage by potentiating the rabbit's antioxidant defense system through its potent antioxidant, free radical scavenging, and anti-inflammatory properties in a dose-dependent response. Based on our observations, A. awamori could be utilized as a natural protective agent against ochratoxicosis in rabbits.


Assuntos
Antioxidantes , Fator 2 Relacionado a NF-E2 , Animais , Masculino , Coelhos , Fosfatase Alcalina/metabolismo , Antioxidantes/metabolismo , Aspergillus , Biomarcadores/metabolismo , Creatinina/metabolismo , Radicais Livres/metabolismo , Expressão Gênica , Rim , Fator 2 Relacionado a NF-E2/metabolismo , Ocratoxinas , Estresse Oxidativo , Substâncias Protetoras/farmacologia , Transdução de Sinais , Superóxido Dismutase/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Ureia/metabolismo
3.
J Nutr Biochem ; 87: 108515, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33017608

RESUMO

This study investigated if the nephroprotective effect of Curcumin in streptozotocin-induced type 1 diabetes mellitus (DM) in rats involves downregulation/inhibition of p66Shc and examined the underlying mechanisms. Rats were divided into 4 groups (n = 12/group) as control, control + Curcumin (100 mg/kg), T1DM, and T1DM + Curcumin. Curcumin was administered orally to control or diabetic rats for 12 weeks daily. As compared to diabetic rats, Curcumin didn't affect either plasma glucose or insulin levels but significantly reduced serum levels of urea, blood urea nitrogen, and creatinine, and concurrently reduced albumin/protein urea and increased creatinine clearance. It also prevented the damage in renal tubules and mitochondria, mesangial cell expansion, the thickness of the basement membrane. Mechanistically, Curcumin reduced mRNA and protein levels of collagen I/III and transforming growth factor- ß-1 (TGF-ß1), reduced inflammatory cytokines levels, improved markers of mitochondrial function, and suppressed the release of cytochrome-c and the activation of caspase-3. In the kidneys of both control and diabetic rats, Curcumin reduced the levels of reactive oxygen species (ROS), increased mRNA levels of manganese superoxide dismutase (MnSOD) and gamma-glutamyl ligase, increased glutathione (GSH) and protein levels of Bcl-2 and MnSOD, and increased the nuclear levels of nuclear factor2 (Nrf2) and FOXO-3a. Besides, Curcumin reduced the nuclear activity of the nuclear factor-kappa B (NF-κB), downregulated protein kinase CßII (PKCßII), NADPH oxidase, and p66Shc, and decreased the activation of p66Shc. In conclusion, Curcumin prevents kidney damage in diabetic rats by activating Nrf2, inhibiting Nf-κB, suppressing NADPH oxidase, and downregulating/inhibiting PKCßII/p66Shc axis.


Assuntos
Antioxidantes/uso terapêutico , Curcumina/uso terapêutico , Diabetes Mellitus Experimental/complicações , Nefropatias Diabéticas/tratamento farmacológico , Inibidores Enzimáticos/uso terapêutico , Proteína Quinase C beta/antagonistas & inibidores , Animais , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Tipo 1/complicações , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/patologia , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/patologia , Proteína Forkhead Box O3/metabolismo , Masculino , Proteína Quinase C beta/metabolismo , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Proteína 1 de Transformação que Contém Domínio 2 de Homologia de Src/antagonistas & inibidores , Proteína 1 de Transformação que Contém Domínio 2 de Homologia de Src/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA