Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Mol Metab ; 83: 101930, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38570069

RESUMO

OBJECTIVE: Tumour progression drives profound alterations in host metabolism, such as adipose tissue depletion, an early event of cancer cachexia. As fatty acid consumption by cancer cells increases upon acidosis of the tumour microenvironment, we reasoned that fatty acids derived from distant adipose lipolysis may sustain tumour fatty acid craving, leading to the adipose tissue loss observed in cancer cachexia. METHODS: To evaluate the pro-lipolytic capacities of acid-exposed cancer cells, primary mouse adipocytes from subcutaneous and visceral adipose tissue were exposed to pH-matched conditioned medium from human and murine acid-exposed cancer cells (pH 6.5), compared to naive cancer cells (pH 7.4). To further address the role of tumoral acidosis on adipose tissue loss, a pH-low insertion peptide was injected into tumour-bearing mice, and tumoral acidosis was neutralised with a sodium bicarbonate buffer. Prolipolytic mediators were identified by transcriptomic approaches and validated on murine and human adipocytes. RESULTS: Here, we reveal that acid-exposed cancer cells promote lipolysis from subcutaneous and visceral adipocytes and that dampening acidosis in vivo inhibits adipose tissue depletion. We further found a set of well-known prolipolytic factors enhanced upon acidosis adaptation and unravelled a role for ß-glucuronidase (GUSB) as a promising new actor in adipocyte lipolysis. CONCLUSIONS: Tumoral acidosis promotes the mobilization of fatty acids derived from adipocytes via the release of soluble factors by cancer cells. Our work paves the way for therapeutic approaches aimed at tackling cachexia by targeting the tumour acidic compartment.


Assuntos
Acidose , Adipócitos , Tecido Adiposo , Caquexia , Lipólise , Animais , Camundongos , Acidose/metabolismo , Adipócitos/metabolismo , Humanos , Tecido Adiposo/metabolismo , Caquexia/metabolismo , Masculino , Microambiente Tumoral , Linhagem Celular Tumoral , Camundongos Endogâmicos C57BL , Ácidos Graxos/metabolismo , Neoplasias/metabolismo , Neoplasias/patologia , Feminino , Glucuronidase/metabolismo , Concentração de Íons de Hidrogênio
2.
Artigo em Inglês | MEDLINE | ID: mdl-38572511

RESUMO

BACKGROUND: Cancer cachexia is a life-threatening, inflammation-driven wasting syndrome that remains untreatable. Adiponectin, the most abundant adipokine, plays an important role in several metabolic processes as well as in inflammation modulation. Our aim was to test whether administration of AdipoRon (AR), a synthetic agonist of the adiponectin receptors, prevents the development of cancer cachexia and its related muscle atrophy. METHODS: The effect of AR on cancer cachexia was investigated in two distinct murine models of colorectal cancer. First, 7-week-old CD2F1 male mice were subcutaneously injected with colon-26 carcinoma cells (C26) or vehicle (CT). Six days after injection, mice were treated for 5 days with AdipoRon (50 mg/kg/day; C26 + AR) or the corresponding vehicle (CT and C26). Additionally, a genetic model, the ApcMin/+ mouse, that develops spontaneously numerous intestinal polyps, was used. Eight-week-old male ApcMin/+ mice were treated with AdipoRon (50 mg/kg/day; Apc + AR) or the corresponding vehicle (Apc) over a period of 12 weeks, with C57BL/6J wild-type mice used as controls. In both models, several parameters were assessed in vivo: body weight, grip strength and serum parameters, as well as ex vivo: molecular changes in muscle, fat and liver. RESULTS: The protective effect of AR on cachexia development was observed in both cachectic C26 and ApcMin/+ mice. In these mice, AR administration led to a significant alleviation of body weight loss and muscle wasting, together with rescued muscle strength (P < 0.05 for all). In both models, AR had a strong anti-inflammatory effect, reflected by lower systemic interleukin-6 levels (-55% vs. C26, P < 0.001 and -80% vs. Apc mice, P < 0.05), reduced muscular inflammation as indicated by lower levels of Socs3, phospho-STAT3 and Serpina3n, an acute phase reactant (P < 0.05 for all). In addition, AR blunted circulating levels of corticosterone (-46% vs. C26 mice, P < 0.001 and -60% vs. Apc mice, P < 0.05), the predominant murine glucocorticoid known to induce muscle atrophy. Accordingly, key glucocorticoid-responsive factors implicated in atrophy programmes were-or tended to be-significantly blunted in skeletal muscle by AR. Finally, AR protected against lipid metabolism alterations observed in ApcMin/+ mice, as it mitigated the increase in circulating triglyceride levels (-38%, P < 0.05) by attenuating hepatic triglyceride synthesis and fatty acid uptake by the liver. CONCLUSIONS: Altogether, these results show that AdipoRon rescued the cachectic phenotype by alleviating body weight loss and muscle atrophy, along with restraining inflammation and hypercorticism in preclinical murine models. Therefore, AdipoRon could represent an innovative therapeutic strategy to counteract cancer cachexia.

3.
Haematologica ; 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38546675

RESUMO

The gut microbiota makes critical contributions to host homeostasis, and its role in the treatment of acute myeloid leukaemia (AML) has attracted attention. We investigated whether the gut microbiome is affected by AML, and whether such changes are associated with cachectic hallmarks. Biological samples and clinical data were collected from 30 antibiotic-free AML patients at diagnosis and matched volunteers (1:1) in a multicenter cross-sectional prospective study. The composition and functional potential of the faecal microbiota were analyzed using shotgun metagenomics. Faecal, blood, and urine metabolomics analyses were performed. AML patients displayed muscle weakness, anorexia, signs of altered gut function, and glycaemic disorders. The composition of the faecal microbiota differed between patients with AML and control subjects, with an increase in oral bacteria. Alterations in bacterial functions and faecal metabolome support an altered redox status in the gut microbiota, which may contribute to the altered redox status observed in patients with AML. Eubacterium eligens, reduced 3-fold in AML patients, was strongly correlated with muscle strength and citrulline, a marker of enterocyte mass and function. Blautia and Parabacteroides, increased in patients with AML, were correlated with anorexia. Several bacterial taxa and metabolites (e.g. Blautia, Prevotella, phenylacetate, and hippurate) previously associated with glycaemic disorders were altered. Our work revealed important perturbations in the gut microbiome of AML patients at diagnosis, which are associated with muscle strength, altered redox status, and anorexia. These findings pave the way for future mechanistic work to explore the function and therapeutic potential of the bacteria identified in this study.

4.
Clin Nutr ; 43(1): 268-283, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38104489

RESUMO

BACKGROUND & AIMS: The European Society for Clinical Nutrition and Metabolism published its first clinical guidelines for use of micronutrients (MNs) in 2022. A two-day web symposium was organized in November 2022 discussing how to apply the guidelines in clinical practice. The present paper reports the main findings of this symposium. METHODS: Current evidence was discussed, the first day being devoted to clarifying the biology underlying the guidelines, especially regarding the definition of deficiency, the impact of inflammation, and the roles in antioxidant defences and immunity. The second day focused on clinical situations with high prevalence of MN depletion and deficiency. RESULTS: The importance of the determination of MN status in patients at risk and diagnosis of deficiencies is still insufficiently perceived, considering the essential role of MNs in immune and antioxidant defences. Epidemiological data show that deficiencies of several MNs (iron, iodine, vitamin D) are a global problem that affects human health and well-being including immune responses such as to vaccination. Clinical conditions frequently associated with MN deficiencies were discussed including cancer, obesity with impact of bariatric surgery, diseases of the gastrointestinal tract, critical illness, and aging. In all these conditions, MN deficiency is associated with worsening of outcomes. The recurrent problem of shortage of MN products, but also lack of individual MN-products is a worldwide problem. CONCLUSION: Despite important progress in epidemiology and clinical nutrition, numerous gaps in practice persist. MN depletion and deficiency are frequently insufficiently searched for in clinical conditions, leading to inadequate treatment. The symposium concluded that more research and continued education are required to improve patient outcome.


Assuntos
Deficiências de Ferro , Micronutrientes , Humanos , Antioxidantes , Vitaminas , Ferro
5.
Clin Nutr ; 42(11): 2214-2228, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37806074

RESUMO

BACKGROUND & AIMS: Acute myeloid leukaemia (AML) chemotherapy has been reported to impact gut microbiota composition. In this study, we investigated using a multi -omics strategy the changes in the gut microbiome induced by AML intense therapy and their association with gut barrier function and cachectic hallmarks. METHODS: 10 AML patients, allocated to standard induction chemotherapy (SIC), were recruited. Samples and data were collected before any therapeutic intervention (T0), at the end of the SIC (T1) and at discharge (T4). Gut microbiota composition and function, markers of inflammation, metabolism, gut barrier function and cachexia, as well as faecal, blood and urine metabolomes were assessed. RESULTS: AML patients demonstrated decreased appetite, weight loss and muscle wasting during hospitalization, with an incidence of cachexia of 50%. AML intensive treatment transiently impaired the gut barrier function and led to a long-lasting change of gut microbiota composition characterized by an important loss of diversity. Lactobacillaceae and Campylobacter concisus were increased at T1 while Enterococcus faecium and Staphylococcus were increased at T4. Metabolomics analyses revealed a reduction in urinary hippurate and faecal bacterial amino acid metabolites (bAAm) (2-methylbutyrate, isovalerate, phenylacetate). Integration using DIABLO revealed a deep interconnection between all the datasets. Importantly, we identified bacteria which disappearance was associated with impaired gut barrier function (Odoribacter splanchnicus) and body weight loss (Gemmiger formicilis), suggesting these bacteria as actionable targets. CONCLUSION: AML intensive therapy transiently impairs the gut barrier function while inducing enduring alterations in the composition and metabolic activity of the gut microbiota that associate with body weight loss. TRIAL REGISTRATION: NCT03881826, https://clinicaltrials.gov/ct2/show/NCT03881826.


Assuntos
Microbioma Gastrointestinal , Leucemia Mieloide Aguda , Humanos , Microbioma Gastrointestinal/fisiologia , Caquexia , Redução de Peso , Metabolômica , Leucemia Mieloide Aguda/tratamento farmacológico
6.
Cancer Lett ; 569: 216306, 2023 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-37442366

RESUMO

Bidirectional interactions between cancer cells and their microenvironment govern tumor progression. Among the stromal cells in this microenvironment, adipocytes have been reported to upregulate cancer cell migration and invasion by producing fatty acids. Conversely, cancer cells alter adipocyte phenotype notably via increased lipolysis. We aimed to identify the mechanisms through which cancer cells trigger adipocyte lipolysis and evaluate the functional consequences on cancer progression. Here, we show that cancer cell-induced acidification of the extracellular medium strongly promotes preadipocyte lipolysis through a mechanism that does not involve lipophagy but requires adipose triglyceride lipase (ATGL) activity. This increased lipolysis is triggered mainly by attenuation of the G0/G1 switch gene 2 (G0S2)-induced inhibition of ATGL. G0S2-mediated regulation in preadipocytes affects their communication with breast cancer cells, modifying the phenotype of the cancer cells and increasing their resistance to chemotherapeutic agents in vitro. Furthermore, we demonstrate that the adipocyte-specific overexpression of G0S2 impairs mammary tumor growth and lung metastasis formation in vivo. Our results highlight the importance of acidosis in cancer cell-adipocyte crosstalk and identify G0S2 as the main regulator of cancer-induced lipolysis, regulating tumor establishment and spreading.


Assuntos
Proteínas de Ciclo Celular , Neoplasias , Proteínas de Ciclo Celular/metabolismo , Lipase/genética , Lipase/metabolismo , Adipócitos/metabolismo , Lipólise , Fenômenos Fisiológicos Celulares
7.
J Cachexia Sarcopenia Muscle ; 14(3): 1569-1582, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37127348

RESUMO

BACKGROUND: The aryl hydrocarbon receptor (AHR) is expressed in the intestine and liver, where it has pleiotropic functions and target genes. This study aims to explore the potential implication of AHR in cancer cachexia, an inflammatory and metabolic syndrome contributing to cancer death. Specifically, we tested the hypothesis that targeting AHR can alleviate cachectic features, particularly through the gut-liver axis. METHODS: AHR pathways were explored in multiple tissues from four experimental mouse models of cancer cachexia (C26, BaF3, MC38 and APCMin/+ ) and from non-cachectic mice (sham-injected mice and non-cachexia-inducing [NC26] tumour-bearing mice), as well as in liver biopsies from cancer patients. Cachectic mice were treated with an AHR agonist (6-formylindolo(3,2-b)carbazole [FICZ]) or an antibody neutralizing interleukin-6 (IL-6). Key mechanisms were validated in vitro on HepG2 cells. RESULTS: AHR activation, reflected by the expression of Cyp1a1 and Cyp1a2, two major AHR target genes, was deeply reduced in all models (C26 and BaF3, P < 0.001; MC38 and APCMin/+ , P < 0.05) independently of anorexia. This reduction occurred early in the liver (P < 0.001; before the onset of cachexia), compared to the ileum and skeletal muscle (P < 0.01; pre-cachexia stage), and was intrinsically related to cachexia (C26 vs. NC26, P < 0.001). We demonstrate a differential modulation of AHR activation in the liver (through the IL-6/hypoxia-inducing factor 1α pathway) compared to the ileum (attributed to the decreased levels of indolic AHR ligands, P < 0.001), and the muscle. In cachectic mice, FICZ treatment reduced hepatic inflammation: expression of cytokines (Ccl2, P = 0.005; Cxcl2, P = 0.018; Il1b, P = 0.088) with similar trends at the protein levels, expression of genes involved in the acute-phase response (Apcs, P = 0.040; Saa1, P = 0.002; Saa2, P = 0.039; Alb, P = 0.003), macrophage activation (Cd68, P = 0.038) and extracellular matrix remodelling (Fga, P = 0.008; Pcolce, P = 0.025; Timp1, P = 0.003). We observed a decrease in blood glucose in cachectic mice (P < 0.0001), which was also improved by FICZ treatment (P = 0.026) through hepatic transcriptional promotion of a key marker of gluconeogenesis, namely, G6pc (C26 vs. C26 + FICZ, P = 0.029). Strikingly, these benefits on glycaemic disorders occurred independently of an amelioration of the gut barrier dysfunction. In cancer patients, the hepatic expression of G6pc was correlated to Cyp1a1 (Spearman's ρ = 0.52, P = 0.089) and Cyp1a2 (Spearman's ρ = 0.67, P = 0.020). CONCLUSIONS: With this set of studies, we demonstrate that impairment of AHR signalling contributes to hepatic inflammatory and metabolic disorders characterizing cancer cachexia, paving the way for innovative therapeutic strategies in this context.


Assuntos
Interleucina-6 , Neoplasias , Camundongos , Animais , Citocromo P-450 CYP1A2 , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1A1/metabolismo , Receptores de Hidrocarboneto Arílico/genética , Receptores de Hidrocarboneto Arílico/metabolismo , Neoplasias/metabolismo
8.
Curr Osteoporos Rep ; 20(6): 422-432, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36121571

RESUMO

PURPOSE OF REVIEW: This review aims to summarize the recent findings about the contribution of the gut microbiome to muscle pathophysiology and discuss molecular pathways that may be involved in such process. Related findings in the context of cancer cachexia are outlined. RECENT FINDINGS: Many bacterial metabolites have been reported to exert a beneficial or detrimental impact on muscle physiology. Most of the evidence concentrates on short-chain fatty acids (SCFAs), with an emerging role for bile acids, bacterial amino acid metabolites (bAAms), and bacterial polyphenol metabolites. Other molecular players worth considering include cytokines, hormones, lipopolysaccharides, and quorum sensing molecules. The current literature clearly establishes the ability for the gut microbiome to modulate muscle function and mass. The understanding of the mechanisms underlying this gut-muscle axis may lead to the delivery of novel therapeutic tools to tackle muscle wasting in cancer cachexia, chronic kidney disease, liver fibrosis, and age-related sarcopenia.


Assuntos
Microbioma Gastrointestinal , Fenômenos Fisiológicos Musculoesqueléticos , Humanos , Microbioma Gastrointestinal/fisiologia , Caquexia/metabolismo , Músculo Esquelético/metabolismo , Ácidos Graxos Voláteis/metabolismo
9.
Cells ; 11(7)2022 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-35406681

RESUMO

Activin A (ActA) is considered to play a major role in cancer-induced cachexia (CC). Indeed, circulating ActA levels are elevated and predict survival in patients with CC. However, the mechanisms by which ActA mediates CC development and in particular skeletal muscle (SM) atrophy in humans are not yet fully understood. In this work, we aimed to investigate the effects of ActA on human SM and in mouse models of CC. We used a model of human muscle cells in culture to explore how ActA acts towards human SM. In this model, recombinant ActA induced myotube atrophy associated with the decline of MyHC-ß/slow, the main myosin isoform in human muscle cells studied. Moreover, ActA inhibited the expression and activity of MEF2C, the transcription factor regulating MYH7, the gene which codes for MyHC-ß/slow. This decrease in MEF2C was involved in the decline of MyHC-ß/slow expression, since inhibition of MEF2C by a siRNA leads to the decrease in MyHC-ß/slow expression. The relevance of this ActA/MEF2C pathway in vivo was supported by the parallel decline of MEF2C expression and SM mass, which are both blunted by ActA inhibition, in animal models of CC. In this work, we showed that ActA is a potent negative regulator of SM mass by inhibiting MyHC-ß/slow synthesis through downregulation of MEF2C. This observation highlights a novel interaction between ActA signaling and MEF2C transcriptional activity which contributes to SM atrophy in CC models.


Assuntos
Ativinas , Fatores de Transcrição MEF2 , Atrofia Muscular , Doenças Musculares , Animais , Caquexia/metabolismo , Humanos , Fatores de Transcrição MEF2/genética , Fatores de Transcrição MEF2/metabolismo , Camundongos , Desenvolvimento Muscular/genética
10.
EMBO Rep ; 23(4): e53746, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35199910

RESUMO

Cachexia is a wasting syndrome characterized by devastating skeletal muscle atrophy that dramatically increases mortality in various diseases, most notably in cancer patients with a penetrance of up to 80%. Knowledge regarding the mechanism of cancer-induced cachexia remains very scarce, making cachexia an unmet medical need. In this study, we discovered strong alterations of iron metabolism in the skeletal muscle of both cancer patients and tumor-bearing mice, characterized by decreased iron availability in mitochondria. We found that modulation of iron levels directly influences myotube size in vitro and muscle mass in otherwise healthy mice. Furthermore, iron supplementation was sufficient to preserve both muscle function and mass, prolong survival in tumor-bearing mice, and even rescues strength in human subjects within an unexpectedly short time frame. Importantly, iron supplementation refuels mitochondrial oxidative metabolism and energy production. Overall, our findings provide new mechanistic insights in cancer-induced skeletal muscle wasting, and support targeting iron metabolism as a potential therapeutic option for muscle wasting diseases.


Assuntos
Caquexia , Neoplasias , Animais , Caquexia/etiologia , Caquexia/metabolismo , Suplementos Nutricionais , Humanos , Ferro/metabolismo , Camundongos , Músculo Esquelético/metabolismo , Neoplasias/complicações , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo
11.
JHEP Rep ; 4(1): 100387, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34825156

RESUMO

BACKGROUND & AIMS: Through FXR and TGR5 signaling, bile acids (BAs) modulate lipid and glucose metabolism, inflammation and fibrosis. Hence, BAs returning to the liver after enteric secretion, modification and reabsorption may contribute to the pathogenesis of non-alcoholic steatohepatitis (NASH). Herein, we characterized the enterohepatic profile and signaling of BAs in preclinical models of NASH, and explored the consequences of experimental manipulation of BA composition. METHODS: We used high-fat diet (HFD)-fed foz/foz and high-fructose western diet-fed C57BL/6J mice, and compared them to their respective controls. Mice received a diet supplemented with deoxycholic acid (DCA) to modulate BA composition. RESULTS: Compared to controls, mice with NASH had lower concentrations of BAs in their portal blood and bile, while systemic BA concentrations were not significantly altered. Notably, the concentrations of secondary BAs, and especially of DCA, and the ratio of secondary to primary BAs were strikingly lower in bile and portal blood of mice with NASH. Hence, portal blood was poor in FXR and TGR5 ligands, and conferred poor anti-inflammatory protection in mice with NASH. Enhanced primary BAs synthesis and conversion of secondary to primary BAs in NASH livers contributed to the depletion in secondary BAs. Dietary DCA supplementation in HFD-fed foz/foz mice restored the BA concentrations in portal blood, increased TGR5 and FXR signaling, improved the dysmetabolic status, protected from steatosis and hepatocellular ballooning, and reduced macrophage infiltration. CONCLUSIONS: BA composition in the enterohepatic cycle, but not in systemic circulation, is profoundly altered in preclinical models of NASH, with specific depletion in secondary BAs. Dietary correction of the BA profile protected from NASH, supporting a role for enterohepatic BAs in the pathogenesis of NASH. LAY SUMMARY: This study clearly demonstrates that the alterations of enterohepatic bile acids significantly contribute to the development of non-alcoholic steatohepatitis in relevant preclinical models. Indeed, experimental modulation of bile acid composition restored perturbed FXR and TGR5 signaling and prevented non-alcoholic steatohepatitis and associated metabolic disorders.

12.
Cancers (Basel) ; 13(24)2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34945009

RESUMO

Bile acids exert diverse actions on host metabolism and immunity through bile acid-activated receptors, including Takeda G protein-coupled receptor 5 (TGR5). We have recently evidenced an alteration in bile acids in cancer cachexia, an inflammatory and metabolic syndrome contributing to cancer death. This current study aims to further explore the links emerging between bile acids and cancer cachexia. First, we showed that bile flow is reduced in cachectic mice. Next, comparing mice inoculated with cachexia-inducing and with non-cachexia-inducing C26 colon carcinoma cells, we demonstrated that alterations in the bile acid pathways and profile are directly associated with cachexia. Finally, we performed an interventional study using ursodeoxycholic acid (UDCA), a compound commonly used in hepatobiliary disorders, to induce bile acid secretion and decrease inflammation. We found that UDCA does not improve hepatic inflammation and worsens muscle atrophy in cachectic mice. This exacerbation of the cachectic phenotype upon UDCA was accompanied by a decreased TGR5 activity, suggesting that TGR5 agonists, known to reduce inflammation in several pathological conditions, could potentially counteract cachectic features. This work brings to light major evidence sustaining the emerging links between bile acids and cancer cachexia and reinforces the interest in studying bile acid-activated receptors in this context.

13.
J Cachexia Sarcopenia Muscle ; 12(2): 456-475, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33599103

RESUMO

BACKGROUND: Cancer cachexia is a multifactorial syndrome characterized by multiple metabolic dysfunctions. Besides the muscle, other organs such as the liver and the gut microbiota may also contribute to this syndrome. Indeed, the gut microbiota, an important regulator of the host metabolism, is altered in the C26 preclinical model of cancer cachexia. Interventions targeting the gut microbiota have shown benefits, but mechanisms underlying the host-microbiota crosstalk in this context are still poorly understood. METHODS: To explore this crosstalk, we combined proton nuclear magnetic resonance (1 H-NMR) metabolomics in multiple compartments with 16S rDNA sequencing. These analyses were complemented by molecular and biochemical analyses, as well as hepatic transcriptomics. RESULTS: 1 H-NMR revealed major changes between control (CT) and cachectic (C26) mice in the four analysed compartments (i.e. caecal content, portal vein, liver, and vena cava). More specifically, glucose metabolism pathways in the C26 model were altered with a reduction in glycolysis and gluconeogenesis and an activation of the hexosamine pathway, arguing against the existence of a Cori cycle in this model. In parallel, amino acid uptake by the liver, with an up to four-fold accumulation of nine amino acids (q-value <0.05), was mainly used for acute phase response proteins synthesis rather than to fuel the tricarboxylic acid cycle and gluconeogenesis. We also identified a 35% reduction in hepatic carnitine levels (q-value <0.05) and a lower activation of the phosphatidylcholine pathway as potential contributors to the hepatic steatosis present in this model. Our work also reveals a reduction of different beneficial intestinal bacterial activities in cancer cachexia. We found decreased levels of two short-chain fatty acids, acetate and butyrate (72% and 88% reduction in C26 caecal content; q-value <0.001), and a reduction in aromatic amino acid metabolites, which may contribute to the altered intestinal homeostasis in these mice. A member of the Ruminococcaceae family (ASV 2) was identified as the main bacterium responsible for the drop in butyrate. Finally, we report a two-fold intestinal transit acceleration (P-value <0.001) as a key factor shaping the gut microbiota composition and activity in cancer cachexia, which together lead to a faecal loss of proteins and amino acids. CONCLUSIONS: Our work highlights new metabolic pathways potentially involved in cancer cachexia and further supports the interest of exploring the gut microbiota composition and activity, as well as intestinal transit, in cancer patients with and without cachexia.


Assuntos
Caquexia , Enteropatias , Hepatopatias , Neoplasias , Animais , Caquexia/etiologia , Humanos , Enteropatias/etiologia , Fígado , Hepatopatias/etiologia , Metabolômica , Metagenômica , Camundongos , Neoplasias/complicações
14.
J Cachexia Sarcopenia Muscle ; 12(1): 70-90, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33350058

RESUMO

BACKGROUND: Cancer cachexia is a debilitating metabolic syndrome contributing to cancer death. Organs other than the muscle may contribute to the pathogenesis of cancer cachexia. This work explores new mechanisms underlying hepatic alterations in cancer cachexia. METHODS: We used transcriptomics to reveal the hepatic gene expression profile in the colon carcinoma 26 cachectic mouse model. We performed bile acid, tissue mRNA, histological, biochemical, and western blot analyses. Two interventional studies were performed using a neutralizing interleukin 6 antibody and a bile acid sequestrant, cholestyramine. Our findings were evaluated in a cohort of 94 colorectal cancer patients with or without cachexia (43/51). RESULTS: In colon carcinoma 26 cachectic mice, we discovered alterations in five inflammatory pathways as well as in other pathways, including bile acid metabolism, fatty acid metabolism, and xenobiotic metabolism (normalized enrichment scores of -1.97, -2.16, and -1.34, respectively; all Padj < 0.05). The hepatobiliary transport system was deeply impaired in cachectic mice, leading to increased systemic and hepatic bile acid levels (+1512 ± 511.6 pmol/mg, P = 0.01) and increased hepatic inflammatory cytokines and neutrophil recruitment to the liver of cachectic mice (+43.36 ± 16.01 neutrophils per square millimetre, P = 0.001). Adaptive mechanisms were set up to counteract this bile acid accumulation by repressing bile acid synthesis and by enhancing alternative routes of basolateral bile acid efflux. Targeting bile acids using cholestyramine reduced hepatic inflammation, without affecting the hepatobiliary transporters (e.g. tumour necrosis factor α signalling via NFκB and inflammatory response pathways, normalized enrichment scores of -1.44 and -1.36, all Padj < 0.05). Reducing interleukin 6 levels counteracted the change in expression of genes involved in the hepatobiliary transport, bile acid synthesis, and inflammation. Serum bile acid levels were increased in cachectic vs. non-cachectic cancer patients (e.g. total bile acids, +5.409 ± 1.834 µM, P = 0.026) and were strongly correlated to systemic inflammation (taurochenodeoxycholic acid and C-reactive protein: ρ = 0.36, Padj = 0.017). CONCLUSIONS: We show alterations in bile acid metabolism and hepatobiliary secretion in cancer cachexia. In this context, we demonstrate the contribution of systemic inflammation to the impairment of the hepatobiliary transport system and the role played by bile acids in the hepatic inflammation. This work paves the way to a better understanding of the role of the liver in cancer cachexia.


Assuntos
Caquexia , Colestase , Inflamação , Neoplasias , Animais , Caquexia/etiologia , Colestase/etiologia , Citocinas , Humanos , Inflamação/complicações , Camundongos , Neoplasias/complicações
15.
Cancers (Basel) ; 12(11)2020 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-33142864

RESUMO

Loss of skeletal muscle mass in cancer cachexia is recognized as a predictor of mortality. This study aimed to characterize the changes in the muscle secretome associated with cancer cachexia to gain a better understanding of the mechanisms involved and to identify secreted proteins which may reflect this wasting process. The changes in the muscle proteome of the C26 model were investigated by label-free proteomic analysis followed by a bioinformatic analysis in order to identify potentially secreted proteins. Multiple reaction monitoring and Western blotting were used to verify the presence of candidate proteins in the circulation. Our results revealed a marked increased muscular production of several acute phase reactants (APR: Haptoglobin, Serine protease inhibitor A3N, Complement C3, Serum amyloid A-1 protein) which are released in the circulation during C26 cancer cachexia. This was confirmed in other models of cancer cachexia as well as in cancer patients. Glucocorticoids and proinflammatory cytokines are responsible for an increased production of APR by muscle cells. Finally, their muscular expressions are strongly positively correlated with body weight loss as well as the muscular induction of atrogens. Our study demonstrates therefore a marked increased production of APR by the muscle in cancer cachexia.

16.
Int J Mol Sci ; 21(22)2020 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-33202621

RESUMO

Cachexia is a complication of dismal prognosis, which often represents the last step of several chronic diseases. For this reason, the comprehension of the molecular drivers of such a condition is crucial for the development of management approaches. Importantly, cachexia is a syndrome affecting various organs, which often results in systemic complications. To date, the majority of the research on cachexia has been focused on skeletal muscle, muscle atrophy being a pivotal cause of weight loss and the major feature associated with the steep reduction in quality of life. Nevertheless, defining the impact of cachexia on other organs is essential to properly comprehend the complexity of such a condition and potentially develop novel therapeutic approaches.


Assuntos
Caquexia , Músculo Esquelético , Atrofia Muscular , Qualidade de Vida , Caquexia/metabolismo , Caquexia/patologia , Caquexia/terapia , Humanos , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Atrofia Muscular/metabolismo , Atrofia Muscular/patologia , Atrofia Muscular/terapia
17.
Mol Nutr Food Res ; 64(17): e2000162, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32656952

RESUMO

SCOPE: Previous studies have suggested that diets rich in omega-3 and low in omega-6 long-chain polyunsaturated fatty acids (PUFAs) can limit the development of metabolic syndrome (MetS). Transgenic soybeans yielding oils enriched for omega-3 PUFAs represent a new and readily-available option for incorporating omega-3 PUFAs into diets to provide health benefits. METHODS AND RESULTS: Transgenic soybean oils, enriched for either stearidonic acid (SDA) or eicosapentaenoic acid (EPA), are incorporated into diets to test their effects on limiting the development of MetS in a mouse model of diet-induced obesity. Supplementation with SDA- but not EPA-enriched oils improved features of MetS compared to feeding a control wild-type oil. Because previous studies have linked the gut microorganism Akkermansia muciniphila to the metabolic effects of feeding omega-3 PUFAs, the causal contribution of A. muciniphila to mediating the metabolic benefits provided by SDA-enriched diets is investigated. Although A. muciniphila is not required for SDA-induced metabolic improvements, this microorganism does modulate levels of saturated and mono-unsaturated fatty acids in host adipose tissues. CONCLUSION: Together, these findings support the utilization of SDA-enriched diets to modulate weight gain, glucose metabolism, and fatty acid profiles of liver and adipose tissue.


Assuntos
Ácidos Graxos Ômega-3/farmacologia , Glucose/metabolismo , Obesidade/dietoterapia , Óleo de Soja/farmacologia , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/metabolismo , Akkermansia/efeitos dos fármacos , Akkermansia/fisiologia , Animais , Dieta Hiperlipídica/efeitos adversos , Suplementos Nutricionais , Ácido Eicosapentaenoico/farmacologia , Ácidos Graxos Insaturados/farmacocinética , Alimentos Fortificados , Microbioma Gastrointestinal/efeitos dos fármacos , Microbioma Gastrointestinal/fisiologia , Masculino , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , Obesidade/microbiologia , Plantas Geneticamente Modificadas , Óleo de Soja/química , Óleo de Soja/genética , Aumento de Peso/efeitos dos fármacos
18.
Gastroenterology ; 158(6): 1597-1610.e7, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31987796

RESUMO

BACKGROUND & AIMS: Dysbiosis of the intestinal microbiota has been associated with nonalcoholic fatty liver disease (NAFLD). We investigated whether administration of a synbiotic combination of probiotic and prebiotic agents affected liver fat content, biomarkers of liver fibrosis, and the composition of the fecal microbiome in patients with NAFLD. METHODS: We performed a double-blind phase 2 trial of 104 patients with NAFLD in the United Kingdom. Participants (mean age, 50.8 ± 12.6 years; 65% men; 37% with diabetes) were randomly assigned to groups given the synbiotic agents (fructo-oligosaccharides, 4 g twice per day, plus Bifidobacterium animalis subspecies lactis BB-12; n = 55) or placebo (n = 49) for 10-14 months. Liver fat content was measured at the start and end of the study by magnetic resonance spectroscopy, and liver fibrosis was determined from a validated biomarker scoring system and vibration-controlled transient elastography. Fecal samples were collected at the start and end of the study, the fecal microbiome were analyzed by 16S ribosomal DNA sequencing. RESULTS: Mean baseline and end-of-study magnetic resonance spectroscopy liver fat percentage values were 32.3% ± 24.8% and 28.5% ± 20.1% in the synbiotic group and 31.3% ± 22% and 25.2% ± 17.2% in the placebo group. In the unadjusted intention-to-treat analysis, we found no significant difference in liver fat reduction between groups (ß = 2.8; 95% confidence interval, -2.2 to 7.8; P = .30). In a fully adjusted regression model (adjusted for baseline measurement of the outcome plus age, sex, weight difference, and baseline weight), only weight loss was associated with a significant decrease in liver fat (ß = 2; 95% confidence interval, 1.5-2.6; P = .03). Fecal samples from patients who received the synbiotic had higher proportions of Bifidobacterium and Faecalibacterium species, and reductions in Oscillibacter and Alistipes species, compared with baseline; these changes were not observed in the placebo group. Changes in the composition of fecal microbiota were not associated with liver fat or markers of fibrosis. CONCLUSIONS: In a randomized trial of patients with NAFLD, 1 year of administration of a synbiotic combination (probiotic and prebiotic) altered the fecal microbiome but did not reduce liver fat content or markers of liver fibrosis. (ClinicalTrials.gov, Number: NCT01680640).


Assuntos
Disbiose/dietoterapia , Microbioma Gastrointestinal/efeitos dos fármacos , Fígado/efeitos dos fármacos , Hepatopatia Gordurosa não Alcoólica/dietoterapia , Simbióticos/administração & dosagem , Adulto , Bifidobacterium animalis , Biomarcadores/análise , Biópsia , Método Duplo-Cego , Disbiose/complicações , Técnicas de Imagem por Elasticidade , Fezes/microbiologia , Feminino , Humanos , Lipídeos/análise , Fígado/química , Fígado/diagnóstico por imagem , Fígado/patologia , Cirrose Hepática/prevenção & controle , Espectroscopia de Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Hepatopatia Gordurosa não Alcoólica/microbiologia , Hepatopatia Gordurosa não Alcoólica/patologia , Oligossacarídeos/administração & dosagem , Estudo de Prova de Conceito , Reino Unido
19.
Sci Rep ; 10(1): 174, 2020 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-31932631

RESUMO

The gut microbiota participates in the control of energy homeostasis partly through fermentation of dietary fibers hence producing short-chain fatty acids (SCFAs), which in turn promote the secretion of the incretin Glucagon-Like Peptide-1 (GLP-1) by binding to the SCFA receptors FFAR2 and FFAR3 on enteroendocrine L-cells. We have previously shown that activation of the nuclear Farnesoid X Receptor (FXR) decreases the L-cell response to glucose. Here, we investigated whether FXR also regulates the SCFA-induced GLP-1 secretion. GLP-1 secretion in response to SCFAs was evaluated ex vivo in murine colonic biopsies and in colonoids of wild-type (WT) and FXR knock-out (KO) mice, in vitro in GLUTag and NCI-H716 L-cells activated with the synthetic FXR agonist GW4064 and in vivo in WT and FXR KO mice after prebiotic supplementation. SCFA-induced GLP-1 secretion was blunted in colonic biopsies from GW4064-treated mice and enhanced in FXR KO colonoids. In vitro FXR activation inhibited GLP-1 secretion in response to SCFAs and FFAR2 synthetic ligands, mainly by decreasing FFAR2 expression and downstream Gαq-signaling. FXR KO mice displayed elevated colonic FFAR2 mRNA levels and increased plasma GLP-1 levels upon local supply of SCFAs with prebiotic supplementation. Our results demonstrate that FXR activation decreases L-cell GLP-1 secretion in response to inulin-derived SCFA by reducing FFAR2 expression and signaling. Inactivation of intestinal FXR using bile acid sequestrants or synthetic antagonists in combination with prebiotic supplementation may be a promising therapeutic approach to boost the incretin axis in type 2 diabetes.


Assuntos
Colo/metabolismo , Ácidos Graxos Voláteis/farmacologia , Peptídeo 1 Semelhante ao Glucagon/antagonistas & inibidores , Microbiota , Receptores Citoplasmáticos e Nucleares/fisiologia , Animais , Colo/efeitos dos fármacos , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo
20.
Artigo em Inglês | MEDLINE | ID: mdl-31572686

RESUMO

Cachexia occurs in many chronic diseases and is associated with increased morbidity and mortality. It is treated by nutritional support but often with limited effectiveness, leading to the search of other therapeutic strategies. The modulation of gut microbiota, whether through pro-, pre-, syn- or antibiotics or fecal transplantation, is attracting ever-growing interest in the field of obesity, but could also be an interesting and innovative alternative for treating cachexia. This article reviews the evidence linking the features of malnutrition, as defined by the Global Leadership Initiative on Malnutrition [low body mass index (BMI), unintentional body weight loss, low muscle mass, low appetite, and systemic inflammation] and the gut microbiota in human adults with cachexia-associated diseases, and shows the limitations of the present research in that field with suggestions for future directions.


Assuntos
Caquexia/terapia , Microbioma Gastrointestinal/fisiologia , Trato Gastrointestinal/microbiologia , Adulto , Índice de Massa Corporal , Transplante de Microbiota Fecal/métodos , Humanos , Inflamação , Desnutrição , Metagenoma , Obesidade/terapia , Probióticos/uso terapêutico , Redução de Peso
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA