Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Neuron ; 112(9): 1426-1443.e11, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38442714

RESUMO

Glucocorticoids are important for proper organ maturation, and their levels are tightly regulated during development. Here, we use human cerebral organoids and mice to study the cell-type-specific effects of glucocorticoids on neurogenesis. We show that glucocorticoids increase a specific type of basal progenitors (co-expressing PAX6 and EOMES) that has been shown to contribute to cortical expansion in gyrified species. This effect is mediated via the transcription factor ZBTB16 and leads to increased production of neurons. A phenome-wide Mendelian randomization analysis of an enhancer variant that moderates glucocorticoid-induced ZBTB16 levels reveals causal relationships with higher educational attainment and altered brain structure. The relationship with postnatal cognition is also supported by data from a prospective pregnancy cohort study. This work provides a cellular and molecular pathway for the effects of glucocorticoids on human neurogenesis that relates to lasting postnatal phenotypes.


Assuntos
Córtex Cerebral , Glucocorticoides , Neurogênese , Proteína com Dedos de Zinco da Leucemia Promielocítica , Neurogênese/efeitos dos fármacos , Neurogênese/fisiologia , Humanos , Animais , Camundongos , Glucocorticoides/farmacologia , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Córtex Cerebral/citologia , Feminino , Proteína com Dedos de Zinco da Leucemia Promielocítica/metabolismo , Gravidez , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Organoides/efeitos dos fármacos , Organoides/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/metabolismo , Masculino
2.
Nat Commun ; 12(1): 6298, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34728600

RESUMO

Basal progenitors (BPs), including intermediate progenitors and basal radial glia, are generated from apical radial glia and are enriched in gyrencephalic species like humans, contributing to neuronal expansion. Shortly after generation, BPs delaminate towards the subventricular zone, where they further proliferate before differentiation. Gene expression alterations involved in BP delamination and function in humans are poorly understood. Here, we study the role of LGALS3BP, so far known as a cancer biomarker, which is a secreted protein enriched in human neural progenitors (NPCs). We show that individuals with LGALS3BP de novo variants exhibit altered local gyrification, sulcal depth, surface area and thickness in their cortex. Additionally, using cerebral organoids, human fetal tissues and mice, we show that LGALS3BP regulates the position of NPCs. Single-cell RNA-sequencing and proteomics reveal that LGALS3BP-mediated mechanisms involve the extracellular matrix in NPCs' anchoring and migration within the human brain. We propose that its temporal expression influences NPCs' delamination, corticogenesis and gyrification extrinsically.


Assuntos
Antígenos de Neoplasias/metabolismo , Biomarcadores Tumorais/metabolismo , Córtex Cerebral/citologia , Vesículas Extracelulares/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Neocórtex/citologia , Células-Tronco Neurais/citologia , Neuroglia/metabolismo , Animais , Diferenciação Celular , Córtex Cerebral/metabolismo , Feminino , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Ventrículos Laterais/citologia , Ventrículos Laterais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais , Neocórtex/metabolismo , Células-Tronco Neurais/metabolismo
3.
Neurobiol Stress ; 15: 100336, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34095363

RESUMO

Childhood maltreatment (CM) is an established major risk factor for a number of negative health outcomes later in life. While epigenetic mechanisms, such as DNA methylation (DNAm), have been proposed as a means of embedding this environmental risk factor, little is known about its timing and trajectory, especially in very young children. It is also not clear whether additional environmental adversities, often experienced by these children, converge on similar DNAm changes. Here, we calculated a cumulative adversity score, which additionally to CM includes socioeconomic status (SES), other life events, parental psychopathology and epigenetic biomarkers of prenatal smoking and alcohol consumption. We investigated the effects of CM alone as well as the adversity score on longitudinal DNAm trajectories in the Berlin Longitudinal Child Study. This is a cohort of 173 children aged 3-5 years at baseline of whom 86 were exposed to CM. These children were followed-up for 2 years with extensive psychometric and biological assessments as well as saliva collection at 5 time points providing genome-wide DNAm levels. Overall, only a few DNAm patterns were stable over this timeframe, but less than 10 DNAm regions showed significant changes. At baseline, neither CM nor the adversity score associated with DNAm changes. However, in 6 differentially methylated regions (DMRs), CM and the adversity score significantly moderated DNAm trajectories over time. A number of these DMRs have previously been associated with adverse prenatal exposures. In our study, children exposed to CM also presented with epigenetic signatures indicative of increased prenatal exposure to tobacco and alcohol, as compared to non-CM exposed children. These epigenetic signatures of prenatal exposure strongly correlate with DNAm regions associated with CM and the adversity score. Finally, weighted correlation network analysis revealed a module of CpGs exclusively associated with CM. While our study identifies DNAm loci specifically associated with CM, especially within long non-coding RNAs, the majority of associations were found with the adversity score with convergent association with indicators of adverse prenatal exposures. This study highlights the importance of mapping not only of the epigenome but also the exposome and extending the observational timeframe to well before birth.

4.
Clin Epigenetics ; 13(1): 97, 2021 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-33926514

RESUMO

BACKGROUND: Epigenetic clocks have been used to indicate differences in biological states between individuals of same chronological age. However, so far, only few studies have examined epigenetic aging in newborns-especially regarding different gestational or perinatal tissues. In this study, we investigated which birth- and pregnancy-related variables are most important in predicting gestational epigenetic age acceleration or deceleration (i.e., the deviation between gestational epigenetic age estimated from the DNA methylome and chronological gestational age) in chorionic villus, placenta and cord blood tissues from two independent study cohorts (ITU, n = 639 and PREDO, n = 966). We further characterized the correspondence of epigenetic age deviations between these tissues. RESULTS: Among the most predictive factors of epigenetic age deviations in single tissues were child sex, birth length, maternal smoking during pregnancy, maternal mental disorders until childbirth, delivery mode and parity. However, the specific factors related to epigenetic age deviation and the direction of association differed across tissues. In individuals with samples available from more than one tissue, relative epigenetic age deviations were not correlated across tissues. CONCLUSION: Gestational epigenetic age acceleration or deceleration was not related to more favorable or unfavorable factors in one direction in the investigated tissues, and the relative epigenetic age differed between tissues of the same person. This indicates that epigenetic age deviations associate with distinct, tissue specific, factors during the gestational and perinatal period. Our findings suggest that the epigenetic age of the newborn should be seen as a characteristic of a specific tissue, and less as a general characteristic of the child itself.


Assuntos
Envelhecimento/genética , Metilação de DNA/genética , Epigenômica/métodos , Sangue Fetal/metabolismo , Idade Gestacional , Placenta/metabolismo , Adulto , Estudos de Coortes , Epigênese Genética/genética , Feminino , Finlândia , Humanos , Recém-Nascido , Gravidez
5.
Brain Behav Immun ; 95: 256-268, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33794315

RESUMO

BACKGROUND: About every fourth patient with major depressive disorder (MDD) shows evidence of systemic inflammation. Previous studies have shown inflammation-depression associations of multiple serum inflammatory markers and multiple specific depressive symptoms. It remains unclear, however, if these associations extend to genetic/lifetime predisposition to higher inflammatory marker levels and what role metabolic factors such as Body Mass Index (BMI) play. It is also unclear whether inflammation-symptom associations reflect direct or indirect associations, which can be disentangled using network analysis. METHODS: This study examined associations of polygenic risk scores (PRSs) for immuno-metabolic markers (C-reactive protein [CRP], interleukin [IL]-6, IL-10, tumour necrosis factor [TNF]-α, BMI) with seven depressive symptoms in one general population sample, the UK Biobank study (n = 110,010), and two patient samples, the Munich Antidepressant Response Signature (MARS, n = 1058) and Sequenced Treatment Alternatives to Relieve Depression (STAR*D, n = 1143) studies. Network analysis was applied jointly for these samples using fused graphical least absolute shrinkage and selection operator (FGL) estimation as primary analysis and, individually, using unregularized model search estimation. Stability of results was assessed using bootstrapping and three consistency criteria were defined to appraise robustness and replicability of results across estimation methods, network bootstrapping, and samples. RESULTS: Network analysis results displayed to-be-expected PRS-PRS and symptom-symptom associations (termed edges), respectively, that were mostly positive. Using FGL estimation, results further suggested 28, 29, and six PRS-symptom edges in MARS, STAR*D, and UK Biobank samples, respectively. Unregularized model search estimation suggested three PRS-symptom edges in the UK Biobank sample. Applying our consistency criteria to these associations indicated that only the association of higher CRP PRS with greater changes in appetite fulfilled all three criteria. Four additional associations fulfilled at least two consistency criteria; specifically, higher CRP PRS was associated with greater fatigue and reduced anhedonia, higher TNF-α PRS was associated with greater fatigue, and higher BMI PRS with greater changes in appetite and anhedonia. Associations of the BMI PRS with anhedonia, however, showed an inconsistent valence across estimation methods. CONCLUSIONS: Genetic predisposition to higher systemic inflammatory markers are primarily associated with somatic/neurovegetative symptoms of depression such as changes in appetite and fatigue, consistent with previous studies based on circulating levels of inflammatory markers. We extend these findings by providing evidence that associations are direct (using network analysis) and extend to genetic predisposition to immuno-metabolic markers (using PRSs). Our findings can inform selection of patients with inflammation-related symptoms into clinical trials of immune-modulating drugs for MDD.


Assuntos
Depressão , Transtorno Depressivo Maior , Antidepressivos/uso terapêutico , Proteína C-Reativa/análise , Depressão/genética , Transtorno Depressivo Maior/tratamento farmacológico , Transtorno Depressivo Maior/genética , Humanos , Inflamação/tratamento farmacológico , Inflamação/genética , Herança Multifatorial
6.
Mol Psychiatry ; 26(6): 2148-2162, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33420481

RESUMO

DNA methylation profiles of aggressive behavior may capture lifetime cumulative effects of genetic, stochastic, and environmental influences associated with aggression. Here, we report the first large meta-analysis of epigenome-wide association studies (EWAS) of aggressive behavior (N = 15,324 participants). In peripheral blood samples of 14,434 participants from 18 cohorts with mean ages ranging from 7 to 68 years, 13 methylation sites were significantly associated with aggression (alpha = 1.2 × 10-7; Bonferroni correction). In cord blood samples of 2425 children from five cohorts with aggression assessed at mean ages ranging from 4 to 7 years, 83% of these sites showed the same direction of association with childhood aggression (r = 0.74, p = 0.006) but no epigenome-wide significant sites were found. Top-sites (48 at a false discovery rate of 5% in the peripheral blood meta-analysis or in a combined meta-analysis of peripheral blood and cord blood) have been associated with chemical exposures, smoking, cognition, metabolic traits, and genetic variation (mQTLs). Three genes whose expression levels were associated with top-sites were previously linked to schizophrenia and general risk tolerance. At six CpGs, DNA methylation variation in blood mirrors variation in the brain. On average 44% (range = 3-82%) of the aggression-methylation association was explained by current and former smoking and BMI. These findings point at loci that are sensitive to chemical exposures with potential implications for neuronal functions. We hope these results to be a starting point for studies leading to applications as peripheral biomarkers and to reveal causal relationships with aggression and related traits.


Assuntos
Metilação de DNA , Epigenoma , Adolescente , Adulto , Idoso , Agressão , Criança , Pré-Escolar , Ilhas de CpG/genética , Metilação de DNA/genética , Epigênese Genética/genética , Estudo de Associação Genômica Ampla , Humanos , Longevidade , Pessoa de Meia-Idade , Adulto Jovem
7.
BMJ Open ; 11(12): e052922, 2021 12 30.
Artigo em Inglês | MEDLINE | ID: mdl-35763351

RESUMO

INTRODUCTION: Postpartum depression affects 10%-15% of women and has a recurrence rate of 40% in subsequent pregnancies. Women who develop postpartum depression are suspected to be more sensitive to the rapid and large fluctuations in sex steroid hormones, particularly estradiol, during pregnancy and postpartum. This trial aims to evaluate the preventive effect of 3 weeks transdermal estradiol treatment immediately postpartum on depressive episodes in women at high risk for developing postpartum depression. METHODS AND ANALYSIS: The Maternal Mental Health Trial is a double-blind, randomised and placebo-controlled clinical trial. The trial involves three departments of obstetrics organised under Copenhagen University Hospital in Denmark. Women who are singleton pregnant with a history of perinatal depression are eligible to participate. Participants will be randomised to receive either transdermal estradiol patches (200 µg/day) or placebo patches for 3 weeks immediately postpartum. The primary outcome is clinical depression, according to the Diagnostic and Statistical Manual of Mental Disorders-V criteria of Major Depressive Disorder with onset at any time between 0 and 6 months postpartum. Secondary outcomes include, but are not limited to, symptoms of depression postpartum, exclusive breastfeeding, cortisol dynamics, maternal distress sensitivity and cognitive function. The primary statistical analysis will be performed based on the intention-to-treat principle. With the inclusion of 220 participants and a 20% expected dropout rate, we anticipate 80% power to detect a 50% reduction in postpartum depressive episodes while controlling the type 1 error at 5%. ETHICS AND DISSEMINATION: The study protocol is approved by the Regional Committees on Health Research Ethics in the Capital Region of Denmark, the Danish Medicines Agency and the Centre for Data Protection Compliance in the Capital Region of Denmark. We will present results at scientific meetings and in peer-reviewed journals and in other formats to engage policymakers and the public. TRIAL REGISTRATION NUMBER: NCT04685148.


Assuntos
Depressão Pós-Parto , Estrogênios , Depressão Pós-Parto/prevenção & controle , Método Duplo-Cego , Estradiol , Estrogênios/uso terapêutico , Feminino , Humanos , Gravidez , Ensaios Clínicos Controlados Aleatórios como Assunto
8.
Mol Psychiatry ; 25(6): 1312-1322, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-30874608

RESUMO

Predicting antidepressant response has been a clinical challenge for mood disorder. Although several genome-wide association studies have suggested a number of genetic variants to be associated with antidepressant response, the sample sizes are small and the results are difficult to replicate. Previous animal studies have shown that knockout of the serotonin receptor 7 gene (HTR7) resulted in an antidepressant-like phenotype, suggesting it was important to antidepressant action. In this report, in the first stage, we used a cost-effective pooled-sequencing strategy to sequence the entire HTR7 gene and its regulatory regions to investigate the association of common variants in HTR7 and clinical response to four selective serotonin reuptake inhibitors (SSRIs: citalopram, paroxetine, fluoxetine and sertraline) in a retrospective cohort mainly consisting of subjects with bipolar disorder (n = 359). We found 80 single-nucleotide polymorphisms (SNPs) with false discovery rate < 0.05 associated with response to paroxetine. Among the significant SNPs, rs7905446 (T/G), which is located at the promoter region, also showed nominal significance (P < 0.05) in fluoxetine group. GG/TG genotypes for rs7905446 and female gender were associated with better response to two SSRIs (paroxetine and fluoxetine). In the second stage, we replicated this association in two independent prospective samples of SSRI-treated patients with major depressive disorder: the MARS (n = 253, P = 0.0169) and GENDEP studies (n = 432, P = 0.008). The GG/TG genotypes were consistently associated with response in all three samples. Functional study of rs7905446 showed greater activity of the G allele in regulating expression of HTR7. The G allele displayed higher luciferase activity in two neuronal-related cell lines, and estrogen treatment decreased the activity of only the G allele. Electrophoretic mobility shift assay suggested that the G allele interacted with CCAAT/enhancer-binding protein beta transcription factor (TF), while the T allele did not show any interaction with any TFs. Our results provided novel pharmacogenomic evidence to support the role of HTR7 in association with antidepressant response.


Assuntos
Transtorno Depressivo Maior/tratamento farmacológico , Transtorno Depressivo Maior/genética , Receptores de Serotonina/genética , Inibidores Seletivos de Recaptação de Serotonina/uso terapêutico , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Citalopram/uso terapêutico , Feminino , Fluoxetina/uso terapêutico , Humanos , Masculino , Pessoa de Meia-Idade , Paroxetina/uso terapêutico , Estudos Retrospectivos , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Sertralina/uso terapêutico , Adulto Jovem
9.
Proc Natl Acad Sci U S A ; 117(38): 23329-23335, 2020 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-31611402

RESUMO

The development of biological markers of aging has primarily focused on adult samples. Epigenetic clocks are a promising tool for measuring biological age that show impressive accuracy across most tissues and age ranges. In adults, deviations from the DNA methylation (DNAm) age prediction are correlated with several age-related phenotypes, such as mortality and frailty. In children, however, fewer such associations have been made, possibly because DNAm changes are more dynamic in pediatric populations as compared to adults. To address this gap, we aimed to develop a highly accurate, noninvasive, biological measure of age specific to pediatric samples using buccal epithelial cell DNAm. We gathered 1,721 genome-wide DNAm profiles from 11 different cohorts of typically developing individuals aged 0 to 20 y old. Elastic net penalized regression was used to select 94 CpG sites from a training dataset (n = 1,032), with performance assessed in a separate test dataset (n = 689). DNAm at these 94 CpG sites was highly predictive of age in the test cohort (median absolute error = 0.35 y). The Pediatric-Buccal-Epigenetic (PedBE) clock was characterized in additional cohorts, showcasing the accuracy in longitudinal data, the performance in nonbuccal tissues and adult age ranges, and the association with obstetric outcomes. The PedBE tool for measuring biological age in children might help in understanding the environmental and contextual factors that shape the DNA methylome during child development, and how it, in turn, might relate to child health and disease.


Assuntos
Epigenômica/métodos , Células Epiteliais/metabolismo , Mucosa Bucal/citologia , Adolescente , Adulto , Criança , Pré-Escolar , Estudos de Coortes , Ilhas de CpG , Epigênese Genética , Feminino , Humanos , Lactente , Estudos Longitudinais , Masculino , Mucosa Bucal/metabolismo , Adulto Jovem
10.
Clin Epigenetics ; 11(1): 83, 2019 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-31122292

RESUMO

BACKGROUND: Epigenetic mechanisms may play a major role in the biological embedding of early-life stress (ELS). One proposed mechanism is that glucocorticoid (GC) release following ELS exposure induces long-lasting alterations in DNA methylation (DNAm) of important regulatory genes of the stress response. Here, we investigate the dynamics of GC-dependent methylation changes in key regulatory regions of the FKBP5 locus in which ELS-associated DNAm changes have been reported. RESULTS: We repeatedly measured DNAm in human peripheral blood samples from 2 independent cohorts exposed to the GC agonist dexamethasone (DEX) using a targeted bisulfite sequencing approach, complemented by data from Illumina 450K arrays. We detected differentially methylated CpGs in enhancers co-localizing with GC receptor binding sites after acute DEX treatment (1 h, 3 h, 6 h), which returned to baseline levels within 23 h. These changes withstood correction for immune cell count differences. While we observed main effects of sex, age, body mass index, smoking, and depression symptoms on FKBP5 methylation levels, only the functional FKBP5 SNP (rs1360780) moderated the dynamic changes following DEX. This genotype effect was observed in both cohorts and included sites previously shown to be associated with ELS. CONCLUSION: Our study highlights that DNAm levels within regulatory regions of the FKBP5 locus show dynamic changes following a GC challenge and suggest that factors influencing the dynamics of this regulation may contribute to the previously reported alterations in DNAm associated with current and past ELS exposure.


Assuntos
Metilação de DNA/efeitos dos fármacos , Glucocorticoides/farmacologia , Estresse Psicológico/genética , Proteínas de Ligação a Tacrolimo/genética , Adulto , Estudos de Coortes , Dexametasona/efeitos adversos , Epigênese Genética/efeitos dos fármacos , Feminino , Glucocorticoides/agonistas , Glucocorticoides/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Análise de Sequência com Séries de Oligonucleotídeos , Polimorfismo de Nucleotídeo Único , Sequências Reguladoras de Ácido Nucleico , Análise de Sequência de DNA , Estresse Psicológico/metabolismo , Adulto Jovem
11.
Psychoneuroendocrinology ; 103: 156-162, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30690225

RESUMO

Maternal behavior (MB) is observable across mammals and represents an important feature of environmental variation during early postnatal development. Oxytocin (OT) plays a crucial role in MB. Even prior to childbirth, pregnancy induces epigenetic and other downstream changes in the maternal OT-system, likely mediated by the actions of steroid hormones. However, little is known about the nature and consequences of epigenetic modifications in the maternal OT-encoding gene (OXT) during pregnancy. Our study aims to investigate temporal dynamics of OXT promoter DNA methylation (DNAm) throughout pregnancy in predicting MB in humans. In 107 mother-child dyads, maternal OXT DNAm was serially analyzed in whole blood in early, mid and late pregnancy. MB was coded based on standardized mother-child interactions at six months postpartum. After controlling for cellular heterogeneity, race/ethnicity, age, and socioeconomic status, OXT-promoter DNAm exhibited a dynamic profile during pregnancy (b = 0.026, t=-3.37, p < .001), with decreases in DNAm from early to mid-pregnancy and no further change until late pregnancy. Moreover, dynamic DNAm trajectories of the OXT-promoter region predicted MB (intrusiveness) at six months postpartum (b = 0.006, t = 2.0, p < 0.05), with 6% higher OXT DNAm in late pregnancy in intrusive compared to non-intrusive mothers. We here demonstrate that OXT promoter DNAm changes significantly throughout gestation in peripheral blood and that these changes are associated with variability in MB, providing a novel potential biomarker predicting postnatal MB.


Assuntos
Metilação de DNA , Comportamento Materno/fisiologia , Ocitocina/genética , Adulto , Depressão Pós-Parto/sangue , Depressão Pós-Parto/genética , Epigênese Genética , Feminino , Humanos , Recém-Nascido , Masculino , Relações Mãe-Filho/psicologia , Ocitocina/metabolismo , Período Pós-Parto/genética , Gravidez , Regiões Promotoras Genéticas , Receptores de Ocitocina/genética , Receptores de Ocitocina/metabolismo
12.
Br J Psychiatry ; 215(3): 519-527, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30457060

RESUMO

BACKGROUND: Enhanced sensitivity to oestrogen signalling may drive increased risk for depressive symptoms when exposed to peripartum sex-steroid hormone fluctuations. AIM: Testing if 116 pre-identified sex steroid-responsive transcripts that predicted perinatal depression (PND) translates to a pharmacological model of hormone-induced mood changes. METHOD: We generated longitudinal, genome-wide gene-expression and DNA-methylation data from 60 women exposed to a gonadotrophin-releasing hormone agonist (GnRHa) or placebo. We used linear mixed-effect models to assess differences between baseline and follow-up for gene expression and DNA methylation in the biphasic ovarian response to GnRHa. RESULTS: Of the 116 PND-predictive transcripts, a significant (19%) overlap was observed with those differentially expressed post-GnRHa at both early and later follow-up, indicating sustained effects. Similarly, 49% of tested genes were differentially methylated post-GnRHa at the late follow-up. Within the GnRHa group, a large proportion of PND genes were significantly associated (gene expression; DNA methylation) with changes in depressive symptoms (28%; 66%), oestradiol levels (49%; 66%) and neocortex serotonin transporter binding (8%; 45%) between baseline and follow-up. CONCLUSIONS: Our data bridge clinical PND biomarkers with a pharmacological model of sex hormone-induced mood changes and directly relate oestrogen-induced biological changes with depressive symptoms and associated serotonin-signalling changes. Our data highlight that individual variations in molecular sensitivity to oestrogen associate with susceptibility to hormone-induced mood changes and hold promise for candidate biomarkers. DECLARATION OF INTEREST: V.G.F. received honorarium for being a speaker for H. Lundbeck A/S. E.B.B. receives research funding from Böhringer Ingelheim to investigate FKBP5 as a potential drug target for depression.


Assuntos
Depressão/diagnóstico , Estrogênios/fisiologia , Hormônio Liberador de Gonadotropina/agonistas , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética , Adulto , Afeto/efeitos dos fármacos , Biomarcadores/metabolismo , Encéfalo/efeitos dos fármacos , Metilação de DNA , Método Duplo-Cego , Feminino , Expressão Gênica , Humanos , Modelos Lineares , Tomografia por Emissão de Pósitrons , Gravidez
13.
Arch Dis Child ; 104(4): 354-359, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30327331

RESUMO

OBJECTIVES: To investigate the frequency of coeliac disease (CD)-specific human leucocyte antigen (HLA) genotypes in paediatric patients with type 1 diabetes (T1D), who are known to have a higher prevalence of CD than the general population, and to evaluate whether HLA genotyping is a suitable first-line screening method for CD. STUDY DESIGN: The study was a multicentre observational analysis of patients with T1D aged <20 years of whom a subgroup had undergone HLA genotyping. Patient data were retrieved from the Diabetes Prospective Follow-up database, a large diabetes follow-up registry. The present analysis included data from 439 centres throughout Germany, Austria, Switzerland and Luxembourg. RESULTS: In March 2017, the database contained 75 202 patients with T1D (53% male, mean age (SD) 14.6 (4.1) years, mean age at diagnosis 8.8 (4.3) years and mean diabetes duration 5.8 (4.3) years). 1624 patients had undergone coeliac-specific HLA genotyping, of whom 1344 (82.8%) were positive for HLA-DQ2, HLA-DQ8 or both, while 17.2% had no coeliac-specific HLA-markers. 26.6% of at-risk patients had a clinical suspected diagnosis of CD, and 3.6% had biopsy-proven CD. CONCLUSIONS: Genotyping for HLA-DQ2, HLA-DQ8 or both is positive in the vast majority (>80%) of patients with T1D. Therefore, screening for coeliac-specific HLA genotypes as a first-line test is not a suitable method to exclude CD in T1D. Regular screening for coeliac-specific antibodies in T1D is still recommended.


Assuntos
Doença Celíaca/diagnóstico , Diabetes Mellitus Tipo 1/complicações , Adolescente , Áustria , Doença Celíaca/complicações , Doença Celíaca/imunologia , Criança , Diabetes Mellitus Tipo 1/imunologia , Diagnóstico Precoce , Feminino , Genótipo , Alemanha , Antígenos HLA-DQ/genética , Teste de Histocompatibilidade , Humanos , Luxemburgo , Masculino , Suíça
14.
Neuron ; 99(2): 389-403.e9, 2018 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-30048615

RESUMO

N6-methyladenosine (m6A) and N6,2'-O-dimethyladenosine (m6Am) are abundant mRNA modifications that regulate transcript processing and translation. The role of both, here termed m6A/m, in the stress response in the adult brain in vivo is currently unknown. Here, we provide a detailed analysis of the stress epitranscriptome using m6A/m-seq, global and gene-specific m6A/m measurements. We show that stress exposure and glucocorticoids region and time specifically alter m6A/m and its regulatory network. We demonstrate that deletion of the methyltransferase Mettl3 or the demethylase Fto in adult neurons alters the m6A/m epitranscriptome, increases fear memory, and changes the transcriptome response to fear and synaptic plasticity. Moreover, we report that regulation of m6A/m is impaired in major depressive disorder patients following glucocorticoid stimulation. Our findings indicate that brain m6A/m represents a novel layer of complexity in gene expression regulation after stress and that dysregulation of the m6A/m response may contribute to the pathophysiology of stress-related psychiatric disorders.


Assuntos
Adenosina/análogos & derivados , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Estresse Psicológico/genética , Estresse Psicológico/metabolismo , Adenosina/genética , Adenosina/metabolismo , Adulto , Animais , Linhagem Celular Transformada , Humanos , Masculino , Metilação , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Estresse Psicológico/psicologia
15.
Mol Psychiatry ; 23(11): 2192-2208, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29302075

RESUMO

To date, gene-environment (GxE) interaction studies in depression have been limited to hypothesis-based candidate genes, since genome-wide (GWAS)-based GxE interaction studies would require enormous datasets with genetics, environmental, and clinical variables. We used a novel, cross-species and cross-tissues "omics" approach to identify genes predicting depression in response to stress in GxE interactions. We integrated the transcriptome and miRNome profiles from the hippocampus of adult rats exposed to prenatal stress (PNS) with transcriptome data obtained from blood mRNA of adult humans exposed to early life trauma, using a stringent statistical analyses pathway. Network analysis of the integrated gene lists identified the Forkhead box protein O1 (FoxO1), Alpha-2-Macroglobulin (A2M), and Transforming Growth Factor Beta 1 (TGF-ß1) as candidates to be tested for GxE interactions, in two GWAS samples of adults either with a range of childhood traumatic experiences (Grady Study Project, Atlanta, USA) or with separation from parents in childhood only (Helsinki Birth Cohort Study, Finland). After correction for multiple testing, a meta-analysis across both samples confirmed six FoxO1 SNPs showing significant GxE interactions with early life emotional stress in predicting depressive symptoms. Moreover, in vitro experiments in a human hippocampal progenitor cell line confirmed a functional role of FoxO1 in stress responsivity. In secondary analyses, A2M and TGF-ß1 showed significant GxE interactions with emotional, physical, and sexual abuse in the Grady Study. We therefore provide a successful 'hypothesis-free' approach for the identification and prioritization of candidate genes for GxE interaction studies that can be investigated in GWAS datasets.


Assuntos
Depressão/genética , Transtorno Depressivo/genética , Testes Genéticos/métodos , Adulto , Animais , Estudos de Coortes , Depressão/metabolismo , Modelos Animais de Doenças , Feminino , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O1/metabolismo , Interação Gene-Ambiente , Predisposição Genética para Doença/genética , Estudo de Associação Genômica Ampla/métodos , Genótipo , Humanos , Masculino , MicroRNAs/análise , MicroRNAs/genética , Pessoa de Meia-Idade , Proteínas do Tecido Nervoso/genética , Polimorfismo de Nucleotídeo Único/genética , Gravidez , Ratos , Transcriptoma/genética , Fator de Crescimento Transformador beta1/genética , alfa-Macroglobulinas/genética , alfa-Macroglobulinas/metabolismo
16.
Neurosci Biobehav Rev ; 74(Pt B): 356-365, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27343999

RESUMO

Life stress has been associated with accelerated cellular aging and increased risk for developing aging-related diseases; however, the underlying molecular mechanisms remain elusive. A highly relevant process that may underlie this association is epigenetic regulation. In this review, we build upon existing evidence to propose a model whereby exposure to life stress, in part via its effects on the hypothalamic-pituitary axis and the glucocorticoid signaling system, may alter the epigenetic landscape across the lifespan and, consequently, influence genomic regulation and function in ways that are conducive to the development of aging-related diseases. This model is supported by recent studies showing that life stressors and stress-related phenotypes can accelerate epigenetic aging, a measure that is based on DNA methylation prediction of chronological age and has been associated with several aging-related disease phenotypes. We discuss the implications of this model for the prevention and treatment of aging-related diseases, as well as the challenges and limitations of this line of research.


Assuntos
Epigênese Genética , Estresse Psicológico , Envelhecimento , Metilação de DNA , Glucocorticoides , Humanos
17.
Artigo em Inglês | MEDLINE | ID: mdl-28018293

RESUMO

BACKGROUND: Preterm birth associates with a substantially increased risk of later cardiovascular disease and neurodevelopmental disorders. Understanding underlying mechanisms will facilitate the development of screening and intervention strategies to reduce disease risk. Changes in DNA methylation have been proposed as one mechanism linking the early environment with later disease risk. We tested the hypothesis that preterm birth associates with altered DNA methylation in genes encoding insulin-like growth factor 2 (IGF2) and FK506-binding protein 5 (FKBP5), which appear particularly vulnerable to early life adversity. METHODS: Fifty preterm infants were seen and assessed at birth, term equivalent age, 3 months and 1-year corrected ages; 40 term infants were seen at birth, 3 months and 1 year. Saliva was collected for DNA extraction at birth, term, and 1 year. Pyrosequencing of bisulfite-converted DNA was performed to measure DNA methylation at specific CpG sites within the IGF2 and FKBP5 loci. RESULTS: Weight and head circumference was reduced in preterm infants at all time points. Preterm infants had a higher percentage body fat at term-corrected age, but this difference was not persistent. DNA methylation at the differentially methylated region (DMR) of IGF2 (IGF2DMR2) and FKBP5 was lower in preterm infants at birth- and term-corrected age compared to term infants at birth. IGF2DMR2 and FKBP5 methylation was related to birthweight SD score in preterm infants. Among preterm infants, social deprivation was an independent contributor toward reducing DNA methylation at IGF2DMR2 at birth- and term-corrected age and maternal smoking was associated with reduced DNA methylation at FKBP5 at birth. There were no persistent differences in DNA methylation at 1 year of age. CONCLUSION: Changes in DNA methylation were identified at key regions of IGF2/H19 and FKBP5 in preterm infants in early life. Potential contributing factors include maternal smoking and social deprivation. However, these changes did not persist at 1 year of age and further longitudinal studies are required to determine any associations between altered DNA methylation in the perinatal period of individuals born preterm and their long-term health.

18.
Sci Adv ; 2(6): e1501678, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27386562

RESUMO

We conducted a genome-wide association study (GWAS) on multiple sclerosis (MS) susceptibility in German cohorts with 4888 cases and 10,395 controls. In addition to associations within the major histocompatibility complex (MHC) region, 15 non-MHC loci reached genome-wide significance. Four of these loci are novel MS susceptibility loci. They map to the genes L3MBTL3, MAZ, ERG, and SHMT1. The lead variant at SHMT1 was replicated in an independent Sardinian cohort. Products of the genes L3MBTL3, MAZ, and ERG play important roles in immune cell regulation. SHMT1 encodes a serine hydroxymethyltransferase catalyzing the transfer of a carbon unit to the folate cycle. This reaction is required for regulation of methylation homeostasis, which is important for establishment and maintenance of epigenetic signatures. Our GWAS approach in a defined population with limited genetic substructure detected associations not found in larger, more heterogeneous cohorts, thus providing new clues regarding MS pathogenesis.


Assuntos
Epigênese Genética , Predisposição Genética para Doença , Esclerose Múltipla/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Alelos , Estudos de Casos e Controles , Estudos de Coortes , Proteínas de Ligação a DNA/genética , Feminino , Loci Gênicos , Estudo de Associação Genômica Ampla , Glicina Hidroximetiltransferase/genética , Humanos , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla/patologia , Locos de Características Quantitativas , Fatores de Transcrição/genética , Regulador Transcricional ERG/genética , Adulto Jovem
19.
Psychoneuroendocrinology ; 69: 150-60, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27108164

RESUMO

The oxytocin receptor (OXTR) is a key regulator of stress and anxiety and may be regulated by both psychosocial risk factors and gonadal hormones, making it an attractive candidate for study in postpartum depression (PPD). The objective of this study was to investigate both serum hormone and PPD specific DNA methylation variation in the OXTR. Illumina HM450 microarray data generated in a prospective PPD cohort identified significant associations (P=0.014) with PPD in an intronic region in the OXTR located 4bp proximal to an estrogen receptor (ER) binding region. Pyrosequencing confirmed moderate evidence for an interaction of CpGs in the region with childhood abuse status to mediate PPD. These CpGs located on chr3 at positions 8810078 and 8810069 exhibited significant associations with postpartum depression scores from an independent cohort of 240 women with no prior psychiatric history. Hormone analysis suggested a PPD specific negative correlation of DNA methylation in the region with serum estradiol levels. Estradiol levels and OXTR DNA methylation exhibited a significant interaction to associate with the ratio of allopregnanolone to progesterone. Cumulatively, the data corroborate our previous hypotheses of a PPD specific increased sensitivity of epigenetic reprogramming at estrogen target genes and suggests that OXTR epigenetic variation may be an important mediator of mood relevant neuroactive steroid production.


Assuntos
Depressão Pós-Parto/genética , Depressão Pós-Parto/metabolismo , Receptores de Ocitocina/genética , Adulto , Ansiedade/genética , Transtornos de Ansiedade/genética , Ilhas de CpG , Metilação de DNA/genética , Depressão Pós-Parto/sangue , Epigênese Genética , Estradiol/análise , Estradiol/sangue , Feminino , Humanos , Pregnanolona , Progesterona , Estudos Prospectivos , Receptores de Ocitocina/metabolismo
20.
Neuropsychopharmacology ; 41(6): 1648-58, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26503311

RESUMO

DNA methylation variation at HP1BP3 and TTC9B is modified by estrogen exposure in the rodent hippocampus and was previously shown to be prospectively predictive of postpartum depression (PPD) when modeled in antenatal blood. The objective of this study was to replicate the predictive efficacy of the previously established model in women with and without a previous psychiatric diagnosis and to understand the effects of changing hormone levels on PPD biomarker loci. Using a statistical model trained on DNA methylation data from N=51 high-risk women, we prospectively predicted PPD status in an independent N=51 women using first trimester antenatal gene expression levels of HP1BP3 and TTC9B, with an area under the receiver operator characteristic curve (AUC) of 0.81 (95% CI: 0.69-0.92, p<5 × 10(-4)). Modeling DNA methylation of these genes in N=240 women without a previous psychiatric diagnosis resulted in a cross-sectional prediction of PPD status with an AUC of 0.81 (95% CI: 0.68-0.93, p=0.01). TTC9B and HP1BP3 DNA methylation at early antenatal time points showed moderate evidence for association to the change in estradiol and allopregnanolone over the course of pregnancy, suggesting that epigenetic variation at these loci may be important for mediating hormonal sensitivity. In addition both loci showed PPD-specific trajectories with age, possibly mediated by age-associated hormonal changes. The data add to the growing body of evidence suggesting that PPD is mediated by differential gene expression and epigenetic sensitivity to pregnancy hormones and that modeling proxies of this sensitivity enable accurate prediction of PPD.


Assuntos
Depressão Pós-Parto/fisiopatologia , Epigênese Genética , Estradiol/sangue , Proteínas do Tecido Nervoso/fisiologia , Proteínas Nucleares/fisiologia , Pregnanolona/sangue , Progesterona/sangue , Adulto , Metilação de DNA , Proteínas de Ligação a DNA , Depressão Pós-Parto/sangue , Depressão Pós-Parto/genética , Feminino , Marcadores Genéticos , Humanos , Proteínas do Tecido Nervoso/genética , Proteínas Nucleares/genética , Análise de Sequência com Séries de Oligonucleotídeos , Gravidez
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA