Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Curr Oncol ; 29(11): 8415-8430, 2022 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-36354723

RESUMO

Musculoskeletal graft versus host disease (GVHD) is a rare manifestation of chronic GVHD (cGVHD) following allogeneic hematopoietic stem cell transplantation (allo-HSCT). Left untreated, the disease can cause extensive damage to muscle tissue and joints. We describe a 62-year-old male with musculoskeletal GVHD and generalized muscle pain and stiffness. In addition, we performed a systemic literature review based on published cases of musculoskeletal GVHD between 1983 and 2019. We identified 85 cases, 62% male and 38% female with an age of 4-69 years and median age of 39 years at diagnosis. The majority of patients (72%) also had manifestations of cGVHD in at least one other organ system, most frequently the skin (52%), followed by oropharyngeal mucosa (37%), and pulmonary and gastrointestinal tract (GI tract) (21%). We conclude that, while musculoskeletal cGVHD is a rare complication of allo-HSCT, it remains a serious and debilitating risk that must be considered in patients with muscle pain, muscle weakness, joint stiffness, and tissue inflammation. Early intervention is critical for the patient's prognosis.


Assuntos
Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Humanos , Masculino , Feminino , Adulto , Pré-Escolar , Criança , Adolescente , Adulto Jovem , Pessoa de Meia-Idade , Idoso , Doença Enxerto-Hospedeiro/complicações , Doença Enxerto-Hospedeiro/diagnóstico , Mialgia/complicações , Transplante de Células-Tronco Hematopoéticas/efeitos adversos
2.
Cell Cycle ; 21(20): 2206-2221, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35815665

RESUMO

Embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) have distinct origins: ESCs are derived from pre-implanted embryos while iPSCs are reprogrammed somatic cells. Both have their own characteristics and lineage specificity, and both are valuable tools for studying human neurological development and disease. Thus far, few studies have analyzed how differences between stem cell types influence mitochondrial function and mitochondrial DNA (mtDNA) homeostasis during differentiation into neural and glial lineages. In this study, we compared mitochondrial function and mtDNA replication in human ESCs and iPSCs at three different stages - pluripotent, neural progenitor and astrocyte. We found that while ESCs and iPSCs have a similar mitochondrial signature, neural and astrocyte derivations manifested differences. At the neural stem cell (NSC) stage, iPSC-NSCs displayed decreased ATP production and a reduction in mitochondrial respiratory chain (MRC) complex IV expression compared to ESC-NSCs. IPSC-astrocytes showed increased mitochondrial activity including elevated ATP production, MRC complex IV expression, mtDNA copy number and mitochondrial biogenesis relative to those derived from ESCs. These findings show that while ESCs and iPSCs are similar at the pluripotent stage, differences in mitochondrial function may develop during differentiation and must be taken into account when extrapolating results from different cell types.Abbreviation: BSA: Bovine serum albumin; DCFDA: 2',7'-dichlorodihydrofluorescein diacetate; DCX: Doublecortin; EAAT-1: Excitatory amino acid transporter 1; ESCs: Embryonic stem cells; GFAP: Glial fibrillary acidic protein; GS: Glutamine synthetase; iPSCs: Induced pluripotent stem cells; LC3B: Microtubule-associated protein 1 light chain 3ß; LC-MS: Liquid chromatography-mass spectrometry; mito-ROS: Mitochondrial ROS; MMP: Mitochondrial membrane potential; MRC: Mitochondrial respiratory chain; mtDNA: Mitochondrial DNA; MTDR: MitoTracker Deep Red; MTG: MitoTracker Green; NSCs: Neural stem cells; PDL: Poly-D-lysine; PFA: Paraformaldehyde; PGC-1α: PPAR-γ coactivator-1 alpha; PPAR-γ: Peroxisome proliferator-activated receptor-gamma; p-SIRT1: Phosphorylated sirtuin 1; p-ULK1: Phosphorylated unc-51 like autophagy activating kinase 1; qPCR: Quantitative PCR; RT: Room temperature; RT-qPCR: Quantitative reverse transcription PCR; SEM: Standard error of the mean; TFAM: Mitochondrial transcription factor A; TMRE: Tetramethylrhodamine ethyl ester; TOMM20: Translocase of outer mitochondrial membrane 20.


Assuntos
Células-Tronco Pluripotentes Induzidas , Trifosfato de Adenosina/metabolismo , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Diferenciação Celular , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Proteínas do Domínio Duplacortina , Células-Tronco Embrionárias/metabolismo , Ésteres/metabolismo , Transportador 1 de Aminoácido Excitatório/metabolismo , Proteína Glial Fibrilar Ácida/metabolismo , Glutamato-Amônia Ligase/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Lisina/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Mitocôndrias/metabolismo , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Soroalbumina Bovina , Sirtuína 1/metabolismo
3.
Kidney Dis (Basel) ; 8(2): 148-159, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35527992

RESUMO

Aims: This study aimed to investigate associations between renal and extrarenal manifestations of mitochondrial diseases and their natural history as well as predictors of renal disease severity and overall disease outcome. The secondary aim was to generate a protocol of presymptomatic assessment and monitoring of renal function in patients with a defined mitochondrial disease. Methods: A multicenter, retrospective cohort study was performed by the Mitochondrial Clinical and Research Network (MCRN). Patients of any age with renal manifestations associated with a genetically verified mitochondrial disease were included from 8 expert European centers specializing in mitochondrial diseases: Gothenburg, Oulu, Copenhagen, Bergen, Helsinki, Stockholm, Rotterdam, and Barcelona. Results: Of the 36 patients included, two-thirds had mitochondrial DNA-associated disease. Renal manifestations were the first sign of mitochondrial disease in 19%, and renal involvement was first identified by laboratory tests in 57% of patients. Acute kidney injury occurred in 19% of patients and was the first sign of renal disease in the majority of these. The most common renal manifestation was chronic kidney disease (75% with stage 2 or greater), followed by tubulopathy (44.4%), the latter seen mostly among patients with single large-scale mitochondrial DNA deletions. Acute kidney injury and tubulopathy correlated with worse survival outcome. The most common findings on renal imaging were increased echogenicity and renal dysplasia/hypoplasia. Renal histology revealed focal segmental glomerulosclerosis, nephrocalcinosis, and nephronophthisis. Conclusion: Acute kidney injury is a distinct renal phenotype in patients with mitochondrial disease. Our results highlight the importance to recognize renal disease as a sign of an underlying mitochondrial disease. Acute kidney injury and tubulopathy are 2 distinct indicators of poor survival in patients with mitochondrial diseases.

4.
Cell Cycle ; 21(11): 1178-1193, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35298342

RESUMO

We showed previously that POLG mutations cause major changes in mitochondrial function, including loss of mitochondrial respiratory chain (MRC) complex I, mitochondrial DNA (mtDNA) depletion and an abnormal NAD+/NADH ratio in both neural stem cells (NSCs) and astrocytes differentiated from induced pluripotent stem cells (iPSCs). In the current study, we looked at mitochondrial remodeling as stem cells transit pluripotency and during differentiation from NSCs to both dopaminergic (DA) neurons and astrocytes comparing the process in POLG-mutated and control stem cells. We saw that mitochondrial membrane potential (MMP), mitochondrial volume, ATP production and reactive oxygen species (ROS) changed in similar ways in POLG and control NSCs, but mtDNA replication, MRC complex I and NAD+ metabolism failed to remodel normally. In DA neurons differentiated from NSCs, we saw that POLG mutations caused failure to increase MMP and ATP production and blunted the increase in mtDNA and complex I. Interestingly, mitochondrial remodeling during astrocyte differentiation from NSCs was similar in both POLG-mutated and control NSCs. Further, we showed downregulation of the SIRT3/AMPK pathways in POLG-mutated cells, suggesting that POLG mutations lead to abnormal mitochondrial remodeling in early neural development due to the downregulation of these pathways. [Figure: see text].


Assuntos
DNA Polimerase gama , Células-Tronco Pluripotentes , Sirtuína 3 , Humanos , Trifosfato de Adenosina , Proteínas Quinases Ativadas por AMP , Astrócitos/citologia , Diferenciação Celular , DNA Polimerase gama/genética , DNA Mitocondrial/genética , Complexo I de Transporte de Elétrons/genética , Mitocôndrias/genética , Mutação/genética , NAD , Células-Tronco Neurais/citologia , Sirtuína 3/genética
5.
Nucleic Acids Res ; 49(9): 5230-5248, 2021 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-33956154

RESUMO

Mutations in POLG, encoding POLγA, the catalytic subunit of the mitochondrial DNA polymerase, cause a spectrum of disorders characterized by mtDNA instability. However, the molecular pathogenesis of POLG-related diseases is poorly understood and efficient treatments are missing. Here, we generate the PolgA449T/A449T mouse model, which reproduces the A467T change, the most common human recessive mutation of POLG. We show that the mouse A449T mutation impairs DNA binding and mtDNA synthesis activities of POLγ, leading to a stalling phenotype. Most importantly, the A449T mutation also strongly impairs interactions with POLγB, the accessory subunit of the POLγ holoenzyme. This allows the free POLγA to become a substrate for LONP1 protease degradation, leading to dramatically reduced levels of POLγA in A449T mouse tissues. Therefore, in addition to its role as a processivity factor, POLγB acts to stabilize POLγA and to prevent LONP1-dependent degradation. Notably, we validated this mechanism for other disease-associated mutations affecting the interaction between the two POLγ subunits. We suggest that targeting POLγA turnover can be exploited as a target for the development of future therapies.


Assuntos
DNA Polimerase gama/genética , Proteases Dependentes de ATP/metabolismo , Animais , Células Cultivadas , DNA Polimerase gama/metabolismo , Replicação do DNA , DNA Mitocondrial/análise , Estabilidade Enzimática/genética , Células HeLa , Holoenzimas/metabolismo , Humanos , Camundongos , Proteínas Mitocondriais/metabolismo , Mutação
6.
J Inherit Metab Dis ; 44(2): 469-480, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32857451

RESUMO

The aim of this study was to compare the value of serum biomarkers, fibroblast growth factor 21 (FGF21) and growth differentiation factor 15 (GDF15), with histological analysis of muscle in the diagnosis of mitochondrial disease. We collected 194 serum samples from patients with a suspected or known mitochondrial disease. Biomarkers were analyzed blinded using enzyme-labeled immunosorbent assay. Clinical data were collected using a structured questionnaire. Only 39% of patients with genetically verified mitochondrial disease had mitochondrial pathology in their muscle histology. In contrast, biomarkers were elevated in 62% of patients with genetically verified mitochondrial disease. Those with both biomarkers elevated had a muscle manifesting disorder and a defect affecting mitochondrial DNA expression. If at least one of the biomarkers was induced and the patient had a myopathic disease, a mitochondrial DNA expression disease was the cause with 94% probability. Among patients with biomarker analysis and muscle biopsy taken <12 months apart, a mitochondrial disorder would have been identified in 70% with analysis of FGF21 and GDF15 compared to 50% of patients whom could have been identified with muscle biopsy alone. Muscle findings were nondiagnostic in 72% (children) and 45% (adults). Induction of FGF21 and GDF15 suggest a mitochondrial etiology as an underlying cause of a muscle manifesting disease. Normal biomarker values do not, however, rule out a mitochondrial disorder, especially if the disease does not manifest in muscle. We suggest that FGF21 and GDF15 together should be first-line diagnostic investigations in mitochondrial disease complementing muscle biopsy.


Assuntos
DNA Mitocondrial/genética , Fatores de Crescimento de Fibroblastos/genética , Fator 15 de Diferenciação de Crescimento/genética , Doenças Mitocondriais/genética , Adolescente , Adulto , Biomarcadores/sangue , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Doenças Mitocondriais/sangue , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Adulto Jovem
7.
Exp Neurol ; 337: 113536, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33264635

RESUMO

The inability to reliably replicate mitochondrial DNA (mtDNA) by mitochondrial DNA polymerase gamma (POLG) leads to a subset of common mitochondrial diseases associated with neuronal death and depletion of neuronal mtDNA. Defining disease mechanisms in neurons remains difficult due to the limited access to human tissue. Using human induced pluripotent stem cells (hiPSCs), we generated functional dopaminergic (DA) neurons showing positive expression of dopaminergic markers TH and DAT, mature neuronal marker MAP2 and functional synaptic markers synaptophysin and PSD-95. These DA neurons were electrophysiologically characterized, and exhibited inward Na + currents, overshooting action potentials and spontaneous postsynaptic currents (sPSCs). POLG patient-specific DA neurons (POLG-DA neurons) manifested a phenotype that replicated the molecular and biochemical changes found in patient post-mortem brain samples namely loss of complex I and depletion of mtDNA. Compared to disease-free hiPSC-derived DA neurons, POLG-DA neurons exhibited loss of mitochondrial membrane potential, loss of complex I and loss of mtDNA and TFAM expression. POLG driven mitochondrial dysfunction also led to neuronal ROS overproduction and increased cellular senescence. This deficit was selectively rescued by treatment with N-acetylcysteine amide (NACA). In conclusion, our study illustrates the promise of hiPSC technology for assessing pathogenetic mechanisms associated with POLG disease, and that NACA can be a promising potential therapy for mitochondrial diseases such as those caused by POLG mutation.


Assuntos
Acetilcisteína/análogos & derivados , Antioxidantes/uso terapêutico , DNA Polimerase gama/genética , Neurônios Dopaminérgicos/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Doenças Mitocondriais/tratamento farmacológico , Estresse Oxidativo/efeitos dos fármacos , Acetilcisteína/uso terapêutico , Potenciais de Ação , Senescência Celular/genética , DNA Mitocondrial/genética , Complexo I de Transporte de Elétrons/metabolismo , Potenciais Pós-Sinápticos Excitadores , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Canais de Sódio/metabolismo
8.
Ann Clin Transl Neurol ; 7(8): 1318-1326, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32634300

RESUMO

OBJECTIVE: The aim of this study was to evaluate if urinary sediment cells offered a robust alternative to muscle biopsy for the diagnosis of single mtDNA deletions. METHODS: Eleven adult patients with progressive external ophthalmoplegia and a known single mtDNA deletion were investigated. Urinary sediment cells were used to isolate DNA, which was then subjected to long-range polymerase chain reaction. Where available, the patient`s muscle DNA was studied in parallel. Breakpoint and thus deletion size were identified using both Sanger sequencing and next generation sequencing. The level of heteroplasmy was determined using quantitative polymerase chain reaction. RESULTS: We identified the deletion in urine in 9 of 11 cases giving a sensitivity of 80%. Breakpoints and deletion size were readily detectable in DNA extracted from urine. Mean heteroplasmy level in urine was 38% ± 26 (range 8 - 84%), and 57% ± 28 (range 12 - 94%) in muscle. While the heteroplasmy level in urinary sediment cells differed from that in muscle, we did find a statistically significant correlation between these two levels (R = 0.714, P = 0.031(Pearson correlation)). INTERPRETATION: Our findings suggest that urine can be used to screen patients suspected clinically of having a single mtDNA deletion. Based on our data, the use of urine could considerably reduce the need for muscle biopsy in this patient group.


Assuntos
DNA Mitocondrial/genética , DNA Mitocondrial/urina , Miopatias Mitocondriais/diagnóstico , Miopatias Mitocondriais/urina , Deleção de Sequência/genética , Urinálise/normas , Adolescente , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Oftalmoplegia Externa Progressiva Crônica/diagnóstico , Oftalmoplegia Externa Progressiva Crônica/urina , Reação em Cadeia da Polimerase , Sensibilidade e Especificidade , Análise de Sequência de DNA
9.
Ann Clin Transl Neurol ; 7(5): 757-766, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32342672

RESUMO

OBJECTIVE: The Global FKRP Registry is a database for individuals with conditions caused by mutations in the Fukutin-Related Protein (FKRP) gene: limb girdle muscular dystrophy R9 (LGMDR9, formerly LGMD2I) and congenital muscular dystrophies MDC1C, Muscle-Eye-Brain Disease and Walker-Warburg Syndrome. The registry seeks to further understand the natural history and prevalence of FKRP-related conditions; aid the rapid identification of eligible patients for clinical studies; and provide a source of information to clinical and academic communities. METHODS: Registration is patient-initiated through a secure online portal. Data, reported by both patients and their clinicians, include: age of onset, presenting symptoms, family history, motor function and muscle strength, respiratory and cardiac function, medication, quality of life and pain. RESULTS: Of 663 registered participants, 305 were genetically confirmed LGMDR9 patients from 23 countries. A majority of LGMDR9 patients carried the common mutation c.826C > A on one or both alleles; 67.9% were homozygous and 28.5% were compound heterozygous for this mutation. The mean ages of symptom onset and disease diagnosis were higher in individuals homozygous for c.826C > A compared with individuals heterozygous for c.826C > A. This divergence was replicated in ages of loss of running ability, wheelchair-dependence and ventilation assistance; consistent with the milder phenotype associated with individuals homozygous for c.826C > A. In LGMDR9 patients, 75.1% were currently ambulant and 24.6%, nonambulant (unreported in 0.3%). Cardiac impairment was reported in 23.2% (30/129). INTERPRETATION: The Global FKRP Registry enables the collection of patient natural history data, which informs academics, healthcare professionals and industry. It represents a trial-ready cohort of individuals and is centrally placed to facilitate recruitment to clinical studies.


Assuntos
Distrofia Muscular do Cíngulo dos Membros/genética , Pentosiltransferases/genética , Sistema de Registros , Síndrome de Walker-Warburg/genética , Adolescente , Adulto , Idade de Início , Idoso , Criança , Estudos de Coortes , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Distrofia Muscular do Cíngulo dos Membros/fisiopatologia , Fenótipo , Síndrome de Walker-Warburg/fisiopatologia , Adulto Jovem
10.
Cell Mol Life Sci ; 77(6): 1115-1133, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31270582

RESUMO

Cancers show a metabolic shift towards aerobic glycolysis. By "corrupting" their microenvironment, carcinoma cells are able to obtain energy substrates to "fuel" their mitochondrial metabolism and cell growth in an autophagy-associated, paracrine manner. However, the metabolic changes and role of normal fibroblasts in this process remain unclear. We devised a novel, indirect co-culture system to elucidate the mechanisms of metabolic coupling between stromal cells and oral squamous cell carcinoma (OSCC) cells. Here, we showed that normal oral fibroblasts (NOFs) and OSCC become metabolically coupled through several processes before acquiring an activated phenotype and without inducing senescence. We observed, for the first time, that NOFs export mitochondria towards OSCCs through both direct contact and via indirect mechanisms. NOFs are activated and are able to acquire a cancer-associated fibroblasts metabolic phenotype when co-cultivation with OSSC cells, by undergoing aerobic glycolysis, secreting more reactive oxygen species (ROS), high L-lactate and overexpressing lactate exporter MCT-4, leading to mitochondrial permeability transition pore (mPTP) opening, hypoxia, and mitophagy. On the other hand, Cav-1-low NOFs generate L-lactate to "fuel" mitochondrial metabolism and anabolic growth of OSCC. Most interestingly, the decrease in AMPK activity and PGC-1α expression might involve in regulation of ROS that functions to maintain final energy and metabolic homeostasis. This indicated, for the first time, the existence of ATP and ROS homeostasis during carcinogenesis. Our study suggests that an efficient therapeutical approach has to target the multiple mechanisms used by them to corrupt the normal surrounding stroma and metabolic homeostasis.


Assuntos
Fibroblastos Associados a Câncer/metabolismo , Carcinoma de Células Escamosas/metabolismo , Fibroblastos/metabolismo , Glicólise , Neoplasias Bucais/metabolismo , Idoso , Animais , Fibroblastos Associados a Câncer/patologia , Carcinoma de Células Escamosas/patologia , Células Cultivadas , Fibroblastos/patologia , Humanos , Masculino , Camundongos SCID , Pessoa de Meia-Idade , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Neoplasias Bucais/patologia , Espécies Reativas de Oxigênio/metabolismo
11.
Cell Cycle ; 18(9): 949-962, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31014173

RESUMO

Metformin is an antidiabetic drug widely used for the treatment of type 2 diabetes. Growing evidence suggests that it may exert antitumor effects in vivo and in vitro. However, even with the promising potency on defeating cancer cells, the pre-clinical and epidemiological studies of metformin on various kinds of cancers are not satisfactory, and the reasons and underlying mechanisms remain unknown. Since cancer is a complex system, dependent on a promoting microenvironment, we hypothesize that the interactions between cancer cells and their neighborhood fibroblasts are essential for metformin resistance. To test this, we used a cell co-culture model closely mimicking the in vivo interactions and metabolic exchanges between normal stromal cells (NOFs) and oral squamous cancer cells (OSCC). Here we show that while metformin can significantly inhibit cell growth and induce apoptosis of OSCC cultured alone in a dose-dependent manner through activating p-AMPKT172 and modulating Bcl-2, Bax, and cleaved PARP. However, when OSCC are co-cultured with NOFs the metformin effects on OSCC cells are annihilated. NOFs are rescuing OSCC from metformin - induced apoptosis, at least partially, through inhibiting the activity of AMPK and PARP, maintaining mitochondrial membrane potential and increasing the oxidative stress. Our results indicate that metformin effects on oral cancer cells are modulated by the microenvironment and that this has to be taken into consideration in the context of developing a new combination of drugs for oral cancer treatment.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Apoptose/efeitos dos fármacos , Carcinoma de Células Escamosas/metabolismo , Células Epiteliais/metabolismo , Fibroblastos/metabolismo , Metformina/farmacologia , Neoplasias Bucais/metabolismo , Transdução de Sinais/efeitos dos fármacos , Carcinoma de Células Escamosas/patologia , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Técnicas de Cocultura , Células Epiteliais/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Gengiva/citologia , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Neoplasias Bucais/patologia , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
12.
Brain ; 139(Pt 8): 2154-63, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27259757

RESUMO

Limb girdle muscular dystrophy type 2A is the most common limb girdle muscular dystrophy form worldwide. Although strict recessive inheritance is assumed, patients carrying a single mutation in the calpain 3 gene (CAPN3) are reported. Such findings are commonly attributed to incomplete mutation screening. In this investigation, we report 37 individuals (age range: 21-85 years, 21 females and 16 males) from 10 families in whom only one mutation in CAPN3 could be identified; a 21-bp, in-frame deletion (c.643_663del21). This mutation co-segregated with evidence of muscle disease and autosomal dominant transmission in several generations. Evidence of muscle disease was indicated by muscle pain, muscle weakness and wasting, significant fat replacement of muscles on imaging, myopathic changes on muscle biopsy and loss of calpain 3 protein on western blotting. Thirty-one of 34 patients had elevated creatine kinase or myoglobin. Muscle weakness was generally milder than observed in limb girdle muscular dystrophy type 2A, but affected the same muscle groups (proximal leg, lumbar paraspinal and medial gastrocnemius muscles). In some cases, the weakness was severely disabling. The 21-bp deletion did not affect mRNA maturation. Calpain 3 expression in muscle, assessed by western blot, was below 15% of normal levels in the nine mutation carriers in whom this could be tested. Haplotype analysis in four families from three different countries suggests that the 21-bp deletion is a founder mutation. This study provides strong evidence that heterozygosity for the c.643_663del21 deletion in CAPN3 results in a dominantly inherited muscle disease. The normal expression of mutated mRNA and the severe loss of calpain 3 on western blotting, suggest a dominant negative effect with a loss-of-function mechanism affecting the calpain 3 homodimer. This renders patients deficient in calpain 3 as in limb girdle muscular dystrophy type 2A, albeit in a milder form in most cases. Based on findings in 10 families, our study indicates that a dominantly inherited pattern of calpainopathy exists, and should be considered in the diagnostic work-up and genetic counselling of patients with calpainopathy and single-allele aberrations in CAPN3.


Assuntos
Calpaína/genética , Deleção de Genes , Proteínas Musculares/genética , Distrofia Muscular do Cíngulo dos Membros/genética , Distrofia Muscular do Cíngulo dos Membros/fisiopatologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Genes Dominantes , Heterozigoto , Humanos , Masculino , Pessoa de Meia-Idade , Linhagem , Adulto Jovem
13.
EMBO Mol Med ; 7(6): 695-713, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25825391

RESUMO

Iron-sulfur (Fe-S) clusters are essential for mitochondrial metabolism, but their regulation in pulmonary hypertension (PH) remains enigmatic. We demonstrate that alterations of the miR-210-ISCU1/2 axis cause Fe-S deficiencies in vivo and promote PH. In pulmonary vascular cells and particularly endothelium, hypoxic induction of miR-210 and repression of the miR-210 targets ISCU1/2 down-regulated Fe-S levels. In mouse and human vascular and endothelial tissue affected by PH, miR-210 was elevated accompanied by decreased ISCU1/2 and Fe-S integrity. In mice, miR-210 repressed ISCU1/2 and promoted PH. Mice deficient in miR-210, via genetic/pharmacologic means or via an endothelial-specific manner, displayed increased ISCU1/2 and were resistant to Fe-S-dependent pathophenotypes and PH. Similar to hypoxia or miR-210 overexpression, ISCU1/2 knockdown also promoted PH. Finally, cardiopulmonary exercise testing of a woman with homozygous ISCU mutations revealed exercise-induced pulmonary vascular dysfunction. Thus, driven by acquired (hypoxia) or genetic causes, the miR-210-ISCU1/2 regulatory axis is a pathogenic lynchpin causing Fe-S deficiency and PH. These findings carry broad translational implications for defining the metabolic origins of PH and potentially other metabolic diseases sharing similar underpinnings.


Assuntos
Predisposição Genética para Doença , Hipertensão Pulmonar/genética , Hipóxia/complicações , Deficiências de Ferro , Proteínas Ferro-Enxofre/genética , MicroRNAs/genética , Enxofre/deficiência , Animais , Células Cultivadas , Células Endoteliais/fisiologia , Feminino , Humanos , Hipertensão Pulmonar/etiologia , Hipertensão Pulmonar/patologia , Camundongos
14.
PLoS Genet ; 10(6): e1004424, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24901367

RESUMO

Identifying the genetic basis for mitochondrial diseases is technically challenging given the size of the mitochondrial proteome and the heterogeneity of disease presentations. Using next-generation exome sequencing, we identified in a patient with severe combined mitochondrial respiratory chain defects and corresponding perturbation in mitochondrial protein synthesis, a homozygous p.Arg323Gln mutation in TRIT1. This gene encodes human tRNA isopentenyltransferase, which is responsible for i6A37 modification of the anticodon loops of a small subset of cytosolic and mitochondrial tRNAs. Deficiency of i6A37 was previously shown in yeast to decrease translational efficiency and fidelity in a codon-specific manner. Modelling of the p.Arg323Gln mutation on the co-crystal structure of the homologous yeast isopentenyltransferase bound to a substrate tRNA, indicates that it is one of a series of adjacent basic side chains that interact with the tRNA backbone of the anticodon stem, somewhat removed from the catalytic center. We show that patient cells bearing the p.Arg323Gln TRIT1 mutation are severely deficient in i6A37 in both cytosolic and mitochondrial tRNAs. Complete complementation of the i6A37 deficiency of both cytosolic and mitochondrial tRNAs was achieved by transduction of patient fibroblasts with wild-type TRIT1. Moreover, we show that a previously-reported pathogenic m.7480A>G mt-tRNASer(UCN) mutation in the anticodon loop sequence A36A37A38 recognised by TRIT1 causes a loss of i6A37 modification. These data demonstrate that deficiencies of i6A37 tRNA modification should be considered a potential mechanism of human disease caused by both nuclear gene and mitochondrial DNA mutations while providing insight into the structure and function of TRIT1 in the modification of cytosolic and mitochondrial tRNAs.


Assuntos
Alquil e Aril Transferases/genética , Doenças Mitocondriais/genética , Sulfurtransferases/genética , Células Cultivadas , Deficiência de Citocromo-c Oxidase/genética , Citosol , DNA Mitocondrial/genética , Transporte de Elétrons/genética , Complexo IV da Cadeia de Transporte de Elétrons/genética , Feminino , Humanos , Masculino , Mitocôndrias/genética , Biossíntese de Proteínas/genética , RNA/genética , RNA Mitocondrial , RNA de Transferência/genética , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Schizosaccharomyces/enzimologia , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética
15.
PLoS One ; 9(1): e86340, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24466038

RESUMO

Spastic paraplegia 7 is an autosomal recessive disorder caused by mutations in the gene encoding paraplegin, a protein located at the inner mitochondrial membrane and involved in the processing of other mitochondrial proteins. The mechanism whereby paraplegin mutations cause disease is unknown. We studied two female and two male adult patients from two Norwegian families with a combination of progressive external ophthalmoplegia and spastic paraplegia. Sequencing of SPG7 revealed a novel missense mutation, c.2102A>C, p.H 701P, which was homozygous in one family and compound heterozygous in trans with a known pathogenic mutation c.1454_1462del in the other. Muscle was examined from an additional, unrelated adult female patient with a similar phenotype caused by a homozygous c.1047insC mutation in SPG7. Immunohistochemical studies in skeletal muscle showed mosaic deficiency predominantly affecting respiratory complex I, but also complexes III and IV. Molecular studies in single, microdissected fibres showed multiple mitochondrial DNA deletions segregating at high levels (38-97%) in respiratory deficient fibres. Our findings demonstrate for the first time that paraplegin mutations cause accumulation of mitochondrial DNA damage and multiple respiratory chain deficiencies. While paraplegin is not known to be directly associated with the mitochondrial nucleoid, it is known to process other mitochondrial proteins and it is possible therefore that paraplegin mutations lead to mitochondrial DNA deletions by impairing proteins involved in the homeostasis of the mitochondrial genome. These studies increase our understanding of the molecular pathogenesis of SPG7 mutations and suggest that SPG7 testing should be included in the diagnostic workup of autosomal recessive, progressive external ophthalmoplegia, especially if spasticity is present.


Assuntos
DNA Mitocondrial , Deleção de Sequência , Paraplegia Espástica Hereditária/genética , ATPases Associadas a Diversas Atividades Celulares , Idoso , Biópsia , Encéfalo/patologia , Encéfalo/fisiopatologia , Consanguinidade , Eletroencefalografia , Eletromiografia , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Metaloendopeptidases/genética , Pessoa de Meia-Idade , Mitocôndrias Musculares/genética , Músculo Esquelético/patologia , Músculo Esquelético/fisiopatologia , Linhagem , Paraplegia Espástica Hereditária/diagnóstico
16.
BMC Neurol ; 13: 55, 2013 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-23725534

RESUMO

BACKGROUND: We report a case of childhood onset, generalized dystonia due to slowly progressive bilateral striatal necrosis associated with anti-N-methyl-D-aspartate receptor (NMDAR) antibodies. This clinical phenotype has not been previously associated with NMDA receptor autoimmunity. CASE PRESENTATION: An eighteen year old man presented with a history of childhood-onset, progressive generalized dystonia. Clinical examination revealed a pure generalized dystonia with no cognitive or other neurological findings. Magnetic resonance imaging showed bilateral high T2 signal striatal lesions, which were slowly progressive over a period of nine years. New parts of the lesion showed restricted water diffusion suggesting cytotoxic oedema. Positron emission tomography of the brain showed frontal hypermetabolism and cerebellar hypometabolism. Antibodies against the NR1 subunit of the NMDA receptor were detected in the patient's serum and cerebrospinal fluid. There was no neoplasia or preceding infection or vaccination. CONCLUSION: This is the first report of chronic progressive bilateral striatal necrosis associated with anti-NMDAR antibodies. Our findings expand the clinical spectrum of disease associated with anti-NMDAR antibodies and suggest that these should be included in the work-up of dystonia with striatal necrosis.


Assuntos
Anticorpos/metabolismo , Encefalopatias/patologia , Corpo Estriado/patologia , Receptores de N-Metil-D-Aspartato/imunologia , Adolescente , Encefalopatias/tratamento farmacológico , Encefalopatias/fisiopatologia , Corpo Estriado/diagnóstico por imagem , Progressão da Doença , Fluordesoxiglucose F18 , Humanos , Imunoglobulinas Intravenosas/uso terapêutico , Fatores Imunológicos/uso terapêutico , Masculino , Necrose/diagnóstico por imagem , Necrose/patologia , Tomografia por Emissão de Pósitrons , Tomografia Computadorizada por Raios X
17.
Neuromuscul Disord ; 22(4): 350-4, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22153989

RESUMO

We report four cases of focal myositis. The patients, three men and one woman, had painful muscle hypertrophy, affecting four different sites. MRI confirmed the muscle enlargement and oedema. Electromyography revealed evidence of acute and chronic denervation in all four cases. Muscle biopsy was available in three and confirmed features suggestive of focal myositis. Based on our patient material, we suggest that chronic nerve irritation, such as compression, can lead to muscle hypertrophy which, when prolonged, provokes fibre necrosis and secondary inflammation. Our finding in four patients having hypertrophy involving four different sites, leads us further to suggest that this may be the common mechanism behind focal myositis.


Assuntos
Músculo Esquelético/patologia , Miosite/diagnóstico , Adulto , Idoso , Eletromiografia , Feminino , Humanos , Hipertrofia , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Miosite/etiologia , Radiculopatia/complicações , Radiculopatia/diagnóstico
18.
Am J Med Genet A ; 155A(10): 2397-408, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22043478

RESUMO

Osteopathia striata with cranial sclerosis (OSCS) is an X-linked disease caused by truncating mutations in WTX. Females exhibit sclerotic striations on the long bones, cranial sclerosis, and craniofacial dysmorphism. Males with OSCS have significant skeletal sclerosis, do not have striations but do display a more severe phenotype commonly associated with gross structural malformations, patterning defects, and significant pre- and postnatal lethality. The recent description of mutations in WTX underlying OSCS has led to the identification of a milder, survivable phenotype in males. Individuals with this presentation can have, in addition to skeletal sclerosis, Hirschsprung disease, joint contractures, cardiomyopathy, and neuromuscular anomalies. A diagnosis of OSCS should be considered in males with macrocephaly, skeletal sclerosis that is most marked in the cranium and the absence of metaphyseal striations. The observation of striations in males may be indicative of a WTX mutation in a mosaic state supporting the contention that this sign in females is indicative of the differential lyonization of cells in the osteoblastic lineage.


Assuntos
Doenças Genéticas Ligadas ao Cromossomo X/patologia , Osteosclerose/patologia , Fenótipo , Proteínas Adaptadoras de Transdução de Sinal/genética , Osso e Ossos/patologia , Análise Mutacional de DNA , Primers do DNA/genética , Feminino , Doenças Genéticas Ligadas ao Cromossomo X/genética , Humanos , Luciferases , Masculino , Megalencefalia/patologia , Osteosclerose/genética , Proteínas Supressoras de Tumor/genética
19.
Lancet Neurol ; 10(9): 806-18, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21820356

RESUMO

BACKGROUND: Muscle biopsy is the gold standard for diagnosis of mitochondrial disorders because of the lack of sensitive biomarkers in serum. Fibroblast growth factor 21 (FGF-21) is a growth factor with regulatory roles in lipid metabolism and the starvation response, and concentrations are raised in skeletal muscle and serum in mice with mitochondrial respiratory chain deficiencies. We investigated in a retrospective diagnostic study whether FGF-21 could be a biomarker for human mitochondrial disorders. METHODS: We assessed samples from adults and children with mitochondrial disorders or non-mitochondrial neurological disorders (disease controls) from seven study centres in Europe and the USA, and recruited healthy volunteers (healthy controls), matched for age where possible, from the same centres. We used ELISA to measure FGF-21 concentrations in serum or plasma samples (abnormal values were defined as >200 pg/mL). We compared these concentrations with values for lactate, pyruvate, lactate-to-pyruvate ratio, and creatine kinase in serum or plasma and calculated sensitivity, specificity, and positive and negative predictive values for all biomarkers. FINDINGS: We analysed serum or plasma from 67 patients (41 adults and 26 children) with mitochondrial disorders, 34 disease controls (22 adults and 12 children), and 74 healthy controls. Mean FGF-21 concentrations in serum were 820 (SD 1151) pg/mL in adult and 1983 (1550) pg/mL in child patients with respiratory chain deficiencies and 76 (58) pg/mL in healthy controls. FGF-21 concentrations were high in patients with mitochondrial disorders affecting skeletal muscle but not in disease controls, including those with dystrophies. In patients with abnormal FGF-21 concentrations in serum, the odds ratio of having a muscle-manifesting mitochondrial disease was 132·0 (95% CI 38·7-450·3). For the identification of muscle-manifesting mitochondrial disease, the sensitivity was 92·3% (95% CI 81·5-97·9%) and specificity was 91·7% (84·8-96·1%). The positive and negative predictive values for FGF-21 were 84·2% (95% CI 72·1-92·5%) and 96·1 (90·4-98·9%). The accuracy of FGF-21 to correctly identify muscle-manifesting respiratory chain disorders was better than that for all conventional biomarkers. The area under the receiver-operating-characteristic curve for FGF-21 was 0·95; by comparison, the values for other biomarkers were 0·83 lactate (p=0·037, 0·83 for pyruvate (p=0·015), 0·72 for the lactate-to-pyruvate ratio (p=0·0002), and 0·77 for creatine kinase (p=0·013). INTERPRETATION: Measurement of FGF-21 concentrations in serum identified primary muscle-manifesting respiratory chain deficiencies in adults and children and might be feasible as a first-line diagnostic test for these disorders to reduce the need for muscle biopsy. FUNDING: Sigrid Jusélius Foundation, Jane and Aatos Erkko Foundation, Molecular Medicine Institute of Finland, University of Helsinki, Helsinki University Central Hospital, Academy of Finland, Novo Nordisk, Arvo and Lea Ylppö Foundation.


Assuntos
Fatores de Crescimento de Fibroblastos/sangue , Doenças Mitocondriais/sangue , Doenças Mitocondriais/diagnóstico , Músculo Esquelético/metabolismo , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores/sangue , Biomarcadores/metabolismo , Criança , Pré-Escolar , Feminino , Fatores de Crescimento de Fibroblastos/metabolismo , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Doenças Mitocondriais/metabolismo , Estudos Retrospectivos , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA