Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 218
Filtrar
1.
Cancer Lett ; : 217010, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38849016

RESUMO

In cancer, synthetic lethality refers to the drug-induced inactivation of one gene and the inhibition of another in cancer cells by a drug, resulting in the death of only cancer cells; however, this effect is not present in normal cells, leading to targeted killing of cancer cells. Recent intensive epigenetic research has revealed that aberrant epigenetic changes are more frequently observed than gene mutations in certain cancers. Recently, numerous studies have reported various methylation synthetic lethal combinations involving DNA damage repair genes, metabolic pathway genes, and paralogs with significant results in cellular models, some of which have already entered clinical trials with promising results. This review systematically introduces the advantages of methylation synthetic lethality and describes the lethal mechanisms of methylation synthetic lethal combinations that have recently demonstrated success in cellular models. Furthermore, we discuss the future opportunities and challenges of methylation synthetic lethality in targeted anticancer therapies.

2.
J Environ Manage ; 359: 121085, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38728986

RESUMO

Anaerobic digestion (AD) is a promising technique for waste management, which can achieve sludge stabilization and energy recovery. This study successfully prepared Fe3O4@ceramsite from WAS and applied it as an additive in sludge digestion, aiming to improve the conversion of organics to biomethane efficiency. Results showed that after adding the Fe3O4@ceramsite, the methane production was enhanced by 34.7% compared with the control group (88.0 ± 0.1 mL/g VS). Further mechanisms investigation revealed that Fe3O4@ceramsite enhanced digesta stability by strong buffering capacity, improved sludge conductivity, and promoted Fe (III) reduction. Moreover, Fe3O4@ceramsite has a larger surface area and better porous structure, which also facilitated AD performance. Microbial community analysis showed that some functional anaerobes related to AD such as Spirochaeta and Smithella were enriched with Fe3O4@ceramsite treatment. Potential syntrophic metabolisms between syntrophic bacteria (Syntrophomonas, associated with DIET) and methanogens were also detected in the Fe3O4@ceramsite treatment AD system.


Assuntos
Metano , Esgotos , Anaerobiose , Metano/metabolismo , Compostos Férricos , Eliminação de Resíduos Líquidos/métodos
3.
BMC Cancer ; 24(1): 549, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38693523

RESUMO

BACKGROUND: Accurate assessment of axillary status after neoadjuvant therapy for breast cancer patients with axillary lymph node metastasis is important for the selection of appropriate subsequent axillary treatment decisions. Our objectives were to accurately predict whether the breast cancer patients with axillary lymph node metastases could achieve axillary pathological complete response (pCR). METHODS: We collected imaging data to extract longitudinal CT image features before and after neoadjuvant chemotherapy (NAC), analyzed the correlation between radiomics and clinicopathological features, and developed models to predict whether patients with axillary lymph node metastasis can achieve axillary pCR after NAC. The clinical utility of the models was determined via decision curve analysis (DCA). Subgroup analyses were also performed. Then, a nomogram was developed based on the model with the best predictive efficiency and clinical utility and was validated using the calibration plots. RESULTS: A total of 549 breast cancer patients with metastasized axillary lymph nodes were enrolled in this study. 42 independent radiomics features were selected from LASSO regression to construct a logistic regression model with clinicopathological features (LR radiomics-clinical combined model). The AUC of the LR radiomics-clinical combined model prediction performance was 0.861 in the training set and 0.891 in the testing set. For the HR + /HER2 - , HER2 + , and Triple negative subtype, the LR radiomics-clinical combined model yields the best prediction AUCs of 0.756, 0.812, and 0.928 in training sets, and AUCs of 0.757, 0.777 and 0.838 in testing sets, respectively. CONCLUSIONS: The combination of radiomics features and clinicopathological characteristics can effectively predict axillary pCR status in NAC breast cancer patients.


Assuntos
Axila , Neoplasias da Mama , Linfonodos , Metástase Linfática , Terapia Neoadjuvante , Nomogramas , Tomografia Computadorizada por Raios X , Humanos , Feminino , Neoplasias da Mama/patologia , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/tratamento farmacológico , Metástase Linfática/diagnóstico por imagem , Pessoa de Meia-Idade , Linfonodos/patologia , Linfonodos/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Terapia Neoadjuvante/métodos , Adulto , Idoso , Estudos Retrospectivos , Radiômica
4.
Environ Sci Technol ; 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38817146

RESUMO

The feasibility of a synergistic endogenous partial denitrification-phosphorus removal coupled anammox (SEPD-PR/A) system was investigated in a modified anaerobic baffled reactor (mABR) for synchronous carbon, nitrogen, and phosphorus removal. The mABR comprising four identical compartments (i.e., C1-C4) was inoculated with precultured denitrifying glycogen-accumulating organisms (DGAOs), denitrifying polyphosphate-accumulating organisms, and anammox bacteria. After 136 days of operation, the chemical oxygen demand (COD), total nitrogen, and phosphorus removal efficiencies reached 88.6 ± 1.0, 97.2 ± 1.5, and 89.1 ± 4.2%, respectively. Network-based analysis revealed that the biofilmed community demonstrated stable nutrient removal performance under oligotrophic conditions in C4. The metagenome-assembled genomes (MAGs) such as MAG106, MAG127, MAG52, and MAG37 annotated as denitrifying phosphorus-accumulating organisms (DPAOs) and MAG146 as a DGAO were dominated in C1 and C2 and contributed to 89.2% of COD consumption. MAG54 and MAG16 annotated as Candidatus_Brocadia (total relative abundance of 16.5% in C3 and 4.3% in C4) were responsible for 74.4% of the total nitrogen removal through the anammox-mediated pathway. Functional gene analysis based on metagenomic sequencing confirmed that different compartments of the mABR were capable of performing distinct functions with specific advantageous microbial groups, facilitating targeted nutrient removal. Additionally, under oligotrophic conditions, the activity of the anammox bacteria-related genes of hzs was higher compared to that of hdh. Thus, an innovative method for the treatment of low-strength municipal and nitrate-containing wastewaters without aeration was presented, mediated by an anammox process with less land area and excellent quality effluent.

5.
Environ Int ; 188: 108778, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38815467

RESUMO

With the discovery of evidence that many endocrine-disrupting chemicals (EDCs) in the environment influence human health, their toxic effects and mechanisms have become a hot topic of research. However, investigations into their endocrine-disrupting toxicity under combined binary exposure, especially the molecular mechanism of combined effects, have rarely been documented. In this study, two typical EDCs, perfluorooctanoic acid (PFOA) and 4-hydroxybenzophenone (4-HBP), were selected to examine their combined effects and molecular mechanism on MCF-7 cell proliferation at environmentally relevant exposure concentrations. We have successfully established a model to evaluate the binary combined toxic effects of endocrine disruptors, presenting combined effects in a simple and direct way. Results indicated that the combined effect changed from additive to synergistic from 1.25 × 10-8 M to 4 × 10-7 M. Metabolomics analyses suggested that exposure to PFOA and 4-HBP caused significant alterations in purine metabolism, arginine, and proline metabolism and had superimposed influences on metabolism. Enhanced combined effects were observed in glycine, serine, and threonine metabolic pathways compared to exposure to PFOS and 4-HBP alone. Additionally, the differentially expressed genes (DEGs) are primarily involved in Biological Processes, especially protein targeting the endoplasmic reticulum, and significantly impact the oxidative phosphorylation and thermogenesis-related KEGG pathway. By integrating metabolome and transcriptome analyses, PFOA and 4-HBP regulate purine metabolism, the TCA cycle, and endoplasmic reticulum protein synthesis in MCF-7 cells via mTORC1, which provides genetic material, protein, and energy for cell proliferation. Furthermore, molecular docking confirmed the ability of PFOA and 4-HBP to stably bind the estrogen receptor, indicating that they have different binding pockets. Collectively, these findings will offer new insights into understanding the mechanisms by which EDCs produce combined toxicity.


Assuntos
Caprilatos , Disruptores Endócrinos , Fluorocarbonos , Humanos , Caprilatos/toxicidade , Células MCF-7 , Disruptores Endócrinos/toxicidade , Fluorocarbonos/toxicidade , Proliferação de Células/efeitos dos fármacos , Parabenos/toxicidade , Metabolômica , Multiômica
6.
Cell Biosci ; 14(1): 66, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38783336

RESUMO

BACKGROUND: Human patients often experience an episode of serious seizure activity, such as status epilepticus (SE), prior to the onset of temporal lobe epilepsy (TLE), suggesting that SE can trigger the development of epilepsy. Yet, the underlying mechanisms are not fully understood. The low-density lipoprotein receptor related protein (Lrp4), a receptor for proteoglycan-agrin, has been indicated to modulate seizure susceptibility. However, whether agrin-Lrp4 pathway also plays a role in the development of SE-induced TLE is not clear. METHODS: Lrp4f/f mice were crossed with hGFAP-Cre and Nex-Cre mice to generate brain conditional Lrp4 knockout mice (hGFAP-Lrp4-/-) and pyramidal neuron specific knockout mice (Nex-Lrp4-/-). Lrp4 was specifically knocked down in hippocampal astrocytes by injecting AAV virus carrying hGFAP-Cre into the hippocampus. The effects of agrin-Lrp4 pathway on the development of SE-induced TLE were evaluated on the chronic seizure model generated by injecting kainic acid (KA) into the amygdala. The spontaneous recurrent seizures (SRS) in mice were video monitored. RESULTS: We found that Lrp4 deletion from the brain but not from the pyramidal neurons elevated the seizure threshold and reduced SRS numbers, with no change in the stage or duration of SRS. More importantly, knockdown of Lrp4 in the hippocampal astrocytes after SE induction decreased SRS numbers. In accord, direct injection of agrin into the lateral ventricle of control mice but not mice with Lrp4 deletion in hippocampal astrocytes also increased the SRS numbers. These results indicate a promoting effect of agrin-Lrp4 signaling in hippocampal astrocytes on the development of SE-induced TLE. Last, we observed that knockdown of Lrp4 in hippocampal astrocytes increased the extracellular adenosine levels in the hippocampus 2 weeks after SE induction. Blockade of adenosine A1 receptor in the hippocampus by DPCPX after SE induction diminished the effects of Lrp4 on the development of SE-induced TLE. CONCLUSION: These results demonstrate a promoting role of agrin-Lrp4 signaling in hippocampal astrocytes in the development of SE-induced development of epilepsy through elevating adenosine levels. Targeting agrin-Lrp4 signaling may serve as a potential therapeutic intervention strategy to treat TLE.

7.
World J Gastroenterol ; 30(11): 1497-1523, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38617454

RESUMO

Esophageal squamous cell carcinoma (ESCC) is a malignant epithelial tumor, characterized by squamous cell differentiation, it is the sixth leading cause of cancer-related deaths globally. The increased mortality rate of ESCC patients is predominantly due to the advanced stage of the disease when discovered, coupled with higher risk of metastasis, which is an exceedingly malignant characteristic of cancer, frequently leading to a high mortality rate. Unfortunately, there is currently no specific and effective marker to predict and treat metastasis in ESCC. MicroRNAs (miRNAs) are a class of small non-coding RNA molecules, approximately 22 nucleotides in length. miRNAs are vital in modulating gene expression and serve pivotal regulatory roles in the occurrence, progression, and prognosis of cancer. Here, we have examined the literature to highlight the intimate correlations between miRNAs and ESCC metastasis, and show that ESCC metastasis is predominantly regulated or regulated by genetic and epigenetic factors. This review proposes a potential role for miRNAs as diagnostic and therapeutic biomarkers for metastasis in ESCC metastasis, with the ultimate aim of reducing the mortality rate among patients with ESCC.


Assuntos
Carcinoma , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , MicroRNAs , Humanos , MicroRNAs/genética , Carcinoma de Células Escamosas do Esôfago/genética , Neoplasias Esofágicas/genética , Epigenômica
8.
Foods ; 13(6)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38540809

RESUMO

The nonantimicrobial properties and relatively poor mechanical properties of hydroxyethyl cellulose (HEC) limit its use in packaging. Sulfated rice bran polysaccharides (SRBP) possess significant antioxidant and antimicrobial activities. The purpose of this study was to investigate the effect of different concentrations of SRBP on the physical and mechanical properties and the functional characteristics of HEC/SRBP films. The physical properties of the HEC/20% SRBP films, such as water resistance, water vapor barrier, light barrier, and tensile strength, improved significantly (p < 0.05) compared with those of the HEC films. Scanning electron microscopy and Fourier transform infrared spectrometry showed that HEC formed hydrogen bonds with SRBP and exhibited better compatibility. Thermogravimetric analysis revealed that the addition of SRBP was beneficial to the thermal stability of the films. In addition, the antioxidant and bacteriostatic properties of the films were enhanced by the addition of SRBP to HEC, with the 20% SRBP films showing the most significant enhancement in activity. Therefore, the HEC/20% SRBP films show potential for development for use as active food packaging.

9.
Sci Total Environ ; 926: 172025, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38554954

RESUMO

Adsorption, which is a quick and effective method for phosphate management, can effectively address the crisis of phosphorus mineral resources and control eutrophication. Phosphate management systems typically use iron-containing nanominerals (ICNs) with large surface areas and high activity, as well as modified ICNs (mICNs). This paper comprehensively reviews phosphate management by ICNs and mICNs in different water environments. mICNs have a higher affinity for phosphates than ICNs. Phosphate adsorption on ICNs and mICNs occurs through mechanisms such as surface complexation, surface precipitation, electrostatic ligand exchange, and electrostatic attraction. Ionic strength influences phosphate adsorption by changing the surface potential and isoelectric point of ICNs and mICNs. Anions exhibit inhibitory effects on ICNs and mICNs in phosphate adsorption, while cations display a promoting effect. More importantly, high concentrations and molecular weights of natural organic matter can inhibit phosphate adsorption by ICNs and mICNs. Sodium hydroxide has high regeneration capability for ICNs and mICNs. Compared to ICNs with high crystallinity, those with low crystallinity are less likely to desorb. ICNs and mICNs can effectively manage municipal wastewater, eutrophic seawater, and eutrophic lakes. Adsorption of ICNs and mICNs saturated with phosphate can be used as fertilizers in agricultural production. Notably, mICNs and ICNs have positive and negative effects on microorganisms and aquatic organisms in soil. Finally, this study introduces the following: trends and prospects of machine learning-guided mICN design, novel methods for modified ICNs, mICN regeneration, development of mICNs with high adsorption capacity and selectivity for phosphate, investigation of competing ions in different water environments by mICNs, and trends and prospects of in-depth research on the adsorption mechanism of phosphate by weakly crystalline ferrihydrite. This comprehensive review can provide novel insights into the research on high-performance mICNs for phosphate management in the future.

10.
Int J Biol Macromol ; 264(Pt 2): 130768, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38467228

RESUMO

Lanthanide luminescent hydrogels have broad application prospects in various fields. However, most of lanthanide hydrogels possess relatively simple functions, which is not conducive to practical applications. Therefore, it is becoming increasingly urgent to develop multifunctional hydrogels. Herein, a multifunctional chitosan-based lanthanide luminescent hydrogel with ultra-stretchability, multi-adhesion, excellent self-healing, emission color tunability, and good antibacterial ability was prepared by a simple one-step free radical polymerization. In this work, our designed lanthanide complexes [Ln(4-VDPA)3] contain three reaction sites, which can be copolymerized with N-[tris(hydroxymethyl) methyl] acrylamide (THMA), acrylamide (AM), and diacryloyl poly(ethylene glycol) (DPEG) to form the first chemical crosslinking network, while hydroxypropyltrimethyl ammonium chloride chitosan (HACC) interacts with the hydroxyl and amino groups derived from the chemical crosslinking network through hydrogen bonds to form the second physical crosslinking network. The structure of the double network as well as the dynamic hydrogen bond and lanthanide coordination endow the hydrogel with excellent stretchability, adhesion and self-healing properties. Moreover, the introduction of lanthanide complexes and chitosan makes the hydrogel exhibit outstanding luminescence and antibacterial performances. This research not only realizes the simple synthesis of multifunctional luminescent hydrogels, but also provides a new idea for the fabrication of biomass-based hydrogels as intelligent and sustainable materials.


Assuntos
Quitosana , Elementos da Série dos Lantanídeos , Prunella , Hidrogéis , Luminescência , Acrilamida , Antibacterianos/farmacologia , Aderências Teciduais
11.
Cell Rep ; 43(3): 113905, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38446660

RESUMO

Motivation-driven mating is a basic affair for the maintenance of species. However, the underlying molecular mechanisms that control mating motivation are not fully understood. Here, we report that NRG1-ErbB4 signaling in the medial amygdala (MeA) is pivotal in regulating mating motivation. NRG1 expression in the MeA negatively correlates with the mating motivation levels in adult male mice. Local injection and knockdown of MeA NRG1 reduce and promote mating motivation, respectively. Consistently, knockdown of MeA ErbB4, a major receptor for NRG1, and genetic inactivation of its kinase both promote mating motivation. ErbB4 deletion decreases neuronal excitability, whereas chemogenetic manipulations of ErbB4-positive neuronal activities bidirectionally modulate mating motivation. We also identify that the effects of NRG1-ErbB4 signaling on neuronal excitability and mating motivation rely on hyperpolarization-activated cyclic nucleotide-gated channel 3. This study reveals a critical molecular mechanism for regulating mating motivation in adult male mice.


Assuntos
Motivação , Transdução de Sinais , Camundongos , Masculino , Animais , Neurônios/metabolismo , Receptor ErbB-4/metabolismo , Tonsila do Cerebelo/metabolismo , Neuregulina-1/metabolismo
12.
Zhen Ci Yan Jiu ; 49(2): 208-219, 2024 Feb 25.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-38413043

RESUMO

OBJECTIVES: To evaluate the efficacy of acupuncture in the treatment of postoperative gastrointestinal dysfunction(POGD) of colorectal cancer. METHODS: Randomized controlled trials of acupuncture in the treatment of POGD were retrieved from 7 databases including PubMed, Embase, Cochrane Library, China National Knowledge Infrastructure, VIP Chinese Journal Service Platform, WanFang Data Knowledge Service Platform, and China Biology Medicine disc. The search period ranged from the inception of the databases to November 10th, 2022. The quality of the included literature was assessed using the Cochrane bias risk assessment tool and the modified Jadad scale. Meta analysis was conducted using RevMan 5.4. Regression analysis and bias risk analysis were performed using Stata 16.0. Trial sequential analysis was conducted using TSA 0.9 software. RESULTS: A total of 27 randomized controlled trials involving 2 629 patients were included. Intervention measures included manual acupuncture, electroacupuncture, transcutaneous acupoint electrical stimulation, warm acupuncture, and thumb-tack needle. The results showed that acupuncture treatment significantly reduced time to tolerance of liquid diet after surgery (MD=-13.70, 95% CI=ï¼»-17.94, -9.46ï¼½, P<0.000 01), time to first defecation (MD=-18.20, 95% CI=ï¼»-22.62, -13.78ï¼½, P<0.000 01), time to first flatus (MD=-16.31, 95% CI=ï¼»-20.32, -12.31ï¼½, P<0.000 01), time to bowel sounds recovery (MD=-11.91, 95% CI=ï¼»-14.01, -9.81ï¼½, P<0.000 01), and length of hospital stay (MD=-1.49, 95% CI=ï¼»-2.27, -0.70ï¼½, P=0.000 2). Regression analysis indicated that cancer type, study quality and number of acupuncture were the main sources of heterogeneity. Bias analysis suggested potential publication bias risks. Trial sequential analysis indicated that the required number of cases had been met and the conclusion was reliable. CONCLUSIONS: Acupuncture is an effective intervention for promoting gastrointestinal recovery in patients undergoing colorectal cancer surgery. Further large-sample and well-designed clinical trials are still needed to compare different acupuncture techniques.


Assuntos
Terapia por Acupuntura , Neoplasias Colorretais , Eletroacupuntura , Gastroenteropatias , Humanos , Terapia por Acupuntura/métodos , Eletroacupuntura/métodos , Resultado do Tratamento , Neoplasias Colorretais/cirurgia , Ensaios Clínicos Controlados Aleatórios como Assunto
13.
Heliyon ; 10(3): e25315, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38322883

RESUMO

Ventricular septal rupture (VSR) is a catastrophic mechanical complication of acute myocardial infarction (AMI) that can result in acute heart failure. Delaying operative intervention frequently leads to cardiogenic shock and multi-organ failure. Here we report a case of massive anterior MI complicated with VSR that was discovered through cardiac Doppler ultrasound and suspected multiple organ hemorrhage. The patient showed signs of rapid cardiogenic shock and eventually died. The morphological changes of VSR and MI were identified during necropsy, and microscopic examinations of the heart, brain, and kidney revealed multiple organ hemorrhage. This autopsy case suggested that the complication of VSR caused by AMI results in a reduction of oxygen and nutrient content of the circulating blood throughout the body and, eventually, functional failure of multiple organs. We provide clinical and pathological evidence elucidating changes in multiple organs under the severe condition of post-infarction VSR and demonstrate the consequences of a lack of immediate surgery and sufficient medical intervention for a patient suffering from AMI with VSR.

14.
Sci Total Environ ; 912: 168881, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38042200

RESUMO

Polyfluoroalkyl and perfluoroalkyl (PFAS) chemicals are fluorinated and exhibit complicated behavior. They are determined and highly resistant to ecological modifications that render plants ecologically robust. Thermal stability and water and oil resistance are examples of material qualities. Their adverse consequences are causing increasing worry due to their bioaccumulative nature in humans and other creatures. Direct data indicates that PFAS exposure in humans causes endocrine system disruption, immune system suppression, obesity, increased cholesterol, and cancer. Several PFASs are present in drinking water at low doses and may harm people. These cancer-causing PFAS have caused concern for water bodies all around the globe. Analytical techniques are used to identify and measure PFAS in an aqueous medium (membrane). Furthermore, a deeper explanation is provided for PFAS removal methods, including mixed matrix membrane (MMM) technology. By removing over 99 % of the PFAS from wastewater, MMMs may effectively remove PFAS from sewage when the support matrix contains adsorbing components. Furthermore, we consider several factors affecting the removal of PFAS and practical sorption methods for PFAS onto various adsorbents.


Assuntos
Água Potável , Fluorocarbonos , Neoplasias , Poluentes Químicos da Água , Humanos , Águas Residuárias , Fluorocarbonos/análise , Poluentes Químicos da Água/análise
15.
Reprod Sci ; 31(1): 248-259, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37644378

RESUMO

Prostaglandin F2α (PGF2α) is a luteolytic hormone that promotes parturition in mammals at the end of pregnancy by reducing progesterone secretion from the corpus luteum (CL). In rodents and primates, PGF2α rapidly converts progesterone to 20α-hydroxyprogesterone (20α-OHP) by promoting 20α-hydroxysteroid dehydrogenase (20α-HSD) expression. However, the specific mechanism of 20α-HSD regulation by PGF2α remains unclear. Casein Kinase 1α (CK1α) is a CK1 family member that regulates a variety of physiological functions, including reproductive development. Here, we investigated the effects of CK1α on pregnancy in female mice. Our experiments showed that CK1α is expressed in mouse CL, and its inhibition enhanced progesterone metabolism, decreased progesterone levels, and affected mouse embryo implantation. Further, CK1α mediated the effect of PGF2α on 20α-HSD in mouse luteal cells in vitro. Our results are the first to show that CK1α affects the 20α-HSD mRNA level by affecting the ERK signalling pathway to regulate the expression of the transcription factor SP1. These findings improve our understanding of PGF2α regulation of 20α-HSD.


Assuntos
Dinoprosta , Progesterona , Gravidez , Camundongos , Feminino , Animais , Progesterona/farmacologia , Progesterona/metabolismo , Dinoprosta/farmacologia , 20-Hidroxiesteroide Desidrogenases/genética , 20-Hidroxiesteroide Desidrogenases/metabolismo , Corpo Lúteo/metabolismo , Parto , Mamíferos/metabolismo
16.
J Environ Manage ; 351: 119973, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38160547

RESUMO

Wastes recycling and reutilization technique could simultaneously fulfill waste control and energy recovery sustainably, which has attracted increasing attention. This work proposed a novel waste reuse technology utilizing ceramsite and amended Fe2O3-ceramsite made from waste activated sludge (WAS) as additives to promote the yield of methane from WAS anaerobic digestion (AD). Experimental results demonstrated that compared to the control (85.05 ± 0.2 mL CH4/g-VS), the cumulative methane yield was effectively enhanced by 14% and 40% when ceramsite and Fe2O3-ceramsite were added. Further investigation revealed that ceramsite, especially the Fe2O3-ceramsite, enriched the populations of key anaerobes involved in hydrolysis, acidification, and methanogenesis. Meanwhile, potential syntrophic metabolisms between syntrophic bacteria and methanogens were confirmed in the Fe2O3-ceramsite AD system. Mechanisms studies exhibited that ceramsite and Fe2O3-ceramsite reinforced intermediate processes for methane production. The favorable pore structure, enhanced Fe (III) reduction capacity and conductivity also contributed a lot to the AD process.


Assuntos
Bactérias Anaeróbias , Misturas Complexas , Esgotos , Anaerobiose , Esgotos/química , Bactérias Anaeróbias/metabolismo , Metano , Reatores Biológicos , Eliminação de Resíduos Líquidos/métodos
17.
Biomolecules ; 13(12)2023 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-38136592

RESUMO

R2R3-MYB transcription factors (TFs) participate in the modulation of plant development, secondary metabolism, and responses to environmental stresses. Ammopiptanthus nanus, a leguminous dryland shrub, tolerates a high degree of environmental stress, including drought and low-temperature stress. The systematic identification, structural analysis, evolutionary analysis, and gene profiling of R2R3-MYB TFs under cold and osmotic stress in A. nanus were performed. Up to 137 R2R3-MYB TFs were identified and clustered into nine clades, with most A. nanus R2R3-MYB members belonging to clade VIII. Tandem and segmental duplication events drove the expansion of the A. nanus R2R3-MYB family. Expression profiling revealed that multiple R2R3-MYB genes significantly changed under osmotic and cold stress conditions. MiR858 and miR159 targeted 88 R2R3-MYB genes. AnaMYB87, an miR858-targeted clade VIII R2R3-MYB TF, was up-regulated under both osmotic and cold stress. A transient expression assay in apples showed that the overexpression of AnaMYB87 promoted anthocyanin accumulation. A luciferase reporter assay in tobacco demonstrated that AnaMYB87 positively affected the transactivation of the dihydroflavonol reductase gene, indicating that the miR858-MYB87 module mediates anthocyanin accumulation under osmotic stress by regulating the dihydroflavonol reductase gene in A. nanus. This study provides new data to understand the roles of R2R3-MYB in plant stress responses.


Assuntos
Antocianinas , Genes myb , Antocianinas/genética , Sequência de Aminoácidos , Pressão Osmótica , Resposta ao Choque Frio/genética , Oxirredutases/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo
18.
J Colloid Interface Sci ; 652(Pt B): 1665-1672, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37666198

RESUMO

The rational design of electrocatalysts with exceptional performance and durability for hydrogen production in alkaline medium is a formidable challenge. In this study, we have developed in-situ activated ruthenium nanoparticles dispersed on Ni3N nanosheets, forming a bifunctional electrocatalyst for hydrogen evolution and urea oxidation. The results of experimental analysis and theoretical calculations reveal that the enhanced hydrogen evolution reaction (HER) performance of O-Ru-Ni3N stems primarily from the optimized hydrogen adsorption and hydroxyl adsorption on Ru sites. The O-Ru-Ni3N on nickel foam (NF) electrode exhibits excellent HER performance, requiring only 29 mV to reach 10 mA cm-2 in an alkaline medium. Notably, when this O-Ru-Ni3N/NF catalyst is employed for both HER and urea oxidation reaction (UOR) to create an integrated H2 production system, a current density of 50 mA cm-2 can be generated at the cell voltage of 1.41 V. This report introduces an energy-efficient catalyst for hydrogen production and proposes a viable strategy for anodic activation in energy chemistry.

19.
Nanomicro Lett ; 15(1): 210, 2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37695408

RESUMO

Electro-upcycling of plastic waste into value-added chemicals/fuels is an attractive and sustainable way for plastic waste management. Recently, electrocatalytically converting polyethylene terephthalate (PET) into formate and hydrogen has aroused great interest, while developing low-cost catalysts with high efficiency and selectivity for the central ethylene glycol (PET monomer) oxidation reaction (EGOR) remains a challenge. Herein, a high-performance nickel sulfide catalyst for plastic waste electro-upcycling is designed by a cobalt and chloride co-doping strategy. Benefiting from the interconnected ultrathin nanosheet architecture, dual dopants induced up-shifting d band centre and facilitated in situ structural reconstruction, the Co and Cl co-doped Ni3S2 (Co, Cl-NiS) outperforms the single-doped and undoped analogues for EGOR. The self-evolved sulfide@oxyhydroxide heterostructure catalyzes EG-to-formate conversion with high Faradic efficiency (> 92%) and selectivity (> 91%) at high current densities (> 400 mA cm-2). Besides producing formate, the bifunctional Co, Cl-NiS-assisted PET hydrolysate electrolyzer can achieve a high hydrogen production rate of 50.26 mmol h-1 in 2 M KOH, at 1.7 V. This study not only demonstrates a dual-doping strategy to engineer cost-effective bifunctional catalysts for electrochemical conversion processes, but also provides a green and sustainable way for plastic waste upcycling and simultaneous energy-saving hydrogen production.

20.
Oncol Lett ; 26(4): 455, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37720677

RESUMO

Capmatinib is a medication used to treat patients with non-small cell lung cancer (NSCLC) who have a specific genetic mutation known as a mesenchymal-epithelial transition exon 14 skipping mutation. Previous clinical trials have reported that capmatinib treatment has a high objective response rate in patients with this genetic mutation. However, there have also been rare reports of patients developing interstitial lung disease (ILD) following capmatinib treatment, which can be life-threatening. The present case study reports the treatment of a patient who developed ILD after 6 weeks of capmatinib treatment for NSCLC, which was resolved following application of corticosteroids. The present case demonstrated that early recognition of the onset of ILD and discontinuation of capmatinib treatment, along with the prompt initiation of corticosteroid administration, can lead to complete resolution of ILD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA