Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Biochem J ; 480(13): 921-939, 2023 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-37410389

RESUMO

Standalone and consortia-led single-cell atlases of healthy and diseased human airways generated with single-cell RNA-sequencing (scRNA-seq) have ushered in a new era in respiratory research. Numerous discoveries, including the pulmonary ionocyte, potentially novel cell fates, and a diversity of cell states among common and rare epithelial cell types have highlighted the extent of cellular heterogeneity and plasticity in the respiratory tract. scRNA-seq has also played a pivotal role in our understanding of host-virus interactions in coronavirus disease 2019 (COVID-19). However, as our ability to generate large quantities of scRNA-seq data increases, along with a growing number of scRNA-seq protocols and data analysis methods, new challenges related to the contextualisation and downstream applications of insights are arising. Here, we review the fundamental concept of cellular identity from the perspective of single-cell transcriptomics in the respiratory context, drawing attention to the need to generate reference annotations and to standardise the terminology used in literature. Findings about airway epithelial cell types, states and fates obtained from scRNA-seq experiments are compared and contrasted with information accumulated through the use of conventional methods. This review attempts to discuss major opportunities and to outline some of the key limitations of the modern-day scRNA-seq that need to be addressed to enable efficient and meaningful integration of scRNA-seq data from different platforms and studies, with each other as well as with data from other high-throughput sequencing-based genomic, transcriptomic and epigenetic analyses.


Assuntos
COVID-19 , Análise de Célula Única , Humanos , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos , COVID-19/genética , Perfilação da Expressão Gênica/métodos , Células Epiteliais , RNA/genética
2.
Crit Rev Oncol Hematol ; 181: 103886, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36427771

RESUMO

Adenoid cystic carcinoma (ACC) has a significant patient-population in need of effective systemic therapy, as no drug is currently approved by the FDA for its management. We critically reviewed ACC-clinical trials (CT) registered on the ClinicalTrials.gov website using "ACC" under condition or disease. Trials specifically designed to test a drug-based therapy for ACC (n = 33) were analyzed with most being one-arm phase II trials enrolling advanced, recurrent/metastatic, incurable ACC cases. Site restriction, maximum ECOG status, and period of disease progression varied as inclusion criteria. Small-molecule inhibitors were those most commonly investigated with Apatinib, Axitinib and Lenvatinib showing the best results in association with rigid enrollment criteria. The overall median time to progression remains modest and more efforts are urgently needed in this field. CTs designed to test drugs that act on key pathways associated with ACC aggressiveness are being conducted and represent a promising pathway if efficacy is proved.


Assuntos
Carcinoma Adenoide Cístico , Neoplasias das Glândulas Salivares , Humanos , Axitinibe/uso terapêutico , Carcinoma Adenoide Cístico/tratamento farmacológico , Carcinoma Adenoide Cístico/patologia , Recidiva Local de Neoplasia/tratamento farmacológico , Neoplasias das Glândulas Salivares/patologia , Ensaios Clínicos como Assunto
3.
Crit Rev Oncol Hematol ; 176: 103745, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35738530

RESUMO

Adenoid cystic carcinoma (ACC) is the most common type of salivary gland cancer that can also arise in other primary sites. Regardless of the site, most ACC cases carry a recurrent chromosomal translocation - t(6;9)(q22-23;p23-24) - involving the MYB oncogene and the NFIB transcription factor. Generally, a long sequence of MYB is fused to the terminal exons of NFIB, yet the break can occur in different exons for both genes, resulting in multiple chimeric variants. The fusion status can be determined by a number of methods, each of them with particular advantages. In vitro and in vivo studies have been conducted to understand the biological consequences of MYB-NFIB translocation, and such findings could contribute to improving the current inefficient therapeutic options for disseminated ACC. This review provides a discussion on relevant evidence in the context of ACC MYB-NFIB translocations to determine the current state of knowledge and discuss future directions.


Assuntos
Carcinoma Adenoide Cístico , Neoplasias das Glândulas Salivares , Carcinoma Adenoide Cístico/genética , Carcinoma Adenoide Cístico/patologia , Fusão Gênica , Humanos , Fatores de Transcrição NFI/genética , Proteínas de Fusão Oncogênica/genética , Proteínas Proto-Oncogênicas c-myb , Neoplasias das Glândulas Salivares/diagnóstico , Neoplasias das Glândulas Salivares/genética , Neoplasias das Glândulas Salivares/terapia , Translocação Genética
4.
Oral Dis ; 28(4): 1279-1288, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-33682222

RESUMO

OBJECTIVE: The aim of this study was to evaluate the expression of BPIFA proteins in the saliva and salivary glands of hematopoietic cell transplant (HCT) patients. MATERIAL AND METHODS: This longitudinal study included patients who had undergone autologous HCT (auto-HCT) and allogeneic HCT (allo-HCT), and unstimulated saliva was collected at three time points, with a fourth collection at oral chronic graft-versus-host disease (cGVHD) onset. BPIFA expression was analysed by Western blotting in saliva and immunostaining in the minor salivary glands of cGVHD patients. RESULTS: Auto-HCT patients showed increased levels of BPIFA1 (p = .021) and BPIFA2 at D+7 (p = .040), whereas allo-HCT group demonstrated decreased expression of BPIFA2 at D+8 (p = .002) and at D+80 (p = .001) and a significant association between BPIFA2 low levels and hyposalivation was observed (p = .02). BPIFA2 was significantly lower in the cGVHD patients when compared to baseline (p = .04). CONCLUSIONS: The results of this study show distinct pattern of expression of BPIF proteins in both auto-HCT and allo-HCT recipients with decreased levels of BPIFA2 during hyposalivation and cGVHD. Further studies are necessary to elucidate these proteins mechanisms and their clinical implications in these groups of patients.


Assuntos
Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Xerostomia , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Humanos , Estudos Longitudinais , Proteínas e Peptídeos Salivares
6.
Laryngoscope Investig Otolaryngol ; 6(5): 1167-1174, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34667862

RESUMO

INTRODUCTION: Otitis media is an umbrella term for middle ear inflammation; ranging from acute infection to chronic mucosal disease. It is a leading cause of antimicrobial therapy prescriptions and surgery in children. Despite this, treatments have changed little in over 50 years. Research has been limited by the lack of physiological models of middle ear epithelium. METHODS: We develop a novel human middle ear epithelial culture using an air-liquid interface (ALI) system; akin to the healthy ventilated middle ear in vivo. We validate this using immunohistochemistry, immunofluorescence, scanning and transmission electron microscopy, and membrane conductance studies. We also utilize this model to perform a pilot challenge of middle ear epithelial cells with SARS-CoV-2. RESULTS: We demonstrate that human middle ear epithelial cells cultured at an ALI undergo mucociliary differentiation to produce diverse epithelial subtypes including basal (p63+), goblet (MUC5AC+, MUC5B+), and ciliated (FOXJ1+) cells. Mature ciliagenesis is visualized and tight junction formation is shown with electron microscopy, and confirmed by membrane conductance. Together, these demonstrate this model reflects the complex epithelial cell types which exist in vivo. Following SARS-CoV-2 challenge, human middle ear epithelium shows positive viral uptake, as measured by polymerase chain reaction and immunohistochemistry. CONCLUSION: We describe a novel physiological system to study the human middle ear. This can be utilized for translational research into middle ear diseases. We also demonstrate, for the first time under controlled conditions, that human middle ear epithelium is susceptible to SARS-CoV-2 infection, which has important clinical implications for safe otological surgery. LEVEL OF EVIDENCE: NA.

7.
Cell ; 184(23): 5791-5806.e19, 2021 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-34715025

RESUMO

Dynein-decorated doublet microtubules (DMTs) are critical components of the oscillatory molecular machine of cilia, the axoneme, and have luminal surfaces patterned periodically by microtubule inner proteins (MIPs). Here we present an atomic model of the 48-nm repeat of a mammalian DMT, derived from a cryoelectron microscopy (cryo-EM) map of the complex isolated from bovine respiratory cilia. The structure uncovers principles of doublet microtubule organization and features specific to vertebrate cilia, including previously unknown MIPs, a luminal bundle of tektin filaments, and a pentameric dynein-docking complex. We identify a mechanism for bridging 48- to 24-nm periodicity across the microtubule wall and show that loss of the proteins involved causes defective ciliary motility and laterality abnormalities in zebrafish and mice. Our structure identifies candidate genes for diagnosis of ciliopathies and provides a framework to understand their functions in driving ciliary motility.


Assuntos
Cílios/ultraestrutura , Microscopia Crioeletrônica , Mamíferos/metabolismo , Proteínas/metabolismo , Proteínas/ultraestrutura , Sequência de Aminoácidos , Animais , Bovinos , Cílios/metabolismo , Dineínas/metabolismo , Embrião de Mamíferos/metabolismo , Feminino , Masculino , Camundongos Endogâmicos C57BL , Proteínas dos Microtúbulos/química , Microtúbulos/metabolismo , Microtúbulos/ultraestrutura , Modelos Moleculares , Mutação/genética , Traqueia/anatomia & histologia , Peixe-Zebra , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
8.
Expert Rev Mol Med ; 23: e10, 2021 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-34404500

RESUMO

OBJECTIVE: Otitis media (OM) is a common reason for children to be prescribed antibiotics and undergo surgery but a thorough understanding of disease mechanisms is lacking. We evaluate the evidence of a dysregulated immune response in the pathogenesis of OM. METHODS: A comprehensive systematic review of the literature using search terms [otitis media OR glue ear OR AOM OR OME] OR [middle ear AND (infection OR inflammation)] which were run through Medline and Embase via Ovid, including both human and animal studies. In total, 82 955 studies underwent automated filtering followed by manual screening. One hundred studies were included in the review. RESULTS: Most studies were based on in vitro or animal work. Abnormalities in pathogen detection pathways, such as Toll-like receptors, have confirmed roles in OM. The aetiology of OM, its chronic subgroups (chronic OM, persistent OM with effusion) and recurrent acute OM is complex; however, inflammatory signalling mechanisms are frequently implicated. Host epithelium likely plays a crucial role, but the characterisation of human middle ear tissue lags behind that of other anatomical subsites. CONCLUSIONS: Translational research for OM presently falls far behind its clinical importance. This has likely hindered the development of new diagnostic and treatment modalities. Further work is urgently required; particularly to disentangle the respective immune pathologies in the clinically observed phenotypes and thereby work towards more personalised treatments.


Assuntos
Otite Média , Animais , Antibacterianos , Orelha Média , Humanos , Imunidade , Otite Média/etiologia , Transdução de Sinais
9.
Biol Open ; 10(4)2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33913472

RESUMO

Otitis media (OM) is the most common paediatric disease and leads to significant morbidity. Although understanding of underlying disease mechanisms is hampered by complex pathophysiology, it is clear that epithelial abnormalities underpin the disease. The mechanisms underpinning epithelial remodelling in OM remain unclear. We recently described a novel in vitro model of mouse middle ear epithelial cells (mMEECs) that undergoes mucociliary differentiation into the varied epithelial cell populations seen in the middle ear cavity. We now describe genome wide gene expression profiles of mMEECs as they undergo differentiation. We compared the gene expression profiles of original (uncultured) middle ear cells, confluent cultures of undifferentiated cells and cells that had been differentiated for 7 days at an air liquid interface (ALI). >5000 genes were differentially expressed among the three groups of cells. Approximately 4000 genes were differentially expressed between the original cells and day 0 of ALI culture. The original cell population was shown to contain a mix of cell types, including contaminating inflammatory cells that were lost on culture. Approximately 500 genes were upregulated during ALI induced differentiation. These included some secretory genes and some enzymes but most were associated with the process of ciliogenesis. The data suggest that the in vitro model of differentiated murine middle ear epithelium exhibits a transcriptional profile consistent with the mucociliary epithelium seen within the middle ear. Knowledge of the transcriptional landscape of this epithelium will provide a basis for understanding the phenotypic changes seen in murine models of OM.


Assuntos
Biomarcadores , Orelha Média/citologia , Orelha Média/metabolismo , Epitélio/metabolismo , Perfilação da Expressão Gênica , Transcriptoma , Animais , Células Cultivadas , Biologia Computacional/métodos , Suscetibilidade a Doenças , Células Epiteliais , Estudo de Associação Genômica Ampla , Camundongos , Anotação de Sequência Molecular , Otite Média/etiologia , Otite Média/metabolismo , Otite Média/patologia
10.
Biomedicines ; 8(12)2020 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-33255325

RESUMO

The brain-derived neurotrophic factor (BDNF)/tyrosine receptor kinase B (TrkB) pathway was previously associated with key oncogenic outcomes in a number of adenocarcinomas. The aim of our study was to determine the role of this pathway in mucoepidermoid carcinoma (MEC). Three MEC cell lines (UM-HMC-2, H253 and H292) were exposed to Cisplatin, the TrkB inhibitor, ANA-12 and a combination of these drugs. Ultrastructural changes were assessed through transmission electron microscopy; scratch and Transwell assays were used to assess migration and invasion; and a clonogenic assay and spheroid-forming assay allowed assessment of survival and percentage of cancer stem cells (CSC). Changes in cell ultrastructure demonstrated Cisplatin cytotoxicity, while the effects of ANA-12 were less pronounced. Both drugs, used individually and in combination, delayed MEC cell migration, invasion and survival. ANA-12 significantly reduced the number of CSC, but the Cisplatin effect was greater, almost eliminating this cell population in all MEC cell lines. Interestingly, the spheroid forming capacity recovered, following the combination therapy, as compared to Cisplatin alone. Our studies allowed us to conclude that the TrkB inhibition, efficiently impaired MEC cell migration, invasion and survival in vitro, however, the decrease in CSC number, following the combined treatment of ANA-12 and Cisplatin, was less than that seen with Cisplatin alone; this represents a limiting factor.

11.
Methods Mol Biol ; 1940: 157-168, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30788824

RESUMO

Epithelial abnormalities underpin the development of the middle ear disease, otitis media (OM). Until now, a well-characterized in vitro model of the middle ear (ME) epithelium that replicates the complex cellular composition of the middle ear has not been available. This chapter describes the development of a novel in vitro model of mouse middle ear epithelial cells (mMECs), cultured at the air-liquid interface (ALI). This system enables recapitulation of the characteristics of the native murine ME epithelium. We demonstrate that mMECs undergo differentiation into the varied cell populations seen within the native middle ear. Overall, our mMEC culture system can help better understand the cell biology of the middle ear and improve our understanding of the pathophysiology of OM. The model also has the potential to serve as a platform for validation of treatments designed to reverse aspects of epithelial remodeling underpinning OM development.


Assuntos
Técnicas de Cultura de Células/métodos , Orelha Média/citologia , Células Epiteliais/citologia , Epitélio/crescimento & desenvolvimento , Otite Média/patologia , Animais , Células Cultivadas , Meios de Cultura/química , Orelha Média/cirurgia , Camundongos , Camundongos Endogâmicos C57BL
12.
Am J Respir Crit Care Med ; 200(1): 84-97, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-30649895

RESUMO

Rationale: Antimicrobial resistance challenges therapy of pneumonia. Enhancing macrophage microbicidal responses would combat this problem but is limited by our understanding of how alveolar macrophages (AMs) kill bacteria. Objectives: To define the role and mechanism of AM apoptosis-associated bacterial killing in the lung. Methods: We generated a unique CD68.hMcl-1 transgenic mouse with macrophage-specific overexpression of the human antiapoptotic Mcl-1 protein, a factor upregulated in AMs from patients at increased risk of community-acquired pneumonia, to address the requirement for apoptosis-associated killing. Measurements and Main Results: Wild-type and transgenic macrophages demonstrated comparable ingestion and initial phagolysosomal killing of bacteria. Continued ingestion (for ≥12 h) overwhelmed initial killing, and a second, late-phase microbicidal response killed viable bacteria in wild-type macrophages, but this response was blunted in CD68.hMcl-1 transgenic macrophages. The late phase of bacterial killing required both caspase-induced generation of mitochondrial reactive oxygen species and nitric oxide, the peak generation of which coincided with the late phase of killing. The CD68.hMcl-1 transgene prevented mitochondrial reactive oxygen species but not nitric oxide generation. Apoptosis-associated killing enhanced pulmonary clearance of Streptococcus pneumoniae and Haemophilus influenzae in wild-type mice but not CD68.hMcl-1 transgenic mice. Bacterial clearance was enhanced in vivo in CD68.hMcl-1 transgenic mice by reconstitution of apoptosis with BH3 mimetics or clodronate-encapsulated liposomes. Apoptosis-associated killing was not activated during Staphylococcus aureus lung infection. Conclusions: Mcl-1 upregulation prevents macrophage apoptosis-associated killing and establishes that apoptosis-associated killing is required to allow AMs to clear ingested bacteria. Engagement of macrophage apoptosis should be investigated as a novel, host-based antimicrobial strategy.


Assuntos
Apoptose/fisiologia , Macrófagos Alveolares/fisiologia , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Fagocitose/genética , Fagossomos/fisiologia , Pneumonia Bacteriana , Animais , Apoptose/efeitos dos fármacos , Bactérias , Compostos de Bifenilo/farmacologia , Caspases/metabolismo , Ácido Clodrônico/farmacologia , Modelos Animais de Doenças , Haemophilus influenzae , Humanos , Macrófagos Alveolares/metabolismo , Camundongos , Camundongos Transgênicos , Mitocôndrias/metabolismo , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Óxido Nítrico/metabolismo , Nitrofenóis/farmacologia , Piperazinas/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Staphylococcus aureus , Streptococcus pneumoniae , Sulfonamidas/farmacologia
13.
Artigo em Inglês | MEDLINE | ID: mdl-29296079

RESUMO

Chronic obstructive pulmonary disease (COPD) is characterized by an abnormal inflammatory response in the lungs caused by the inhalation of noxious particles and gases. The airway epithelium has a protective function against these harmful agents by maintaining a physical barrier and by secreting defensive proteins, such as bactericidal/permeability-increasing fold-containing (BPIF) proteins, BPIFA1 and BPIFB1. However, inconsistent data regarding BPIFA1 expression in smokers and COPD patients have been reported to date. Therefore, we investigated the expression of BPIFA1 and BPIFB1 in a large cohort of never-smokers and smokers with and without COPD, both on the messenger RNA (mRNA) level in lung tissue and on the protein level in airway epithelium. Furthermore, we examined the correlation between BPIFA1 and BPIFB1 levels, goblet cell hyperplasia, and lung function measurements. BPIFA1 and BPIFB1 mRNA expressions were significantly increased in stage III-IV COPD patients compared with stage II COPD patients and subjects without COPD. In addition, protein levels in COPD patients were significantly increased in comparison with subjects without COPD. BPIFA1 and BPIFB1 levels were inversely correlated with measurements of airflow limitation and positively correlated with goblet cell hyperplasia. In addition, by the use of immunofluorescence double staining, we demonstrated the expression of BPIFB1 in goblet cells. In conclusion, we show that BPIFA1 and BPIFB1 levels are elevated in COPD patients and correlate with disease severity.


Assuntos
Autoantígenos/metabolismo , Glicoproteínas/metabolismo , Células Caliciformes/metabolismo , Pulmão/metabolismo , Fosfoproteínas/metabolismo , Proteínas/metabolismo , Doença Pulmonar Obstrutiva Crônica/metabolismo , Idoso , Autoantígenos/genética , Biomarcadores/metabolismo , Estudos de Casos e Controles , Proteínas de Ligação a Ácido Graxo , Feminino , Volume Expiratório Forçado , Glicoproteínas/genética , Células Caliciformes/patologia , Humanos , Hiperplasia , Pulmão/patologia , Pulmão/fisiopatologia , Masculino , Pessoa de Meia-Idade , Fosfoproteínas/genética , Valor Preditivo dos Testes , Proteínas/genética , Doença Pulmonar Obstrutiva Crônica/diagnóstico , Doença Pulmonar Obstrutiva Crônica/genética , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , RNA Mensageiro/genética , Índice de Gravidade de Doença , Fumar/efeitos adversos , Fumar/genética , Fumar/metabolismo , Regulação para Cima , Capacidade Vital
14.
Laryngoscope ; 128(3): E97-E104, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29148098

RESUMO

OBJECTIVE: Motile cilia impairment is a common condition in patients with chronically inflamed airways, such as is seen in nasal polyps (NPs). The mechanism underlying this pathogenic condition is complex and not fully understood. METHODS: We investigated the presence and localization of dynein axonemal heavy chain 5 (DNAH5) in motile cilia using immunofluorescence staining in paraffin-embedded nasal biopsies from NPs (n = 120) and inferior turbinate mucosa (n = 35) of healthy controls. We also performed single-cell staining on cytospin samples (NP = 5, control = 5). Three patterns of DNAH5 localization are defined, including pattern A (presence throughout the axoneme), pattern B (undetectable in the distal part of the axoneme), and pattern C (completely missing throughout the entire axoneme). We developed a semiquantitative scoring system for which 0 = (pattern A > 70%); 1 = (patterns A + B > 70%); and 2 = (pattern C ≥ 30%) in each high-power field (5 fields per sample). RESULTS: Based on our DNAH5 scoring system, the median (1st and 3rd quartile) score was 0.3 (0.2 and 0.4) for samples from controls, and 1.1 (0.6 and 1.6) for samples from NPs in paraffin specimens (P < 0.001). The DNAH5 score had a significant positive relationship with the Lund-Mackay computed tomography score (r = 0.329, P = 0.005) and was higher in patients with eosinophilic NPs (P = 0.006). For cytospin samples, the mean percentage of patterns A, B, and C were 74%, 14%, and 12% in controls, and 48%, 20%, and 32% in NPs, respectively. CONCLUSION: Our results suggest that the absence or mislocalization of DNAH5 from motile cilia is a common and potentially important pathological phenomenon in chronically inflamed airway epithelium. LEVEL OF EVIDENCE: NA. Laryngoscope, 128:E97-E104, 2018.


Assuntos
Dineínas do Axonema/análise , Transtornos da Motilidade Ciliar/metabolismo , Pólipos Nasais/química , Adulto , Biomarcadores/análise , Estudos de Casos e Controles , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Mucosa Nasal/metabolismo , Pólipos Nasais/complicações , Conchas Nasais/metabolismo
15.
Dis Model Mech ; 9(11): 1405-1417, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27660200

RESUMO

Otitis media (OM), or middle ear inflammation, is the most common paediatric disease and leads to significant morbidity. Although understanding of underlying disease mechanisms is hampered by complex pathophysiology it is clear that epithelial abnormalities underpin the disease. There is currently a lack of a well-characterised in vitro model of the middle ear (ME) epithelium that replicates the complex cellular composition of the middle ear. Here, we report the development of a novel in vitro model of mouse middle ear epithelial cells (mMECs) at an air-liquid interface (ALI) that recapitulates the characteristics of the native murine ME epithelium. We demonstrate that mMECs undergo differentiation into the varied cell populations seen within the native middle ear. Proteomic analysis confirmed that the cultures secrete a multitude of innate defence proteins from their apical surface. We showed that the mMECs supported the growth of the otopathogen, nontypeable Haemophilus influenzae (NTHi), suggesting that the model can be successfully utilised to study host-pathogen interactions in the middle ear. Overall, our mMEC culture system can help to better understand the cell biology of the middle ear and improve our understanding of the pathophysiology of OM. The model also has the potential to serve as a platform for validation of treatments designed to reverse aspects of epithelial remodelling that underpin OM development.


Assuntos
Orelha Média/anatomia & histologia , Epitélio/anatomia & histologia , Animais , Biomarcadores/metabolismo , Técnicas de Cultura de Células , Forma Celular , Células Cultivadas , Cílios/metabolismo , Células Epiteliais/metabolismo , Células Epiteliais/ultraestrutura , Epitélio/metabolismo , Epitélio/ultraestrutura , Infecções por Haemophilus/microbiologia , Infecções por Haemophilus/patologia , Haemophilus influenzae/fisiologia , Espectrometria de Massas , Camundongos Endogâmicos C57BL , Modelos Animais , Proteoma/metabolismo
16.
Pediatr Res ; 79(6): 946-50, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26882371

RESUMO

BACKGROUND: Primary respiratory syncytial virus (RSV) infections are characterized by high levels of IL-8 and an intense neutrophilia. Little is known about the cytokine responses in secondary infections. Preschool children experiencing RSV secondary infections were recruited from the siblings of infants admitted to hospital with RSV acute bronchiolitis. METHODS: Fifty-one infants with acute bronchiolitis (39 RSV positive, 12 RSV negative) and 20 age-matched control infants were recruited. In addition, seven older siblings of infants from the RSV-positive cohort and confirmed RSV infection were recruited. Samples of nasal secretions were obtained using a flocked swab, and secretions extracted using centrifugation. Cytokine bead array was used to obtain levels of interleukin (IL)-17A, IL-8, IL-6, IL-21, and tumor necrosis factor-α. RESULTS: Levels of IL-8 and IL-6 were significantly lower in the RSV-positive siblings compared with the RSV-positive infants. There were no significant differences between levels of the other cytokines in the primary and secondary infections. CONCLUSION: The very high levels of IL-8 and IL-6 response characteristic of the primary RSV infection was not observed in secondary RSV-positive infections and this did not appear to be due to a global reduction in cytokine production.


Assuntos
Bronquiolite/imunologia , Bronquiolite/virologia , Citocinas/imunologia , Infecções por Vírus Respiratório Sincicial/imunologia , Estudos de Casos e Controles , Estudos de Coortes , Epidemias , Feminino , Humanos , Lactente , Recém-Nascido , Interleucina-6/imunologia , Interleucina-8/imunologia , Masculino , Neutrófilos/imunologia , Admissão do Paciente , Vírus Sinciciais Respiratórios , Estações do Ano , Irmãos
17.
Am J Respir Cell Mol Biol ; 53(5): 607-14, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25574903

RESUMO

BPI fold containing family A, member 1 (BPIFA1) and BPIFB1 are putative innate immune molecules expressed in the upper airways. Because of their hypothesized roles in airway defense, these molecules may contribute to lung disease severity in cystic fibrosis (CF). We interrogated BPIFA1/BPIFB1 single-nucleotide polymorphisms in data from an association study of CF modifier genes and found an association of the G allele of rs1078761 with increased lung disease severity (P = 2.71 × 10(-4)). We hypothesized that the G allele of rs1078761 is associated with decreased expression of BPIFA1 and/or BPIFB1. Genome-wide lung gene expression and genotyping data from 1,111 individuals with lung disease, including 51 patients with CF, were tested for associations between genotype and BPIFA1 and BPIFB1 gene expression levels. Findings were validated by quantitative PCR in a subset of 77 individuals. Western blotting was used to measure BPIFA1 and BPIFB1 protein levels in 93 lung and 101 saliva samples. The G allele of rs1078761 was significantly associated with decreased mRNA levels of BPIFA1 (P = 4.08 × 10(-15)) and BPIFB1 (P = 0.0314). These findings were confirmed with quantitative PCR and Western blotting. We conclude that the G allele of rs1078761 may be detrimental to lung function in CF owing to decreased levels of BPIFA1 and BPIFB1.


Assuntos
Autoantígenos/genética , Fibrose Cística/genética , Glicoproteínas/genética , Pulmão/metabolismo , Fosfoproteínas/genética , Polimorfismo de Nucleotídeo Único , Proteínas/genética , Adolescente , Adulto , Alelos , Autoantígenos/imunologia , Estudos de Casos e Controles , Criança , Fibrose Cística/imunologia , Fibrose Cística/patologia , Proteínas de Ligação a Ácido Graxo , Feminino , Regulação da Expressão Gênica , Estudo de Associação Genômica Ampla , Glicoproteínas/imunologia , Humanos , Imunidade Inata , Pulmão/imunologia , Pulmão/patologia , Masculino , Fosfoproteínas/imunologia , Proteínas/imunologia , Locos de Características Quantitativas , RNA Mensageiro/genética , RNA Mensageiro/imunologia , Saliva/química , Índice de Gravidade de Doença , Transdução de Sinais
18.
Lab Invest ; 95(6): 610-24, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25531566

RESUMO

Murine γ-herpesvirus 68 (MHV-68) infection of Mus musculus-derived strains of mice is an established model of γ-herpesvirus infection. We have previously developed an alternative system using a natural host, the wood mouse (Apodemus sylvaticus), and shown that the MHV-68 M3 chemokine-binding protein contributes significantly to MHV-68 pathogenesis. Here we demonstrate in A. sylvaticus using high-density micro-arrays that M3 influences the expression of genes involved in the host response including Scgb1a1 and Bpifa1 that encode potential innate defense proteins secreted into the respiratory tract. Further analysis of MHV-68-infected animals showed that the levels of both protein and RNA for SCGB1A1 and BPIFA1 were decreased at day 7 post infection (p.i.) but increased at day 14 p.i. as compared with M3-deficient and mock-infected animals. The modulation of expression was most pronounced in bronchioles but was also present in the bronchi and trachea. Double staining using RNA in situ hybridization and immunohistology demonstrated that much of the BPIFA1 expression occurs in club cells along with SCGB1A1 and that BPIFA1 is stored within granules in these cells. The increase in SCGB1A1 and BPIFA1 expression at day 14 p.i. was associated with the differentiation of club cells into mucus-secreting cells. Our data highlight the role of club cells and the potential of SCGB1A1 and BPIFA1 as innate defense mediators during respiratory virus infection.


Assuntos
Gammaherpesvirinae/genética , Glicoproteínas/metabolismo , Infecções por Herpesviridae/metabolismo , Infecções por Herpesviridae/virologia , Fosfoproteínas/metabolismo , Uteroglobina/metabolismo , Animais , Bronquíolos/química , Bronquíolos/citologia , Bronquíolos/metabolismo , Bronquíolos/virologia , Glicoproteínas/genética , Infecções por Herpesviridae/genética , Interações Hospedeiro-Patógeno/genética , Murinae , Fosfoproteínas/genética , Mucosa Respiratória/química , Mucosa Respiratória/citologia , Mucosa Respiratória/metabolismo , Mucosa Respiratória/virologia , Uteroglobina/genética
19.
PLoS One ; 9(3): e91855, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24651119

RESUMO

We have previously shown that the respiratory syncytial virus [RSV] can productively infect monocyte derived dendritic cells [MoDC] and remain dormant within the same cells for prolonged periods. It is therefore possible that infected dendritic cells act as a reservoir within the airways of individuals between annual epidemics. In the present study we explored the possibility that sub-epithelial DCs can be infected with RSV from differentiated bronchial epithelium and that in turn RSV from DCs can infect the epithelium. A dual co-culture model was established in which a differentiated primary airway epithelium on an Air Liquid Interface (ALI) was cultured on a transwell insert and MoDCs were subsequently added to the basolateral membrane of the insert. Further experiments were undertaken using a triple co-culture model in which in which macrophages were added to the apical surface of the differentiated epithelium. A modified RSV [rr-RSV] expressing a red fluorescent protein marker of replication was used to infect either the MoDCs or the differentiated epithelium and infection of the reciprocal cell type was assessed using confocal microscopy. Our data shows that primary epithelium became infected when rr-RSV infected MoDCs were introduced onto the basal surface of the transwell insert. MoDCs located beneath the epithelium did not become infected with virus from infected epithelial cells in the dual co-culture model. However when macrophages were present on the apical surface of the primary epithelium infection of the basal MoDCs occurred. Our data suggests that RSV infected dendritic cells readily transmit infection to epithelial cells even when they are located beneath the basal layer. However macrophages appear to be necessary for the transmission of infection from epithelial cells to basal dendritic cells.


Assuntos
Células Dendríticas/virologia , Epitélio/virologia , Macrófagos/virologia , Infecções por Vírus Respiratório Sincicial/virologia , Vírus Sinciciais Respiratórios/fisiologia , Adulto , Diferenciação Celular , Técnicas de Cocultura , Células Dendríticas/patologia , Células Epiteliais/patologia , Células Epiteliais/virologia , Epitélio/patologia , Fluorescência , Humanos , Macrófagos/patologia , Monócitos/patologia , Reprodutibilidade dos Testes , Infecções por Vírus Respiratório Sincicial/patologia , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA