Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Neuro Oncol ; 26(3): 488-502, 2024 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-37882631

RESUMO

BACKGROUND: There is an urgent need to better understand the mechanisms associated with the development, progression, and onset of recurrence after initial surgery in glioblastoma (GBM). The use of integrative phenotype-focused -omics technologies such as proteomics and lipidomics provides an unbiased approach to explore the molecular evolution of the tumor and its associated environment. METHODS: We assembled a cohort of patient-matched initial (iGBM) and recurrent (rGBM) specimens of resected GBM. Proteome and metabolome composition were determined by mass spectrometry-based techniques. We performed neutrophil-GBM cell coculture experiments to evaluate the behavior of rGBM-enriched proteins in the tumor microenvironment. ELISA-based quantitation of candidate proteins was performed to test the association of their plasma concentrations in iGBM with the onset of recurrence. RESULTS: Proteomic profiles reflect increased immune cell infiltration and extracellular matrix reorganization in rGBM. ASAH1, SYMN, and GPNMB were highly enriched proteins in rGBM. Lipidomics indicates the downregulation of ceramides in rGBM. Cell analyses suggest a role for ASAH1 in neutrophils and its localization in extracellular traps. Plasma concentrations of ASAH1 and SYNM show an association with time to recurrence. CONCLUSIONS: We describe the potential importance of ASAH1 in tumor progression and development of rGBM via metabolic rearrangement and showcase the feedback from the tumor microenvironment to plasma proteome profiles. We report the potential of ASAH1 and SYNM as plasma markers of rGBM progression. The published datasets can be considered as a resource for further functional and biomarker studies involving additional -omics technologies.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/patologia , Metabolismo dos Lipídeos , Proteoma/metabolismo , Proteômica , Ceramidas/metabolismo , Neoplasias Encefálicas/patologia , Microambiente Tumoral , Glicoproteínas de Membrana
2.
Int J Biol Macromol ; 253(Pt 6): 127279, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37806411

RESUMO

Snakebite envenomation is classified as a Neglected Tropical Disease. Bothrops jararaca venom induces kidney injury and coagulopathy. HF3, a hemorrhagic metalloproteinase of B. jararaca venom, participates in the envenomation pathogenesis. We evaluated the effects of HF3 in mouse kidney and blood plasma after injection in the thigh muscle, mimicking a snakebite. Transcriptomic analysis showed differential expression of 31 and 137 genes related to kidney pathology after 2 h and 6 h, respectively. However, only subtle changes were observed in kidney proteome, with differential abundance of 15 proteins after 6 h, including kidney injury markers. N-terminomic analysis of kidney proteins showed 420 proteinase-generated peptides compatible with meprin specificity, indicating activation of host proteinases. Plasma analysis revealed differential abundance of 90 and 219 proteins, respectively, after 2 h and 6 h, including coagulation-cascade and complement-system components, and creatine-kinase, whereas a semi-specific search of N-terminal peptides indicated activation of endogenous proteinases. HF3 promoted host reactions, altering the gene expression and the proteolytic profile of kidney tissue, and inducing plasma proteome imbalance driven by changes in abundance and proteolysis. The overall response of the mouse underscores the systemic action of a hemorrhagic toxin that transcends local tissue damage and is related to known venom-induced systemic effects.


Assuntos
Bothrops , Venenos de Crotalídeos , Camundongos , Animais , Proteoma , Multiômica , Metaloproteases/metabolismo , Venenos de Serpentes/toxicidade , Peptídeos , Plasma/metabolismo , Rim/metabolismo , Bothrops/metabolismo , Venenos de Crotalídeos/toxicidade , Venenos de Crotalídeos/metabolismo
3.
Cancers (Basel) ; 15(12)2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37370727

RESUMO

The UTX/KDM6A histone H3K27 demethylase plays an important role in development and is frequently mutated in cancers such as urothelial cancer. Despite many studies on UTX proteins, variations in mRNA splicing have been overlooked. Using Nanopore sequencing, we present a comprehensive analysis of UTX/KDM6A splicing events in human cell lines and in tissue samples from bladder cancer cases and normal epithelia. We found that the central region of UTX mRNAs encoded by exons 12 to 17 undergoes extensive alternative splicing. Up to half of all stable mRNAs (8-48% in bladder tissues and 18-58% in cell lines) are represented by the UTX canonical isoform lacking exon 14 encoding a nuclear localization sequence, and hence exon 14-containing UTX isoforms exclusively localize to the nucleus, unlike the cytonuclear localization of the canonical isoform. Chromatin association was also higher for exon-14-containing isoforms compared to the canonical UTX. Using quantitative mass spectrometry, we found that all UTX isoforms integrated into the MLL3 and MLL4, PR-DUB and MiDAC complexes. Interestingly, one of the novel UTX isoforms, which lacks exons 14 and 16, fails to interact with PR-DUB and MiDAC complex members. In conclusion, UTX mRNAs undergo extensive alternative splicing, which controls the subcellular localization of UTX and its interactions with other chromatin regulatory complexes.

4.
Breast Cancer Res ; 24(1): 65, 2022 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-36192788

RESUMO

BACKGROUND: Ribosomal biogenesis and ribosomal proteins have attracted attention in the context of tumor biology in recent years. Instead of being mere translational machineries, ribosomes might play an active role in tumor initiation and progression. Despite its importance, regulation of ribosomal biogenesis is still not completely understood. METHODS: Using Gene Set Enrichment Analysis of RNA sequencing and proteomical mass spectrometry data in breast cancer cells expressing Krüppel-like factor 7 (KLF7), we identified processes altered by this transcription factor. In silico analyses of a cohort of breast cancer patients in The Cancer Genome Atlas confirmed our finding. We further verified the role of KLF7 the identified ribosomal processes in in vitro assays of mammary carcinoma cell lines and analyses of breast cancer patients' tissue slices. RESULTS: We identified the transcription factor Krüppel-like factor 7 (KLF7) as a regulator of ribosomal biogenesis and translation in breast cancer cells and tissue. Highly significant overlapping processes related to ribosomal biogenesis were identified in proteomics and transcriptomics data and confirmed in patients' breast cancer RNA Seq data. Further, nucleoli, the sites of ribosomal biogenesis, were morphologically altered and quantitatively increased in KLF7-expressing cells. Pre-rRNA processing was identified as one potential process affected by KLF7. In addition, an increase in global translation independent from proliferation and transcription was observed upon exogenous KLF7 expression in vitro. Importantly, in a cohort of breast cancer patients, KLF7-expression levels correlated with aggressiveness of the intrinsic breast cancer subtype and tumor grading. Moreover, KLF7 correlated with nucleolar characteristics in human breast tumor tissue, indicating a role for KLF7 in ribosomal biogenesis. CONCLUSION: In mammary carcinoma, KLF7 is involved in ribosomal biogenesis. Alterations of ribosomal biogenesis has far reaching quantitative and qualitative implications for the proteome of the cancer cells. This might influence the aggressiveness of cancer cells.


Assuntos
Neoplasias da Mama , Carcinoma , Neoplasias da Mama/genética , Feminino , Humanos , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Proteoma , Precursores de RNA , Proteínas Ribossômicas/genética , Fatores de Transcrição
5.
Epigenetics Chromatin ; 15(1): 29, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35941657

RESUMO

BACKGROUND: Loss-of-function mutations of the multiple endocrine neoplasia type 1 (MEN1) gene are causal to the MEN1 tumor syndrome, but they are also commonly found in sporadic pancreatic neuroendocrine tumors and other types of cancers. The MEN1 gene product, menin, is involved in transcriptional and chromatin regulation, most prominently as an integral component of KMT2A/MLL1 and KMT2B/MLL2 containing COMPASS-like histone H3K4 methyltransferase complexes. In a mutually exclusive fashion, menin also interacts with the JunD subunit of the AP-1 and ATF/CREB transcription factors. RESULTS: Here, we applied and in silico screening approach for 253 disease-related MEN1 missense mutations in order to select a set of nine menin mutations in surface-exposed residues. The protein interactomes of these mutants were assessed by quantitative mass spectrometry, which indicated that seven of the nine mutants disrupt interactions with both MLL1/MLL2 and JunD complexes. Interestingly, we identified three missense mutations, R52G, E255K and E359K, which predominantly reduce the MLL1 and MLL2 interactions when compared with JunD. This observation was supported by a pronounced loss of binding of the R52G, E255K and E359K mutant proteins at unique MLL1 genomic binding sites with less effect on unique JunD sites. CONCLUSIONS: Our results underline the effects of MEN1 gene mutations in both familial and sporadic tumors of endocrine origin on the interactions of menin with the MLL1 and MLL2 histone H3K4 methyltransferase complexes and with JunD-containing transcription factors. Menin binding pocket mutants R52G, E255K and E359K have differential effects on MLL1/MLL2 and JunD interactions, which translate into differential genomic binding patterns. Our findings encourage future studies addressing the pathophysiological relevance of the separate MLL1/MLL2- and JunD-dependent functions of menin mutants in MEN1 disease model systems.


Assuntos
Neoplasia Endócrina Múltipla Tipo 1 , Proteínas Proto-Oncogênicas/genética , Histonas/metabolismo , Humanos , Neoplasia Endócrina Múltipla Tipo 1/genética , Neoplasia Endócrina Múltipla Tipo 1/metabolismo , Mutação de Sentido Incorreto , Proteínas Proto-Oncogênicas c-jun/genética , Proteínas Proto-Oncogênicas c-jun/metabolismo , Fatores de Transcrição/metabolismo , Virulência
6.
Proteomes ; 9(2)2021 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-34070654

RESUMO

Liquid chromatography-tandem mass spectrometry (LC-MS/MS) has become the most commonly used technique in explorative proteomic research. A variety of open-source tools for peptide-spectrum matching have become available. Most analyses of explorative MS data are performed using conventional settings, such as fully specific enzymatic constraints. Here we evaluated the impact of the fragment mass tolerance in combination with the enzymatic constraints on the performance of three search engines. Three open-source search engines (Myrimatch, X! Tandem, and MSGF+) were evaluated concerning the suitability in semi- and unspecific searches as well as the importance of accurate fragment mass spectra in non-specific peptide searches. We then performed a semispecific reanalysis of the published NCI-60 deep proteome data applying the most suited parameters. Semi- and unspecific LC-MS/MS data analyses particularly benefit from accurate fragment mass spectra while this effect is less pronounced for conventional, fully specific peptide-spectrum matching. Search speed differed notably between the three search engines for semi- and non-specific peptide-spectrum matching. Semispecific reanalysis of NCI-60 proteome data revealed hundreds of previously undescribed N-terminal peptides, including cases of proteolytic processing or likely alternative translation start sites, some of which were ubiquitously present in all cell lines of the reanalyzed panel. Highly accurate MS2 fragment data in combination with modern open-source search algorithms enable the confident identification of semispecific peptides from large proteomic datasets. The identification of previously undescribed N-terminal peptides in published studies highlights the potential of future reanalysis and data mining in proteomic datasets.

7.
Cells ; 10(2)2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33669258

RESUMO

DJ-1 is an abundant and ubiquitous component of cellular proteomes. DJ-1 supposedly exerts a wide variety of molecular functions, ranging from enzymatic activities as a deglycase, protease, and esterase to chaperone functions. However, a consensus perspective on its molecular function in the cellular context has not yet been reached. Structurally, the C-terminal helix 8 of DJ-1 has been proposed to constitute a propeptide whose proteolytic removal transforms a DJ-1 zymogen to an active hydrolase with potential proteolytic activity. To better understand the cell-contextual functionality of DJ-1 and the role of helix 8, we employed post-mitotically differentiated, neuron-like SH-SY5Y neuroblastoma cells with stable over-expression of full length DJ-1 or DJ-1 lacking helix 8 (ΔH8), either with a native catalytically active site (C106) or an inactive site (C106A active site mutation). Global proteome comparison of cells over-expressing DJ-1 ΔH8 with native or mutated active site cysteine indicated a strong impact on mitochondrial biology. N-terminomic profiling however did not highlight direct protease substrate candidates for DJ-1 ΔH8, but linked DJ-1 to elevated levels of activated lysosomal proteases, albeit presumably in an indirect manner. Finally, we show that DJ-1 ΔH8 loses the deglycation activity of full length DJ-1. Our study further establishes DJ-1 as deglycation enzyme. Helix 8 is essential for the deglycation activity but dispensable for the impact on lysosomal and mitochondrial biology; further illustrating the pleiotropic nature of DJ-1.


Assuntos
Cisteína/metabolismo , Neurônios/metabolismo , Proteína Desglicase DJ-1/metabolismo , Proteoma/metabolismo , Humanos , Lisossomos/metabolismo , Mutação/genética , Estresse Oxidativo/fisiologia , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Peptídeo Hidrolases/metabolismo , Proteína Desglicase DJ-1/genética , Proteoma/genética
8.
Nucleic Acids Res ; 49(9): e49, 2021 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-33524153

RESUMO

Genome-wide localization of chromatin and transcription regulators can be detected by a variety of techniques. Here, we describe a novel method 'greenCUT&RUN' for genome-wide profiling of transcription regulators, which has a very high sensitivity, resolution, accuracy and reproducibility, whilst assuring specificity. Our strategy begins with tagging of the protein of interest with GFP and utilizes a GFP-specific nanobody fused to MNase to profile genome-wide binding events. By using a GFP-nanobody the greenCUT&RUN approach eliminates antibody dependency and variability. Robust genomic profiles were obtained with greenCUT&RUN, which are accurate and unbiased towards open chromatin. By integrating greenCUT&RUN with nanobody-based affinity purification mass spectrometry, 'piggy-back' DNA binding events can be identified on a genomic scale. The unique design of greenCUT&RUN grants target protein flexibility and yields high resolution footprints. In addition, greenCUT&RUN allows rapid profiling of mutants of chromatin and transcription proteins. In conclusion, greenCUT&RUN is a widely applicable and versatile genome-mapping technique.


Assuntos
Genômica/métodos , Proteômica/métodos , Fatores de Transcrição/metabolismo , Sítios de Ligação , Fator de Ligação a CCAAT/genética , Fator de Ligação a CCAAT/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/imunologia , Células HeLa , Humanos , Espectrometria de Massas , Proteínas Proto-Oncogênicas c-fos/genética , Proteínas Proto-Oncogênicas c-fos/metabolismo , Proteínas Recombinantes de Fusão/análise , Anticorpos de Domínio Único , Proteína de Ligação a TATA-Box/genética , Proteína de Ligação a TATA-Box/metabolismo
9.
J Am Soc Nephrol ; 32(3): 563-579, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33514561

RESUMO

BACKGROUND: Previous research demonstrated that small Rho GTPases, modulators of the actin cytoskeleton, are drivers of podocyte foot-process effacement in glomerular diseases, such as FSGS. However, a comprehensive understanding of the regulatory networks of small Rho GTPases in podocytes is lacking. METHODS: We conducted an analysis of podocyte transcriptome and proteome datasets for Rho GTPases; mapped in vivo, podocyte-specific Rho GTPase affinity networks; and examined conditional knockout mice and murine disease models targeting Srgap1. To evaluate podocyte foot-process morphology, we used super-resolution microscopy and electron microscopy; in situ proximity ligation assays were used to determine the subcellular localization of the small GTPase-activating protein SRGAP1. We performed functional analysis of CRISPR/Cas9-generated SRGAP1 knockout podocytes in two-dimensional and three-dimensional cultures and quantitative interaction proteomics. RESULTS: We demonstrated SRGAP1 localization to podocyte foot processes in vivo and to cellular protrusions in vitro. Srgap1fl/fl*Six2Cre but not Srgap1fl/fl*hNPHS2Cre knockout mice developed an FSGS-like phenotype at adulthood. Podocyte-specific deletion of Srgap1 by hNPHS2Cre resulted in increased susceptibility to doxorubicin-induced nephropathy. Detailed analysis demonstrated significant effacement of podocyte foot processes. Furthermore, SRGAP1-knockout podocytes showed excessive protrusion formation and disinhibition of the small Rho GTPase machinery in vitro. Evaluation of a SRGAP1-dependent interactome revealed the involvement of SRGAP1 with protrusive and contractile actin networks. Analysis of glomerular biopsy specimens translated these findings toward human disease by displaying a pronounced redistribution of SRGAP1 in FSGS. CONCLUSIONS: SRGAP1, a podocyte-specific RhoGAP, controls podocyte foot-process architecture by limiting the activity of protrusive, branched actin networks. Therefore, elucidating the complex regulatory small Rho GTPase affinity network points to novel targets for potentially precise intervention in glomerular diseases.


Assuntos
Proteínas Ativadoras de GTPase/metabolismo , Podócitos/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Actomiosina/metabolismo , Animais , Extensões da Superfície Celular/metabolismo , Extensões da Superfície Celular/ultraestrutura , Células Cultivadas , Modelos Animais de Doenças , Feminino , Proteínas Ativadoras de GTPase/deficiência , Proteínas Ativadoras de GTPase/genética , Glomerulosclerose Segmentar e Focal/etiologia , Glomerulosclerose Segmentar e Focal/metabolismo , Glomerulosclerose Segmentar e Focal/patologia , Humanos , Integrinas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Biológicos , Síndrome Nefrótica/etiologia , Síndrome Nefrótica/metabolismo , Síndrome Nefrótica/patologia , Podócitos/ultraestrutura , Mapeamento de Interação de Proteínas , Proteoma , Pseudópodes/metabolismo , Pseudópodes/ultraestrutura , Transcriptoma
10.
Mol Cancer Res ; 18(12): 1889-1902, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32873625

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is characterized by a highly desmoplastic reaction, warranting intense cancer-stroma communication. In this study, we interrogated the contribution of the BET family of chromatin adaptors to the cross-talk between PDAC cells and the tumor stroma. Short-term treatment of orthotopic xenograft tumors with CPI203, a small-molecule inhibitor of BET proteins, resulted in broad changes in the expression of genes encoding components of the extracellular matrix (matrisome) in both cancer and stromal cells. Remarkably, more than half of matrisome genes were expressed by cancer cells. In vitro cocultures of PDAC cells and cancer-associated fibroblasts (CAF) demonstrated that matrisome expression was regulated by BET-dependent cancer-CAF cross-talk. Disrupting this cross-talk in vivo resulted in diminished growth of orthotopic patient-derived xenograft tumors, reduced proliferation of cancer cells, and changes in collagen structure consistent with that of patients who experienced better survival. Examination of matrisome gene expression in publicly available data sets of 573 PDAC tumors identified a 65-gene signature that was able to distinguish long- and short-term PDAC survivors. Importantly, the expression of genes predictive of short-term survival was diminished in the cancer cells of orthotopic xenograft tumors of mice treated with CPI203. Taken together, these results demonstrate that inhibiting the activity BET proteins results in transcriptional and structural differences in the matrisome are associated with better patient survival. IMPLICATIONS: These studies highlight the biological relevance of the matrisome program in PDAC and suggest targeting of epigenetically driven tumor-stroma cross-talk as a potential therapeutic avenue.


Assuntos
Acetamidas/administração & dosagem , Azepinas/administração & dosagem , Fibroblastos Associados a Câncer/citologia , Carcinoma Ductal Pancreático/patologia , Proteínas da Matriz Extracelular/genética , Neoplasias Pancreáticas/patologia , Acetamidas/farmacologia , Animais , Azepinas/farmacologia , Fibroblastos Associados a Câncer/metabolismo , Fibroblastos Associados a Câncer/patologia , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Comunicação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Colágeno/metabolismo , Proteínas da Matriz Extracelular/efeitos dos fármacos , Proteínas da Matriz Extracelular/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Microambiente Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Mol Cell Proteomics ; 18(1): 65-85, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30257879

RESUMO

Fibroblast activation protein-alpha (FAP) is a cell-surface transmembrane-anchored dimeric protease. This unique, constitutively active serine protease has both dipeptidyl aminopeptidase and endopeptidase activities and can hydrolyze the post-proline bond. FAP expression is very low in adult organs but is upregulated by activated fibroblasts in sites of tissue remodeling, including fibrosis, atherosclerosis, arthritis and tumors. To identify the endogenous substrates of FAP, we immortalized primary mouse embryonic fibroblasts (MEFs) from FAP gene knockout embryos and then stably transduced them to express either enzymatically active or inactive FAP. The MEF secretomes were then analyzed using degradomic and proteomic techniques. Terminal amine isotopic labeling of substrates (TAILS)-based degradomics identified cleavage sites in collagens, many other extracellular matrix (ECM) and associated proteins, and lysyl oxidase-like-1, CXCL-5, CSF-1, and C1qT6, that were confirmed in vitro In addition, differential metabolic labeling coupled with quantitative proteomic analysis also implicated FAP in ECM-cell interactions, as well as with coagulation, metabolism and wound healing associated proteins. Plasma from FAP-deficient mice exhibited slower than wild-type clotting times. This study provides a significant expansion of the substrate repertoire of FAP and provides insight into the physiological and potential pathological roles of this enigmatic protease.


Assuntos
Fibroblastos/citologia , Gelatinases/genética , Gelatinases/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteômica/métodos , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Adipocinas/sangue , Adipocinas/química , Aminoácido Oxirredutases/sangue , Aminoácido Oxirredutases/química , Animais , Técnicas de Cultura de Células , Linhagem Celular , Quimiocina CXCL5/sangue , Quimiocina CXCL5/química , Endopeptidases , Fibroblastos/metabolismo , Técnicas de Inativação de Genes , Humanos , Fator Estimulador de Colônias de Macrófagos/sangue , Fator Estimulador de Colônias de Macrófagos/química , Camundongos , Mapas de Interação de Proteínas , Proteólise , Especificidade por Substrato
12.
Clin Proteomics ; 15: 25, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30087584

RESUMO

BACKGROUND: Renal oncocytomas (ROs) are benign epithelial tumors of the kidney whereas chromophobe renal cell carcinoma (chRCCs) are malignant renal tumors. The latter constitute 5-7% of renal neoplasias. ROs and chRCCs show pronounced molecular and histological similarities, which renders their differentiation demanding. We aimed for the differential proteome profiling of ROs and early-stage chRCCs in order to better understand distinguishing protein patterns. METHODS: We employed formalin-fixed, paraffin-embedded samples (six RO cases, six chRCC cases) together with isotopic triplex dimethylation and a pooled reference standard to enable cohort-wide quantitative comparison. For lysosomal-associated membrane protein 1 (LAMP1) and integrin alpha-V (ITGAV) we performed corroborative immunohistochemistry (IHC) in an extended cohort of 42 RO cases and 31 chRCC cases. RESULTS: At 1% false discovery rate, we identified > 3900 proteins, of which > 2400 proteins were consistently quantified in at least four RO and four chRCC cases. The proteomic expression profiling discriminated ROs and chRCCs and highlighted established features such as accumulation of mitochondrial proteins in ROs together with emphasizing the accumulation of endo-lysosomal proteins in chRCCs. In line with the proteomic data, IHC showed enrichment of LAMP1 in chRCC and of ITGAV in RO. CONCLUSION: We present one of the first differential proteome profiling studies on ROs and chRCCs and highlight differential abundance of LAMP1 and ITGAV in these renal tumors.

13.
Biol Chem ; 399(9): 997-1007, 2018 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-29883318

RESUMO

In humans, three different trypsin-isoenzymes have been described. Of these, trypsin-3 appears to be functionally different from the others. In order to systematically study the specificity of the trypsin-isoenzymes, we utilized proteome-derived peptide libraries and quantitative proteomics. We found similar specificity profiles dominated by the well-characterized preference for cleavage after lysine and arginine. Especially, trypsin-1 slightly favored lysine over arginine in this position, while trypsin-3 did not discriminate between them. In the P1' position, which is the residue C-terminal to the cleavage site, we noticed a subtle enrichment of alanine and glycine for all three trypsins and for trypsin-3 there were additional minor P1' and P2' preferences for threonine and aspartic acid, respectively. These findings were confirmed by FRET peptide substrates showing different susceptibility to cleavage by different trypsins. The preference of trypsin-3 for aspartic acid in P2' is explained by salt bridge formation with the unique Arg193. This salt bridge enables and stabilizes a canonical oxyanion conformation by the amides of Ser195 and Arg193, thus manifesting a selective substrate-assisted catalysis. As trypsin-3 has been proposed to be a therapeutic target and marker for cancers, our results may aid the development of specific inhibitors for cancer therapy and diagnostic probes.


Assuntos
Tripsina/química , Tripsina/metabolismo , Sequência de Aminoácidos , Corantes Fluorescentes/química , Humanos , Isoenzimas/química , Isoenzimas/metabolismo , Modelos Moleculares , Alinhamento de Sequência , Especificidade por Substrato
14.
Biol Chem ; 399(10): 1223-1235, 2018 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-29924726

RESUMO

The genome of the model plant Arabidopsis thaliana encodes three paralogues of the papain-like cysteine proteinase cathepsin B (AtCathB1, AtCathB2 and AtCathB3), whose individual functions are still largely unknown. Here we show that a mutated splice site causes severe truncations of the AtCathB1 polypeptide, rendering it catalytically incompetent. By contrast, AtCathB2 and AtCathB3 are effective proteases which display comparable hydrolytic properties and share most of their substrate specificities. Site-directed mutagenesis experiments demonstrated that a single amino acid substitution (Gly336→Glu) is sufficient to confer AtCathB2 with the capacity to tolerate arginine in its specificity-determining S2 subsite, which is otherwise a hallmark of AtCathB3-mediated cleavages. A degradomics approach utilizing proteome-derived peptide libraries revealed that both enzymes are capable of acting as endopeptidases and exopeptidases, releasing dipeptides from the C-termini of substrates. Mutation of the carboxydipeptidase determinant His207 also affected the activity of AtCathB2 towards non-exopeptidase substrates, highlighting mechanistic differences between plant and human cathepsin B. This was also noted in molecular modeling studies which indicate that the occluding loop defining the dual enzymatic character of cathepsin B does not obstruct the active-site cleft of AtCathB2 to the same extent as in its mammalian orthologues.


Assuntos
Arabidopsis/enzimologia , Carboxipeptidases/metabolismo , Catepsina B/metabolismo , Endopeptidases/metabolismo , Animais , Carboxipeptidases/química , Carboxipeptidases/genética , Catepsina B/química , Catepsina B/genética , Clonagem Molecular , Endopeptidases/química , Endopeptidases/genética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Folhas de Planta/enzimologia , Reação em Cadeia da Polimerase em Tempo Real , Spodoptera/citologia , Spodoptera/genética
15.
Neoplasia ; 20(2): 140-151, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29248718

RESUMO

Patients with metastatic prostate cancer (PCa) have a poorer prognosis than patients with organ-confined tumors. We strove to uncover the proteome signature of primary PCa and associated lymph node metastases (LNMs) in order to identify proteins that may indicate or potentially promote metastases formation. We performed a proteomic comparative profiling of PCa tissue from radical prostatectomy (RPE) of patients without nodal metastases or relapse at the time of surgical resection (n=5) to PCa tissue from RPE of patients who suffered from nodal relapse (n=5). For the latter group, we also included patient-matched tissue of the nodal metastases. All samples were formalin fixed and paraffin embedded. We identified and quantified more than 1200 proteins by liquid chromatography tandem mass spectrometry with subsequent label-free quantification. An increase of ribosomal or proteasomal proteins in LNM (compared to corresponding PCa) became apparent, while extracellular matrix components rather decreased. Immunohistochemistry (IHC) corroborated accumulation of poly-(ADP-ribose)-polymerase 1 and N-myc-downstream-regulated-gene 3, alpha/beta hydrolase domain-containing protein 11, and protein phosphatase slingshot homolog 3 in LNM. These findings strengthen the present interest in examining PARP inhibitors for the treatment of aggressive PCa. IHC also corroborated increased abundance of retinol dehydrogenase 11 in metastasized primary PCa compared to organ-confined PCa. Generally, metastasizing primary tumors were characterized by an enrichment of proteins involved in cellular lipid metabolic processes with concomitant decrease of cell adhesion proteins. This study highlights the usefulness of a combined proteomic-IHC approach to explore novel aspects in tumor biology. Our initial results open novel opportunities for follow-up studies.


Assuntos
Biomarcadores Tumorais/metabolismo , Recidiva Local de Neoplasia/metabolismo , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/secundário , Proteômica/métodos , Humanos , Metástase Linfática , Masculino , Recidiva Local de Neoplasia/patologia , Recidiva Local de Neoplasia/cirurgia , Prognóstico , Prostatectomia , Neoplasias da Próstata/cirurgia
16.
Matrix Biol ; 66: 1-21, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29158163

RESUMO

In this study we used a genetic extracellular matrix (ECM) disease to identify mechanisms associated with aggressive behavior of cutaneous squamous cell carcinoma (cSCC). cSCC is one of the most common malignancies and usually has a good prognosis. However, some cSCCs recur or metastasize and cause significant morbidity and mortality. Known factors that are associated with aggressiveness of cSCCs include tumor grading, size, localization and microinvasive behavior. To investigate molecular mechanisms that influence biologic behavior we used global proteomic and histologic analyses of formalin-fixed paraffin-embedded tissue of primary human cSCCs. We compared three groups: non-recurring, non-metastasizing low-risk sporadic cSCCs; metastasizing sporadic cSCCs; and cSCCs from patients with recessive dystrophic epidermolysis bullosa (RDEB). RDEB is a genetic skin blistering and ECM disease caused by collagen VII deficiency. Patients commonly suffer from high-risk early onset cSCCs that frequently metastasize. The results indicate that different processes are associated with formation of RDEB cSCCs compared to sporadic cSCCs. Sporadic cSCCs show signs of UV damage, whereas RDEB cSCCs have higher mutational rates and display tissue damage, inflammation and subsequent remodeling of the dermal ECM as tumor initiating factors. Interestingly the two high-risk groups - high-risk metastasizing sporadic cSCCs and RDEB cSCCs - are both associated with tissue damage and ECM remodeling in gene-ontology enrichment and Search Tool for the Retrieval of Interacting Genes/Proteins analyses. In situ histologic analyses validate these results. The high-risk cSCCs also show signatures of enhanced bacterial challenge. Histologic analyses confirm correlation of bacterial colonization with worse prognosis. Collectively, this unbiased study - performed directly on human patient material - reveals that common microenvironmental alterations linked to ECM remodeling and increased bacterial challenges are denominators of high-risk cSCCs. The proteins identified here could serve as potential diagnostic markers and therapeutic targets in high-risk cSCCs.


Assuntos
Carcinoma de Células Escamosas/microbiologia , Carcinoma de Células Escamosas/patologia , Epidermólise Bolhosa Distrófica/metabolismo , Matriz Extracelular/metabolismo , Proteômica/métodos , Neoplasias Cutâneas/microbiologia , Adulto , Idade de Início , Idoso , Idoso de 80 Anos ou mais , Bactérias/metabolismo , Carcinoma de Células Escamosas/metabolismo , Progressão da Doença , Epidermólise Bolhosa Distrófica/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Metástase Neoplásica , Neoplasias Cutâneas/metabolismo , Microambiente Tumoral , Adulto Jovem
17.
Eur J Cardiothorac Surg ; 51(6): 1063-1071, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28329269

RESUMO

OBJECTIVES: We investigated the impact of mechanical unloading with a left ventricular assist device (LVAD) on the myocardial proteome. METHODS: We collected 11 patient-matched samples of myocardial left ventricular tissue of patients with non-ischaemic dilate cardiomyopathy, harvested at time of LVAD implant ('pre-LVAD') and heart transplant ('post-LVAD'). Samples were studied by quantitative proteomics. Further we performed histological assessment of deposited collagens and immune infiltration in both pre- and post-LVAD samples. RESULTS: A core set of >1700 proteins was identified and quantified at a false discovery rate <1%. The previously established decrease post-LVAD of alpha-1-antichymotrypsin was corroborated. We noted a post-LVAD decrease of matricellular proteins and proteoglycans such as periostin and versican. Also, proteins of the complement system and precursors of cardiac peptide hormones were decreased post-LVAD. An increase post-LVAD was evident for individual proteins linked to the innate immune response, proteins involved in diverse metabolic pathways, and proteins involved in protein synthesis. Histological analysis did not reveal significant alterations post-LVAD of deposited collagens or immune infiltration. The proteomic data further highlighted a pronounced inter-patient heterogeneity with regards to the impact of LVAD therapy on the left ventricular myocardial proteome. Finally, the proteomic data showed differential proteolytic processing in response to LVAD therapy. CONCLUSIONS: Our findings underline a strong impact of LVAD therapy on the left ventricular myocardial proteome. Together with previous studies, protein markers of LVAD therapy such as alpha-1-antichymotrypsin are becoming apparent. Further, matricellular proteins are emerging as important components in response to LVAD therapy.


Assuntos
Matriz Extracelular/metabolismo , Ventrículos do Coração , Coração Auxiliar , Proteínas/análise , Proteômica/métodos , Adulto , Idoso , Análise por Conglomerados , Matriz Extracelular/química , Feminino , Ventrículos do Coração/química , Ventrículos do Coração/metabolismo , Ventrículos do Coração/cirurgia , Humanos , Masculino , Pessoa de Meia-Idade , Modelos Cardiovasculares , Proteínas/química , Proteínas/metabolismo
18.
Biochim Biophys Acta Proteins Proteom ; 1865(4): 444-452, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28188928

RESUMO

The tobacco-related plant Nicotiana benthamiana is gaining interest as a versatile host for the production of monoclonal antibodies and other protein therapeutics. However, the susceptibility of plant-derived recombinant proteins to endogenous proteolytic enzymes limits their use as biopharmaceuticals. We have now identified two previously uncharacterized N. benthamiana proteases with high antibody-degrading activity, the papain-like cysteine proteinases NbCysP6 and NbCysP7. Both enzymes are capable of hydrolysing a wide range of synthetic substrates, although only NbCysP6 tolerates basic amino acids in its specificity-determining S2 subsite. The overlapping substrate specificities of NbCysP6 and NbCysP7 are also documented by the closely related properties of their other subsites as deduced from the action of the enzymes on proteome-derived peptide libraries. Notable differences were observed to the substrate preferences of N. benthamiana cathepsin B, another antibody-degrading papain-like cysteine proteinase. The complementary activities of NbCysP6, NbCysP7 and N. benthamiana cathepsin B indicate synergistic roles of these proteases in the turnover of recombinant and endogenous proteins in planta, thus representing a paradigm for the shaping of plant proteomes by the combined action of papain-like cysteine proteinases.


Assuntos
Catepsina B/metabolismo , Nicotiana/enzimologia , Proteínas de Plantas/metabolismo , Catepsina B/genética , Ativação Enzimática , Proteínas de Plantas/genética , Nicotiana/genética
19.
Cell Rep ; 17(10): 2607-2619, 2016 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-27926865

RESUMO

High expression of the extracellular matrix component tenascin-C in the tumor microenvironment correlates with decreased patient survival. Tenascin-C promotes cancer progression and a disrupted tumor vasculature through an unclear mechanism. Here, we examine the angiomodulatory role of tenascin-C. We find that direct contact of endothelial cells with tenascin-C disrupts actin polymerization, resulting in cytoplasmic retention of the transcriptional coactivator YAP. Tenascin-C also downregulates YAP pro-angiogenic target genes, thus reducing endothelial cell survival, proliferation, and tubulogenesis. Glioblastoma cells exposed to tenascin-C secrete pro-angiogenic factors that promote endothelial cell survival and tubulogenesis. Proteomic analysis of their secretome reveals a signature, including ephrin-B2, that predicts decreased survival of glioma patients. We find that ephrin-B2 is an important pro-angiogenic tenascin-C effector. Thus, we demonstrate dual activities for tenascin-C in glioblastoma angiogenesis and uncover potential targeting and prediction opportunities.


Assuntos
Efrina-B2/genética , Glioblastoma/tratamento farmacológico , Neovascularização Patológica/tratamento farmacológico , Proteínas Nucleares/genética , Tenascina/administração & dosagem , Fatores de Transcrição/genética , Animais , Proteínas de Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glioblastoma/genética , Glioblastoma/patologia , Humanos , Camundongos , Neovascularização Patológica/genética , Neovascularização Patológica/patologia , Proteômica , Transdução de Sinais , Microambiente Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Arch Biochem Biophys ; 603: 110-7, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27246477

RESUMO

The cysteine protease CP14 has been identified as a central component of a molecular module regulating programmed cell death in plant embryos. CP14 belongs to a distinct subfamily of papain-like cysteine proteinases of which no representative has been characterized thoroughly to date. However, it has been proposed that CP14 is a cathepsin H-like protease. We have now produced recombinant Nicotiana benthamiana CP14 (NbCP14) lacking the C-terminal granulin domain. As typical for papain-like cysteine proteinases, NbCP14 undergoes rapid autocatalytic activation when incubated at low pH. The mature protease is capable of hydrolysing several synthetic endopeptidase substrates, but cathepsin H-like aminopeptidase activity could not be detected. NbCP14 displays a strong preference for aliphatic over aromatic amino acids in the specificity-determining P2 position. This subsite selectivity was also observed upon digestion of proteome-derived peptide libraries. Notably, the specificity profile of NbCP14 differs from that of aleurain-like protease, the N. benthamiana orthologue of cathepsin H. We conclude that CP14 is a papain-like cysteine proteinase with unusual enzymatic properties which may prove of central importance for the execution of programmed cell death during plant development.


Assuntos
Cisteína Proteases/química , Proteínas de Plantas/química , Animais , Anticorpos Monoclonais/química , Sítios de Ligação , Catálise , Catepsina H/química , Catepsinas/química , Hidrólise , Insetos , Espectrometria de Massas , Papaína/química , Peptídeos/química , Ligação Proteica , Proteômica , Proteínas Recombinantes/química , Especificidade por Substrato , Nicotiana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA