Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Virology ; 575: 101-110, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36096069

RESUMO

Respiratory syncytial virus is an important cause of pneumonia in children, the elderly, and immunocompromised individuals. The attachment (G) protein of RSV generates neutralizing antibodies in natural RSV infection which correlate with protection against disease. The immune response to RSV is typically short-lived, which may be related to the heavy glycosylation of RSV-G. In order to improve its immunogenicity, we expressed G protein mutants in a vesicular stomatitis virus (VSV) vector system and tested their ability to protect cotton rats from RSV challenge. We found that the most protective construct was codon-optimized RSV-G, followed by wild-type G and membrane-bound G. Constructs which expressed the G protein with reduced glycosylation or the secreted G protein provided either partial or no protection. Our results demonstrate that modifications to the G protein are not advantageous in a VSV vector system, and that an intact, codon-optimized G is a superior vaccine candidate.


Assuntos
Infecções por Vírus Respiratório Sincicial , Vacinas contra Vírus Sincicial Respiratório , Vírus Sincicial Respiratório Humano , Estomatite Vesicular , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , Códon , Proteínas de Ligação ao GTP , Imunidade , Vacinas contra Vírus Sincicial Respiratório/genética , Vírus Sincicial Respiratório Humano/genética , Sigmodontinae , Vírus da Estomatite Vesicular Indiana , Vesiculovirus/genética , Proteínas Virais de Fusão/genética
2.
Vaccine ; 39(47): 6817-6828, 2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34702618

RESUMO

Respiratory syncytial virus (RSV) is one of the most important causes of respiratory disease in infants, immunocompromised individuals, and the elderly. Natural infection does not result in long-term immunity, and there is no licensed vaccine. Vesicular stomatitis virus (VSV) is a commonly used vaccine vector platform against infectious diseases, and has been used as a vector for a licensed Ebola vaccine. In this study, we expressed the RSV fusion (F) protein, the RSV F protein stabilized in either a pre-fusion or a post-fusion configuration, the attachment glycoprotein (G), or the G and F proteins of RSV in combination in a VSV vector. Cotton rats were immunized with these recombinants intranasally or subcutaneously to test immunogenicity. RSV F stabilized in either a pre-fusion or a post-fusion configuration proved to be poorly immunogenic and protective when compared to unmodified F. RSV G provided partial protection and moderate levels of neutralizing antibody production, both of which improved with intranasal administration compared to subcutaneous inoculation. The most successful vaccine vector was VSV expressing both the G and F proteins after intranasal inoculation. Immunization with this recombinant induced neutralizing antibodies and provided protection from RSV challenge in the upper and lower respiratory tract for at least 80 days. Our results demonstrate that co-expression of F and G proteins in a VSV vector provides synergistic effects in inducing RSV-specific neutralizing antibodies and protection against RSV infection.


Assuntos
Vacinas contra Ebola , Doença pelo Vírus Ebola , Infecções por Vírus Respiratório Sincicial , Vacinas contra Vírus Sincicial Respiratório , Vírus Sincicial Respiratório Humano , Estomatite Vesicular , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , Glicoproteínas/genética , Infecções por Vírus Respiratório Sincicial/prevenção & controle , Sigmodontinae , Proteínas Virais de Fusão/genética
3.
J Virol ; 95(6)2021 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-33408176

RESUMO

Respiratory syncytial virus (RSV) is a major cause of lower respiratory tract (LRT) infections, with increased severity in high-risk human populations, such as infants, the immunocompromised, and the elderly. Although the virus was identified more than 60 years ago, there is still no licensed vaccine available. Over the years, several vaccine delivery strategies have been evaluated. In this study, we developed two recombinant vesicular stomatitis virus (rVSV) vector-based vaccine candidates expressing the RSV-G (attachment) protein (rVSV-G) or F (fusion) protein (rVSV-F). All vectors were evaluated in the cotton rat animal model for their in vivo immunogenicity and protective efficacy against an RSV-A2 virus challenge. Intranasal (i.n.) delivery of rVSV-G and rVSV-F together completely protected the lower respiratory tract (lungs) at doses as low as 103 PFU. In contrast, doses greater than 106 PFU were required to protect the upper respiratory tract (URT) completely. Reimmunization of RSV-immune cotton rats was most effective with rVSV-F. In immunized animals, overall antibody responses were sufficient for protection, whereas CD4 and CD8 T cells were not necessary. A prime-boost immunization regimen increased both protection and neutralizing antibody titers. Overall, mucosally delivered rVSV-vector-based RSV vaccine candidates induce protective immunity and therefore represent a promising immunization regimen against RSV infection.IMPORTANCE Even after decades of intensive research efforts, a safe and efficacious RSV vaccine remains elusive. Expression of heterologous antigens from rVSV vectors has demonstrated several practical and safety advantages over other virus vector systems and live attenuated vaccines. In this study, we developed safe and efficacious vaccine candidates by expressing the two major immunogenic RSV surface proteins in rVSV vectors and delivering them mucosally in a prime-boost regimen. The main immune parameter responsible for protection was the antibody response. These vaccine candidates induced complete protection of both the upper and lower respiratory tracts.


Assuntos
Infecções por Vírus Respiratório Sincicial/prevenção & controle , Vacinas contra Vírus Sincicial Respiratório/administração & dosagem , Vírus Sincicial Respiratório Humano/imunologia , Vesiculovirus/genética , Proteínas do Envelope Viral/imunologia , Proteínas Virais de Fusão/imunologia , Administração através da Mucosa , Animais , Modelos Animais de Doenças , Vetores Genéticos , Imunidade Celular , Imunidade Humoral , Imunização , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/metabolismo , Infecções por Vírus Respiratório Sincicial/imunologia , Vacinas contra Vírus Sincicial Respiratório/imunologia , Vírus Sincicial Respiratório Humano/genética , Sistema Respiratório/imunologia , Sistema Respiratório/virologia , Sigmodontinae , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/imunologia , Vesiculovirus/metabolismo , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/metabolismo , Proteínas Virais de Fusão/genética , Proteínas Virais de Fusão/metabolismo
4.
PLoS One ; 11(4): e0151922, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27093541

RESUMO

Pigs are believed to be one of the important sources of emerging human and swine influenza viruses (SwIV). Influenza virus conserved peptides have the potential to elicit cross-protective immune response, but without the help of potent adjuvant and delivery system they are poorly immunogenic. Biodegradable polylactic-co-glycolic acid (PLGA) nanoparticle (PLGA-NP) based vaccine delivery system enhances cross-presentation of antigens by the professional antigen presenting cells. In this study, Norovirus P particle containing SwIV M2e (extracellular domain of the matrix protein 2) chimera and highly conserved two each of H1N1 peptides of pandemic 2009 and classical human influenza viruses were entrapped in PLGA-NPs. Influenza antibody-free pigs were vaccinated with PLGA-NPs peptides cocktail vaccine twice with or without an adjuvant, Mycobacterium vaccae whole cell lysate, intranasally as mist. Vaccinated pigs were challenged with a virulent heterologous zoonotic SwIV H1N1, and one week later euthanized and the lung samples were analyzed for the specific immune response and viral load. Clinically, pigs vaccinated with PLGA-NP peptides vaccine had no fever and flu symptoms, and the replicating challenged SwIV was undetectable in the bronchoalveolar lavage fluid. Immunologically, PLGA-NP peptides vaccination (without adjuvant) significantly increased the frequency of antigen-specific IFNγ secreting CD4 and CD8 T cells response in the lung lymphocytes, despite not boosting the antibody response both at pre- and post-challenge. In summary, our data indicated that nanoparticle-mediated delivery of conserved H1N1 influenza peptides induced the virus specific T cell response in the lungs and reduced the challenged heterologous virus load in the airways of pigs.


Assuntos
Vírus da Influenza A Subtipo H1N1/imunologia , Vacinas contra Influenza/química , Ácido Láctico/química , Nanopartículas/química , Peptídeos/química , Ácido Poliglicólico/química , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Animais , Anticorpos Antivirais/imunologia , Linhagem Celular , Cães , Vírus da Influenza A Subtipo H1N1/química , Vacinas contra Influenza/imunologia , Interferon gama/imunologia , Ácido Láctico/imunologia , Pulmão/imunologia , Pulmão/virologia , Células Madin Darby de Rim Canino , Nanopartículas/administração & dosagem , Infecções por Orthomyxoviridae/imunologia , Peptídeos/imunologia , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Suínos , Doenças dos Suínos/imunologia , Vacinas de Produtos Inativados/química , Vacinas de Produtos Inativados/imunologia
5.
Arch Virol ; 161(6): 1579-89, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27008569

RESUMO

Porcine reproductive and respiratory syndrome (PRRS) is a leading cause of economic burden to the pork industry worldwide. The routinely used modified live PRRS virus vaccine (PRRS-MLV) induces clinical protection, but it has safety concerns. Therefore, in an attempt to develop a safe and protective inactivated PRRSV vaccine, we generated PRRS-virus-like-particles (PRRS-VLPs) containing the viral surface proteins GP5-GP4-GP3-GP2a-M or GP5-M using a novel baculovirus expression system. Our in vitro results indicated that the desired PRRSV proteins were incorporated in both the VLPs preparations based on their reactivity in immunogold electron microscopy and ELISA. To boost their immunogenicity in pigs, we entrapped the PRRS-VLPs in PLGA nanoparticles and coadministered them intranasally with a potent adjuvant. We then evaluated their efficacy in pigs against a viral challenge using a virulent heterologous field isolate. Our results indicated that PRRS-VLPs induced an anamnestic immune response, since we observed boosted IgG and IFN-γ production in vaccinated and virus-challenged animals, but not during the pre-challenge period. Importantly, a two-log reduction in the lung viral load was detected in PRRS-VLP-vaccinated animals. In conclusion, we generated PRRS-VLPs containing up to five viral surface proteins and demonstrated their immunogenicity in pigs, but further studies are required to improve its immunogenicity and efficacy as a vaccine candidate.


Assuntos
Síndrome Respiratória e Reprodutiva Suína/imunologia , Síndrome Respiratória e Reprodutiva Suína/prevenção & controle , Vírus da Síndrome Respiratória e Reprodutiva Suína/imunologia , Vacinas Virais/imunologia , Animais , Anticorpos Antivirais/sangue , Linhagem Celular , Citocinas/metabolismo , Genes Virais , Pulmão/imunologia , Pulmão/virologia , Síndrome Respiratória e Reprodutiva Suína/virologia , Vírus da Síndrome Respiratória e Reprodutiva Suína/genética , Sus scrofa , Suínos , Vacinas de Produtos Inativados/genética , Vacinas de Produtos Inativados/imunologia , Vacinas de Partículas Semelhantes a Vírus/genética , Vacinas de Partículas Semelhantes a Vírus/imunologia , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/imunologia , Carga Viral , Vacinas Virais/genética
6.
PLoS One ; 9(3): e90066, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24594847

RESUMO

Influenza A virus (IAV) and Streptococcus pneumoniae (pneumococcus) are two major upper respiratory tract pathogens responsible for exacerbated disease in coinfected individuals. Despite several studies showing increased susceptibility to secondary bacterial infections following IAV infection, information on the direct effect of S. pneumoniae on IAV in vitro is unknown. This is an important area of investigation as S. pneumoniae is a common commensal of the human upper respiratory tract, present as an important coinfecting pathogen with IAV infection. A recent study showed that S. pneumoniae enhances human metapneumovirus infection in polarized bronchial epithelial cells in vitro. The aim of the current study was to determine whether treatment of epithelial cells with S. pneumoniae affects IAV replication using a standard immunofluorescence assay (IFA). For this study we used four IAV permissive epithelial cell lines including two human-derived cell lines, 12 pneumococcal strains including recent human clinical isolates which represent different genetic backgrounds and serotypes, and six IAV strains of varying genetic nature and pathogenic potential including the pandemic 2009 H1N1 virus. Our results suggested that pretreatment of MDCK cells with 7.5×10(6) colony-forming units (CFUs) of live S. pneumoniae resulted in gradual cell-death in a time-dependent manner (0.5 to 4 hr). But, pretreatment of cell lines with 7.5×10(5) and lower CFUs of S. pneumoniae had no detectable effect on either the morphology of cells or on the IAV replication. However, unlike in epithelial cell lines, due to influence of secreted host factors the effect of pneumococci on IAV replication may be different during coinfections in vivo in the human upper respiratory tract, and in vitro with primary human polarized bronchial epithelial cells.


Assuntos
Células Epiteliais/microbiologia , Vírus da Influenza A/fisiologia , Streptococcus pneumoniae/fisiologia , Replicação Viral , Animais , Calibragem , Cães , Técnicas In Vitro , Células Madin Darby de Rim Canino , Microscopia de Fluorescência , Streptococcus pneumoniae/classificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA