Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Brain ; 145(10): 3608-3621, 2022 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-35603900

RESUMO

The lipid phosphatase PTEN (phosphatase and tensin homologue on chromosome 10) is a key tumour suppressor gene and an important regulator of neuronal signalling. PTEN mutations have been identified in patients with autism spectrum disorders, characterized by macrocephaly, impaired social interactions and communication, repetitive behaviour, intellectual disability, and epilepsy. PTEN enzymatic activity is regulated by a cluster of phosphorylation sites at the C-terminus of the protein. Here, we focused on the role of PTEN T366 phosphorylation and generated a knock-in mouse line in which Pten T366 was substituted with alanine (PtenT366A/T366A). We identify that phosphorylation of PTEN at T366 controls neuron size and connectivity of brain circuits involved in sensory processing. We show in behavioural tests that PtenT366/T366A mice exhibit cognitive deficits and selective sensory impairments, with significant differences in male individuals. We identify restricted cellular overgrowth of cortical neurons in PtenT366A/T366A brains, linked to increases in both dendritic arborization and soma size. In a combinatorial approach of anterograde and retrograde monosynaptic tracing using rabies virus, we characterize differences in connectivity to the primary somatosensory cortex of PtenT366A/T366A brains, with imbalances in long-range cortico-cortical input to neurons. We conclude that phosphorylation of PTEN at T366 controls neuron size and connectivity of brain circuits involved in sensory processing and propose that PTEN T366 signalling may account for a subset of autism-related functions of PTEN.


Assuntos
PTEN Fosfo-Hidrolase , Treonina , Animais , Camundongos , Masculino , Treonina/metabolismo , Tensinas/metabolismo , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Neurônios/metabolismo , Alanina/metabolismo , Lipídeos
2.
Microcirculation ; 27(1): e12590, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31520425

RESUMO

OBJECTIVE: In this study, we examined the impact of gap junction blockade on chick chorioallantoic membrane microvessels. METHODS: Expression of Cx37, Cx40/42, and Cx43 in chick chorioallantoic membrane tissue was studied by PCR, Western blot, and confocal immunofluorescence microscopy. Vessel diameter changes occurring under gap junction blockade with carbenoxolone (175 µmol/L), palmitoleic acid (100 µmol/L), 43 GAP27 (1 mmol/L) were analyzed by intravital microscopy. To analyze vascular tone, chick chorioallantoic membrane vessels were exposed to a vasodilator cocktail consisting of acetylcholine (10 µmol/L), adenosine (100 µmol/L), papaverine (200 µmol/L), and sodium nitroprusside (10 µmol/L). RESULTS: In chick chorioallantoic membrane lysates, Western blot analysis revealed the expression of Cx40 and Cx43. Immunofluorescence in intact chick chorioallantoic membrane vasculature showed only Cx43, limited to arterial vessel walls. Upon gap junction blockade (3 hours) arterial and venous diameters decreased to 0.50 ± 0.03 and 0.36 ± 0.06 (carbenoxolone), 0.72 ± 0.08 and 0.63 ± 0.15 (palmitoleic acid) and 0.77 ± 0.004 and 0.58 ± 0.05 (GAP27), relative to initial values. Initially, diameter decrease was dominated by increasing vascular tone. After 6 hours, however, vessel tone was reduced, suggesting structural network remodeling. CONCLUSIONS: Our findings suggest a major role for connexins in mediating acute and chronic diameter changes in developing vascular networks.


Assuntos
Proteínas Aviárias/metabolismo , Membrana Corioalantoide/irrigação sanguínea , Conexina 43/metabolismo , Junções Comunicantes/metabolismo , Microvasos/metabolismo , Animais , Embrião de Galinha
3.
Cell Oncol (Dordr) ; 41(5): 505-516, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30047091

RESUMO

PURPOSE: Previous studies have identified alkyl-phospholipids as promising compounds for cancer therapy by targeting constituents of the cell membrane and different signaling pathways. We previously showed that the alkylphospholipid Inositol-C2-PAF inhibits the proliferation and migration of immortalized keratinocytes and the squamous carcinoma-derived cell line SCC-25. Here, we investigated the effect of this compound on growth and motility as well as its mode of action in mammary carcinoma-derived cell lines. METHODS: Using BrdU incorporation and haptotactic cell migration assays, we assessed the effects of Inositol-C2-PAF on MCF-7 and MBA-MB-231 cell proliferation and migration. The phosphorylation status of signaling molecules was investigated by Western blotting as well as indirect immunofluorescence analysis and capillary isoelectric focusing. RESULTS: We found that Inositol-C2-PAF inhibited the growth as well as the migration in MCF-7 and MBA-MB-231 cells. Furthermore, we found that this compound inhibited phosphorylation of the protein kinase Akt at serine residue 473, but had no impact on phosphorylation at threonine 308. Phosphorylation of other kinases, such as Erk1/2, FAK and Src, which are targeted by Inositol-C2-PAF in other cells, remained unaffected by the compound in the mammary carcinoma-derived cell lines tested. In MCF-7 cells, we found that IGF-1-induced growth, as well as phosphorylation of AktS473, mTOR and the tumor suppressor pRB, was inhibited in the presence of Inositol-C2-PAF. Moreover, we found that in these cells IGF-1 had no impact on migration and did not seem to be linked to full Akt activity. Therefore, MCF-7 cell migration appears to be inhibited by Ino-C2-PAF in an Akt-independent manner. CONCLUSION: The antagonistic effects of Inositol-C2-PAF on cell migration and proliferation are indicative for its potential for breast cancer therapy, alone or in combination with other cytostatic drugs.


Assuntos
Neoplasias da Mama/metabolismo , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Inositol/análogos & derivados , Fator de Ativação de Plaquetas/análogos & derivados , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Feminino , Humanos , Inositol/farmacologia , Fator de Crescimento Insulin-Like I/genética , Fator de Crescimento Insulin-Like I/metabolismo , Células MCF-7 , Fator de Ativação de Plaquetas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética
4.
Biochim Biophys Acta Mol Cell Res ; 1864(8): 1405-1412, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28499918

RESUMO

Cullin 3 (Cul3) belongs to the family of cullins (Cul1-7) providing the scaffold for cullin-RING ubiquitin (Ub) ligases (CRLs), which are activated by neddylation and represent essential E3 ligases of the Ub proteasome system. During adipogenic differentiation neddylated Cul3 accumulates in LiSa-2 preadipocytes. Downregulation of Cul3 and inhibition of neddylation by MLN4924 blocks the formation of lipid droplets (LDs), the lipid storage organelles and markers of adipogenesis. Neddylation of Cul3 coincides with an increase of Rab18, a GTPase associated with LDs. Immunoprecipitation and confocal fluorescence microscopy revealed physical association of Cul3 and Rab18 at the membrane of LDs. RhoA, a suppressor of adipogenesis decreased during differentiation. Our results in LiSa-2 cells, but also mouse embryonic fibroblasts revealed a connection between Cul3, Rab18 and RhoA. Downregulation of Cul3 led to a marked increase in RhoA protein expression after 6days of LiSa-2 cell differentiation, suggesting that Cul3 is involved in the regulation of RhoA stability.


Assuntos
Adipócitos/metabolismo , Adipogenia/genética , Proteínas Culina/genética , Processamento de Proteína Pós-Traducional , Proteínas rab de Ligação ao GTP/genética , Proteína rhoA de Ligação ao GTP/genética , Adipócitos/citologia , Animais , Diferenciação Celular , Linhagem Celular Tumoral , Proteínas Culina/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Humanos , Gotículas Lipídicas , Camundongos , Proteína NEDD8 , Cultura Primária de Células , Complexo de Endopeptidases do Proteassoma , Proteólise , Transdução de Sinais , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Ubiquitinas/genética , Ubiquitinas/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo
5.
J Physiol ; 595(8): 2497-2517, 2017 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-28075020

RESUMO

KEY POINTS: Gap junction channels are essential for the formation and regulation of physiological units in tissues by allowing the lateral cell-to-cell diffusion of ions, metabolites and second messengers. Stimulation of the adenosine receptor subtype A2B increases the gap junction coupling in the human blood-brain barrier endothelial cell line hCMEC/D3. Although the increased gap junction coupling is cAMP-dependent, neither the protein kinase A nor the exchange protein directly activated by cAMP were involved in this increase. We found that cAMP activates cyclic nucleotide-gated (CNG) channels and thereby induces a Ca2+ influx, which leads to the increase in gap junction coupling. The report identifies CNG channels as a possible physiological link between adenosine receptors and the regulation of gap junction channels in endothelial cells of the blood-brain barrier. ABSTRACT: The human cerebral microvascular endothelial cell line hCMEC/D3 was used to characterize the physiological link between adenosine receptors and the gap junction coupling in endothelial cells of the blood-brain barrier. Expressed adenosine receptor subtypes and connexin (Cx) isoforms were identified by RT-PCR. Scrape loading/dye transfer was used to evaluate the impact of the A2A and A2B adenosine receptor subtype agonist 2-phenylaminoadenosine (2-PAA) on the gap junction coupling. We found that 2-PAA stimulated cAMP synthesis and enhanced gap junction coupling in a concentration-dependent manner. This enhancement was accompanied by an increase in gap junction plaques formed by Cx43. Inhibition of protein kinase A did not affect the 2-PAA-related enhancement of gap junction coupling. In contrast, the cyclic nucleotide-gated (CNG) channel inhibitor l-cis-diltiazem, as well as the chelation of intracellular Ca2+ with BAPTA, or the absence of external Ca2+ , suppressed the 2-PAA-related enhancement of gap junction coupling. Moreover, we observed a 2-PAA-dependent activation of CNG channels by a combination of electrophysiology and pharmacology. In conclusion, the stimulation of adenosine receptors in hCMEC/D3 cells induces a Ca2+ influx by opening CNG channels in a cAMP-dependent manner. Ca2+ in turn induces the formation of new gap junction plaques and a consecutive sustained enhancement of gap junction coupling. The report identifies CNG channels as a physiological link that integrates gap junction coupling into the adenosine receptor-dependent signalling of endothelial cells of the blood-brain barrier.


Assuntos
Cálcio/metabolismo , Canais de Cátion Regulados por Nucleotídeos Cíclicos/metabolismo , Células Endoteliais/metabolismo , Junções Comunicantes/metabolismo , Microvasos/metabolismo , Receptor A2B de Adenosina/fisiologia , Adenosina/análogos & derivados , Adenosina/farmacologia , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Linhagem Celular , Ácido Egtázico/análogos & derivados , Ácido Egtázico/farmacologia , Células Endoteliais/efeitos dos fármacos , Junções Comunicantes/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Humanos , Microvasos/efeitos dos fármacos
6.
J Cell Sci ; 127(Pt 11): 2518-27, 2014 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-24652834

RESUMO

The olfactory signal transduction cascade transforms odor information into electrical signals by a cAMP-based amplification mechanism. The mechanisms underlying the very precise temporal and spatial organization of the relevant signaling components remains poorly understood. Here, we identify, using co-immunoprecipitation experiments, a macromolecular assembly of signal transduction components in mouse olfactory neurons, organized through MUPP1. Disruption of the PDZ signaling complex, through use of an inhibitory peptide, strongly impaired odor responses and changed the activation kinetics of olfactory sensory neurons. In addition, our experiments demonstrate that termination of the response is dependent on PDZ-based scaffolding. These findings provide new insights into the functional organization, and regulation, of olfactory signal transduction.


Assuntos
Proteínas de Transporte/metabolismo , Complexos Multiproteicos/metabolismo , Mucosa Olfatória/fisiologia , Animais , Proteínas de Transporte/genética , AMP Cíclico/metabolismo , Células HEK293 , Humanos , Proteínas de Membrana , Camundongos , Camundongos Endogâmicos C57BL , Proteínas dos Microfilamentos/metabolismo , Neurônios Receptores Olfatórios/metabolismo , Domínios PDZ/genética , Fragmentos de Peptídeos/metabolismo , Ligação Proteica , Receptores Odorantes/metabolismo , Transdução de Sinais
7.
Purinergic Signal ; 8(1): 71-80, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21956217

RESUMO

The expression and physiology of purine receptors of the human blood-brain barrier endothelial cells were characterised by application of molecular biological, gene-silencing and Ca(2+)-imaging techniques to hCMEC/D3 cells. Reverse transcription polymerase chain reaction showed the expression of the G-protein-coupled receptors P2Y(2)-, P2Y(6)-, P2Y(11)- as well as the ionotropic P2X(4)-, P2X(5)- and P2X(7)-receptors. Fura-2 ratiometry revealed that adenosine triphosphate (ATP) or uridine triphosphate (UTP) mediated a change in the intracellular Ca(2+) concentration ([Ca(2+)](i)) from 150 to 300 nM in single cells. The change in [Ca(2+)](i) corresponded to a fourfold to fivefold increase in the fluorescence intensity of Fluo-4, which was used for high-throughput experiments. Pharmacological dissection using different agonists [UTPγS, ATPγS, uridine diphosphate (UDP), adenosine diphosphate (ADP), BzATP, αß-meATP] and antagonist (MRS2578 or NF340) as well as inhibitors of intracellular mediators (U73122 and 2-APB) showed a PLC-IP(3) cascade-mediated Ca(2+) release, indicating that the nucleotide-induced Ca(2+) signal was mainly related to P2Y(2, 6 and 11) receptors. The gene silencing of the P2Y(2) receptor reduced the ATP- or UTP-induced Ca(2+) signal and suppressed the Ca(2+) signal mediated by P2Y(6) and P2Y(11) more specific agonists like UDP (P2Y(6)), BzATP (P2Y(11)) and ATPγS (P2Y(11)). This report identifies the P2Y(2) receptor subtype as the main purine receptor involved in Ca(2+) signalling of the hCMEC/D3 cells.

8.
J Bioenerg Biomembr ; 43(3): 311-22, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21523406

RESUMO

Whole-cell patch-clamp analysis revealed a resting membrane potential of -60 mV in primary osteoblasts and in the MG-63 osteoblast-like cells. Depolarization-induced action potentials were characterized by duration of 60 ms, a minimal peak-to-peak distance of 180 ms, a threshold value of -20 mV and a repolarization between the spikes to -45 mV. Expressed channels were characterized by application of voltage pulses between -150 mV and 90 mV in 10 mV steps, from a holding potential of -40 mV. Voltages below -60 mV induced an inward current. Depolarizing voltages above -30 mV evoked two currents: (a) a fast activated and inactivated inward current at voltages between -30 and 30 mV, and (b) a delayed-activated outward current that was induced by voltages above -30 mV. Electrophysiological and pharmacological parameters indicated that hyperpolarization activated strongly rectifying K(+) (K(ir)) channels, whereas depolarization activated tetrodotoxin sensitive voltage gated Na(+) (Na(v)) channels as well as delayed, slowly activated, non-inactivating, and tetraethylammonium sensitive voltage gated K(+) (K(v)) channels. In addition, RT-PCR showed expression of Na(v)1.3, Na(v)1.4, Na(v)1.5, Na(v)1.6, Na(v)1.7, and K(ir)2.1, K(ir)2.3, and K(ir)2.4 as well as K(v)2.1. We conclude that osteoblasts express channels that allow firing of action potentials.


Assuntos
Osteoblastos/fisiologia , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Neoplasias Ósseas , Linhagem Celular , Linhagem Celular Tumoral , Humanos , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Osteossarcoma , Técnicas de Patch-Clamp , Canais de Potássio/biossíntese , Canais de Potássio/fisiologia , Canais de Sódio/biossíntese , Canais de Sódio/fisiologia
9.
J Biomed Opt ; 14(5): 054040, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19895141

RESUMO

Femtosecond (fs) laser-based cell surgery is typically done in two different regimes, at kHz or MHz repetition rate. Formation of reactive oxygen species (ROS) is an often predicted effect due to illumination with short laser pulses in biological tissue. We present our study on ROS formation in single cells in response to irradiation with fs laser pulses depending on the repetition rate while focusing into the cell nucleus. We observed a significant increase of ROS concentration directly after manipulation followed by a decrease in both regimes at kHz and MHz repetition rate. In addition, effects of consecutive exposures at MHz and kHz repetition rate and vice versa on ROS production were studied. Irradiation with a MHz pulse train followed by a kHz pulse train resulted in a significantly higher increase of ROS concentration than in the reversed case and often caused cell death. In the presence of the antioxidant ascorbic acid, accumulation of ROS and cell death were strongly reduced. Therefore, addition of antioxidants during fs laser-based cell surgery experiments could be advantageous in terms of suppressing photochemical damage to the cell.


Assuntos
Células Endoteliais/metabolismo , Células Endoteliais/efeitos da radiação , Terapia a Laser/métodos , Espécies Reativas de Oxigênio/metabolismo , Animais , Bovinos , Células Cultivadas , Relação Dose-Resposta à Radiação , Luz , Doses de Radiação
10.
J Bioenerg Biomembr ; 41(1): 85-94, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19191015

RESUMO

Purinergic signalling in rat GFSHR-17 granulosa cells was characterised by Ca(2+)-imaging and perforated patch-clamp. We observed a resting intracellular Ca(2+)-concentration ([Ca(2+)](i)) of 100 nM and a membrane potential of -40 mV. This was consistent with high K(+)- and Cl(-) permeability and a high intracellular Cl(-) concentration of 40 mM. Application of ATP for 5-15 s every 3 min induced repeated [Ca(2+)](i) increases and a 30 mV hyperpolarization. The phospholipase C inhibitor U73122 or the IP(3)-receptor antagonist 2-aminoethoethyl diphenyl borate suppressed ATP responses. Further biochemical and pharmacological experiments revealed that ATP responses were related to stimulation of P2Y(2) and P2Y(4) receptors and that the [Ca(2+)](i) increase was a prerequisite for hyperpolarization. Inhibitors of Ca(2+)-activated channels or K(+) channels did not affect the ATP-evoked responses. Conversely, inhibitors of Cl(-) channels hyperpolarized cells to -70 mV and suppressed further ATP-evoked hyperpolarization. We propose that P2Y(2) and P2Y(4) receptors in granulosa cells modulate Cl(-) permeability by regulating Ca(2+)-release.


Assuntos
Trifosfato de Adenosina/metabolismo , Cálcio/metabolismo , Cloretos/metabolismo , Células da Granulosa/metabolismo , Receptores Purinérgicos/metabolismo , Transdução de Sinais/fisiologia , Animais , Western Blotting , Estrenos/farmacologia , Feminino , Técnicas de Patch-Clamp , Pirrolidinonas/farmacologia , Ratos , Fosfolipases Tipo C/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA