Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Neuropharmacology ; 247: 109860, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38336243

RESUMO

Fetal alcohol spectrum disorder (FASD) is the most common preventable form of developmental and neurobehavioral disability. Animal models have demonstrated that even low to moderate prenatal alcohol exposure (PAE) is sufficient to impair behavioral flexibility in multiple domains. Previously, utilizing a moderate limited access drinking in the dark paradigm, we have shown that PAE 1) impairs touchscreen pairwise visual reversal in male adult offspring 2) leads to small but significant decreases in orbitofrontal (OFC) firing rates 3) significantly increases dorsal striatum (dS) activity and 4) aberrantly sustains OFC-dS synchrony across early reversal. In the current study, we examined whether optogenetic stimulation of OFC-dS projection neurons would be sufficient to rescue the behavioral inflexibility induced by PAE in male C57BL/6J mice. Following discrimination learning, we targeted OFC-dS projections using a retrograde adeno-associated virus (AAV) delivered to the dS which expressed channel rhodopsin (ChR2). During the first four sessions of reversal learning, we delivered high frequency optogenetic stimulation to the OFC via optic fibers immediately following correct choice responses. Our results show that optogenetic stimulation significantly reduced the number of sessions, incorrect responses, and correction errors required to move past the early perseverative phase for both PAE and control mice. In addition, OFC-dS stimulation during early reversal learning reduced the increased sessions, correct and incorrect responding seen in PAE mice during the later learning phase of reversal but did not significantly alter later performance in control ChR2 mice. Taken together these results suggest that stimulation of OFC-dS projections can improve early reversal learning in PAE and control mice, and these improvements can persist even into later stages of the task days later. These studies provide an important foundation for future clinical approaches to improve executive control in those with FASD. This article is part of the Special Issue on "PFC circuit function in psychiatric disease and relevant models".


Assuntos
Transtornos do Espectro Alcoólico Fetal , Efeitos Tardios da Exposição Pré-Natal , Humanos , Camundongos , Masculino , Feminino , Animais , Gravidez , Córtex Pré-Frontal/fisiologia , Optogenética , Camundongos Endogâmicos C57BL , Efeitos Tardios da Exposição Pré-Natal/psicologia , Reversão de Aprendizagem/fisiologia
2.
PLoS One ; 8(1): e55718, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23383270

RESUMO

Complex regulation of brain-derived neurotrophic factor (BDNF) governs its intricate functions in brain development and neuronal plasticity. Besides tight transcriptional control from multiple distinct promoters, alternative 3'end processing of the BDNF transcripts generates either a long or a short 3'untranslated region (3'UTR). Previous reports indicate that distinct RNA sequence in the BDNF 3'UTRs differentially regulates BDNF production in the brain to accommodate neuronal activity changes, conceivably through differential interactions with undefined trans-acting factors that regulate stability and translation of these BDNF mRNA isoforms. In this study, we report that the neuronal RNA-binding protein (RBP) HuD interacts with a highly conserved AU-rich element (ARE) specifically located in the BDNF long 3'UTR. Such interaction is necessary and sufficient for selective stabilization of mRNAs that contain the BDNF long 3'UTR in vitro and in vivo. Moreover, in a HuD transgenic mouse model, the BDNF long 3'UTR mRNA is increased in the hippocampal dentate granule cells (DGCs), leading to elevated expression of BDNF protein that is transported and stored in the mossy fiber (MF) terminals. Our results identify HuD as the first trans-acting factor that enhances BDNF expression specifically through the long 3'UTR and a novel mechanism that regulates BDNF protein production in selected neuronal populations by HuD abundance.


Assuntos
Regiões 3' não Traduzidas , Fator Neurotrófico Derivado do Encéfalo/genética , Encéfalo/metabolismo , Proteínas ELAV/metabolismo , Neurônios/metabolismo , Estabilidade de RNA , RNA Mensageiro/metabolismo , Animais , Sequência de Bases , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Células Cultivadas , Regulação da Expressão Gênica , Genes Reporter , Hipocampo/metabolismo , Camundongos , Ligação Proteica , Interferência de RNA , Elementos de Resposta
3.
Front Biosci (Schol Ed) ; 5(2): 554-63, 2013 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-23277068

RESUMO

Hu proteins are a family of RNA-binding proteins (RBPs) that are homologs of Drosophila ELAV, a protein required for nervous system development. Three of these proteins (HuB, HuC, and HuD) are primarily expressed in neurons. The fourth member, HuR is ubiquitously expressed in all tissues. At the molecular level, Hu proteins are known to interact with AU-rich instability conferring sequences in the 3' UTR of specific target mRNAs, stabilizing the mRNAs. These proteins are not only the best known mRNA stabilizers but also the earliest markers of the neuronal cell lineage. Among the neuronal Hu proteins, HuD has been shown to accelerate neuronal differentiation and axonal outgrowth in neurons both in culture and in vivo. In addition, HuD and other Hu proteins participate in synaptic plasticity mechanisms in the mature central nervous system and promote regeneration of peripheral nerves. Furthermore, HuD has been implicated in pathological conditions from neurodegenerative disorders such as Parkinson's and Alzheimer's disease to childhood brain tumors. This review will focus on the involvement of HuD in nervous system function and pathology.


Assuntos
Proteínas ELAV/fisiologia , Animais , Proteínas ELAV/genética , Proteínas ELAV/metabolismo , Humanos , Fenômenos Fisiológicos do Sistema Nervoso , Neurônios/metabolismo , Neurônios/patologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA