Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Oncol ; 12: 912695, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35875088

RESUMO

Background: Hyperammonemic encephalopathy caused by Ureaplasma spp. and Mycoplasma hominis infection has been reported in immunocompromised patients undergoing lung transplant, but data are scarce in patients with hematological malignancies. Case Presentation: We describe the cases of 3 female patients aged 11-16 years old, developing initially mild neurologic symptoms, rapidly evolving to coma and associated with very high ammonia levels, while undergoing intensive treatment for acute leukemia (chemotherapy: 2 and hematopoietic stem cell transplant: 1). Brain imaging displayed cerebral edema and/or microbleeding. Electroencephalograms showed diffuse slowing patterns. One patient had moderate renal failure. Extensive liver and metabolic functions were all normal. Ureaplasma spp. and M. hominis were detected by PCR and specific culture in two patients, resulting in prompt initiation of combined antibiotics therapy by fluoroquinolones and macrolides. For these 2 patients, the improvement of the neurological status and ammonia levels were observed within 96 h, without any long-term sequelae. M. hominis was detected post-mortem in vagina, using 16S rRNA PCR for the third patient who died of cerebral edema. Conclusion: Hyperammonemic encephalopathy linked to Ureaplasma spp. and M. hominis is a rare complication encountered in immunocompromised patients treated for acute leukemia, which can lead to death if unrecognized. Combining our experience with the few published cases (n=4), we observed a strong trend among female patients and very high levels of ammonia, consistently uncontrolled by classical measures (ammonia-scavenging agents and/or continuous kidney replacement therapy). The reversibility of the encephalopathy without sequelae is possible with prompt diagnosis and adequate combined specific antibiotherapy. Any neurological symptoms in an immunocompromised host should lead to the measurement of ammonia levels. If increased, and in the absence of an obvious cause, it should prompt to perform a search for Ureaplasma spp. and M. hominis by PCR as well as an immediate empirical initiation of combined specific antibiotherapy.

2.
Front Cell Infect Microbiol ; 12: 886447, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35719352

RESUMO

Background: Anticancer drug efficacy is linked to the gut microbiota's composition, and there is a dire need to better understand these interactions for personalized medicine. In vitro microbiota models are promising tools for studies requiring controlled and repeatable conditions. We evaluated the impact of two anticancer drugs on human feces in the MiniBioReactor Array (MBRA) in vitro microbiota system. Methods: The MBRA is a single-stage continuous-flow culture model, hosted in an anaerobic chamber. We evaluated the effect of a 5-day treatment with hydroxycarbamide or daunorubicine on the fecal bacterial communities of two healthy donors. 16S microbiome profiling allowed analysis of microbial richness, diversity, and taxonomic changes. Results: In this host-free setting, anticancer drugs diversely affect gut microbiota composition. Daunorubicin was associated with significant changes in alpha- and beta-diversity as well as in the ratio of Firmicutes/Bacteroidetes in a donor-dependent manner. The impact of hydroxycarbamide on microbiota composition was not significant. Conclusion: We demonstrated, for the first time, the impact of anticancer drugs on human microbiota composition, in a donor- and molecule-dependent manner in an in vitro human microbiota model. We confirm the importance of personalized studies to better predict drug-associated-dysbiosis in vivo, linked to the host's response to treatment.


Assuntos
Microbioma Gastrointestinal , Microbiota , Daunorrubicina/farmacologia , Fezes/microbiologia , Humanos , Projetos Piloto , RNA Ribossômico 16S/genética
3.
Eur J Clin Microbiol Infect Dis ; 41(5): 691-711, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35353280

RESUMO

Cancer being an increasing burden on human health, the use of anticancer drugs has risen over the last decades. The physiological effects of these drugs are not only perceived by the host's cells but also by the microbial cells it harbors as commensals, notably the gut microbiota. Since the early '50 s, the cytotoxicity of anticancer chemotherapy was evaluated on bacteria revealing some antimicrobial activities that result in an established perturbation of the gut microbiota. This perturbation can affect the host's health through dysbiosis, which can lead to multiple complications, but has also been shown to have a direct effect on the treatment efficiency.We, therefore, conducted a review of literature focusing on this triangular relationship involving the microbial communities from the gut, the host's disease, and the anticancer treatment. We focused specifically on the antimicrobial effects of anticancer chemotherapy, their impact on mutagenesis in bacteria, and the perspectives of using bacteria-based tools to help in the diagnostic and treatment of cancer.


Assuntos
Anti-Infecciosos , Microbioma Gastrointestinal , Microbiota , Neoplasias , Bactérias , Disbiose/microbiologia , Microbioma Gastrointestinal/fisiologia , Humanos , Neoplasias/terapia
4.
Sci Rep ; 10(1): 589, 2020 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-31953453

RESUMO

Through their action on DNA replication, anticancer chemotherapies could increase the basal mutation rate in bacteria and increase the risk of selecting antibiotic resistant mutants. We investigated the impact of several drugs on a beta-lactamase model using KPC-type carbapenemase-producing Enterobacteriaceae. We studied the impact of anticancer chemotherapies used in pediatric hematologic malignancies on 7 clinical isolates of Enterobacteriaceae producing KPC-type carbapenemases. We compared the mutation rates from cultures with/without chemotherapy on ceftazidime-avibactam, rifampicin and ceftazidime-avibactam combined with meropenem media. Mechanisms of ceftazidime-avibactam resistance were explored on a subset of mutants. After exposure to some cytotoxic molecules, the bacterial mutation rates leading to ceftazidime-avibactam and to rifampicin resistance increased up to 104-fold while we observed no emergence of resistant mutants (frequency of <10-10) on a meropenem combined with ceftazidime-avibactam media. Compared to the parental strains, an increased susceptibility to meropenem was observed in the ceftazidime-avibactam resistant mutants. The blaKPC genes of ceftazidime-avibactam mutants harbored either mutations, deletions or insertions, especially in the region encoding the Ω-loop of the KPC-type carbapenemase. Anticancer chemotherapy can increase the mutation rates of bacteria accelerating the extension of KPC-type carbapenemases towards ceftazidime-avibactam, one of the last resort antimicrobial chemotherapy.


Assuntos
Antibacterianos/farmacologia , Antineoplásicos/efeitos adversos , Enterobacteriáceas Resistentes a Carbapenêmicos/efeitos dos fármacos , Mutação , beta-Lactamases/genética , Compostos Azabicíclicos/farmacologia , Proteínas de Bactérias/genética , Enterobacteriáceas Resistentes a Carbapenêmicos/genética , Enterobacteriáceas Resistentes a Carbapenêmicos/isolamento & purificação , Ceftazidima/farmacologia , Combinação de Medicamentos , Farmacorresistência Bacteriana , Infecções por Enterobacteriaceae/microbiologia , Genoma Bacteriano , Humanos , Meropeném/farmacologia , Testes de Sensibilidade Microbiana , Rifampina/farmacologia , Sequenciamento Completo do Genoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA