Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Inflamm Bowel Dis ; 29(7): 1133-1144, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-36688460

RESUMO

BACKGROUND: Incidences of inflammatory bowel disease (IBD), including Crohn's disease and ulcerative colitis, are escalating worldwide and can be considered a global public health problem. Given that the gold standard approach to IBD therapeutics focuses on reducing the severity of symptoms, there is an urgent unmet need to develop alternative therapies that halt not only inflammatory processes but also promote mucosal repair. Previous studies have identified increased stem cell factor (SCF) expression in inflamed intestinal mucosal tissues. However, the role that SCF plays in mediating intestinal inflammation and repair has not been explored. METHODS: Changes in the expression of SCF were evaluated in the colonic tissue of healthy mice and during dextran sodium sulfate (DSS)-induced colitis. Furthermore, mucosal wound healing and colitis severity were analyzed in mice subjected to either mechanical biopsy or DSS treatment, respectively, following intestinal epithelial cell-specific deletion of SCF or anti-SCF antibody administration. RESULTS: We report robust expression of SCF by intestinal epithelial cells during intestinal homeostasis with a switch to immune cell-produced SCF during colitis. Data from mice with intestinal epithelial cell-specific deletion of SCF highlight the importance of immune cell-produced SCF in driving the pathogenesis of colitis. Importantly, antibody-mediated neutralization of total SCF or the specific SCF248 isoform decreased immune cell infiltration and enhanced mucosal wound repair following biopsy-induced colonic injury or DSS-induced colitis. CONCLUSIONS: These data demonstrate that SCF functions as a pro-inflammatory mediator in mucosal tissues and that specific neutralization of SCF248 could be a viable therapeutic option to reduce intestinal inflammation and promote mucosal wound repair in individuals with IBD.


Our investigation demonstrates that blocking cleavable SCF248 isoform by administration of specific stem cell factor antibodies enhances healing of the intestinal mucosa and restores critical barrier function, suggesting an alternative therapeutic option to treat individuals with active IBD.


Assuntos
Colite Ulcerativa , Colite , Doenças Inflamatórias Intestinais , Animais , Camundongos , Colite/tratamento farmacológico , Colite/patologia , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/patologia , Sulfato de Dextrana , Modelos Animais de Doenças , Inflamação/tratamento farmacológico , Inflamação/patologia , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/patologia , Mucosa Intestinal/patologia , Fator de Células-Tronco/antagonistas & inibidores , Fator de Células-Tronco/metabolismo
2.
Proc Natl Acad Sci U S A ; 117(17): 9477-9482, 2020 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-32300016

RESUMO

Resolution of intestinal inflammation and wound repair are active processes that mediate epithelial healing at mucosal surfaces. Lipid molecules referred to as specialized proresolving mediators (SPMs) play an important role in the restorative response. Resolvin E1 (RvE1), a SPM derived from omega-3 fatty acids, has been reported to dampen intestinal inflammation by promoting anti-inflammatory responses including increased neutrophil spherocytosis and macrophage production of IL-10. Despite these observations, a role for RvE1 in regulating intestinal epithelial cell migration and proliferation during mucosal wound repair has not been explored. Using an endoscopic biopsy-based wound healing model, we report that RvE1 is locally produced in response to intestinal mucosal injury. Exposure of intestinal epithelial cells to RvE1 promoted wound repair by increasing cellular proliferation and migration through activation of signaling pathways including CREB, mTOR, and Src-FAK. Additionally, RvE1-triggered activation of the small GTPase Rac1 led to increased intracellular reactive oxygen species (ROS) production, cell-matrix adhesion, and cellular protrusions at the leading edge of migrating cells. Furthermore, in situ administration of RvE1-encapsulated synthetic targeted polymeric nanoparticles into intestinal wounds promoted mucosal repair. Together, these findings demonstrate that RvE1 functions as a prorepair lipid mediator by increasing intestinal epithelial cell migration and proliferation, and highlight potential therapeutic applications for this SPM to promote mucosal healing in the intestine.


Assuntos
Ácido Eicosapentaenoico/análogos & derivados , Mucosa Intestinal/metabolismo , Cicatrização/fisiologia , Animais , Adesão Celular , Linhagem Celular , Colo , Ácido Eicosapentaenoico/metabolismo , Ácido Eicosapentaenoico/farmacologia , Humanos , Mucosa Intestinal/patologia , Camundongos , Camundongos Endogâmicos C57BL , Nanopartículas , Neuropeptídeos , Organoides , Espécies Reativas de Oxigênio , Proteínas rac1 de Ligação ao GTP
3.
FASEB J ; 33(12): 13632-13643, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31585047

RESUMO

Mucosal wound repair is coordinated by dynamic crosstalk between endogenous and exogenous mediators and specific receptors on epithelial cells and infiltrating immune cells. One class of such receptor-ligand pairs involves formyl peptide receptors (FPRs) that have been shown to influence inflammatory response and repair. Here we explored the role of murine Fpr2/3, an ortholog of human FPR2/receptor for lipoxin A4 (ALX), in orchestrating intestinal mucosal repair. Compared with wild-type (WT) mice, Fpr2/3-/- mice exhibited delayed recovery from acute experimental colitis and perturbed repair after biopsy-induced colonic mucosal injury. Decreased numbers of infiltrating monocytes were observed in healing wounds from Fpr2/3-/- mice compared with WT animals. Bone marrow transplant experiments revealed that Fpr2/3-/- monocytes showed a competitive disadvantage when infiltrating colonic wounds. Moreover, Fpr2/3-/- monocytes were defective in chemotactic responses to the chemokine CC chemokine ligand (CCL)20, which is up-regulated during early phases of inflammation. Analysis of Fpr2/3-/- monocytes revealed altered expression of the CCL20 receptor CC chemokine receptor (CCR)6, suggesting that Fpr2/3 regulates CCL20-CCR6-mediated monocyte chemotaxis to sites of mucosal injury in the gut. These findings demonstrate an important contribution of Fpr2/3 in facilitating monocyte recruitment to sites of mucosal injury to influence wound repair.-Birkl, D., O'Leary, M. N., Quiros, M., Azcutia, V., Schaller, M., Reed, M., Nishio, H., Keeney, J., Neish, A. S., Lukacs, N. W., Parkos, C. A., Nusrat, A. Formyl peptide receptor 2 regulates monocyte recruitment to promote intestinal mucosal wound repair.


Assuntos
Movimento Celular , Inflamação/terapia , Mucosa Intestinal/fisiologia , Monócitos/metabolismo , Receptores de Formil Peptídeo/fisiologia , Cicatrização , Animais , Transplante de Medula Óssea , Quimiocina CCL20/genética , Quimiocina CCL20/metabolismo , Colite/induzido quimicamente , Colite/metabolismo , Colite/patologia , Sulfato de Dextrana/toxicidade , Inflamação/etiologia , Inflamação/patologia , Mucosa Intestinal/lesões , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Monócitos/citologia , Receptores CCR6/genética , Receptores CCR6/metabolismo
4.
Mucosal Immunol ; 12(4): 909-918, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30971752

RESUMO

Pathobiology of several chronic inflammatory disorders, including ulcerative colitis and Crohn's disease is related to intermittent, spontaneous injury/ulceration of mucosal surfaces. Disease morbidity has been associated with pathologic release of the pro-inflammatory cytokine tumor necrosis factor alpha (TNFα). In this report, we show that TNFα promotes intestinal mucosal repair through upregulation of the GPCR platelet activating factor receptor (PAFR) in the intestinal epithelium. Platelet activating factor (PAF) was increased in healing mucosal wounds and its engagement with epithelial PAFR leads to activation of epidermal growth factor receptor, Src and Rac1 signaling to promote wound closure. Consistent with these findings, delayed colonic mucosal repair was observed after administration of a neutralizing TNFα antibody and in mice lacking PAFR. These findings suggest that in the injured mucosa, the pro-inflammatory milieu containing TNFα and PAF sets the stage for reparative events mediated by PAFR signaling.


Assuntos
Epitélio/metabolismo , Mucosa/metabolismo , Glicoproteínas da Membrana de Plaquetas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais , Fator de Necrose Tumoral alfa/metabolismo , Cicatrização , Proteína ADAM10/metabolismo , Animais , Biomarcadores , Epitélio/patologia , Humanos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Camundongos , Mucosa/patologia , NF-kappa B/metabolismo , Glicoproteínas da Membrana de Plaquetas/genética , Espécies Reativas de Oxigênio/metabolismo , Receptores Acoplados a Proteínas G/genética , Proteínas rac1 de Ligação ao GTP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA