Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biochemistry ; 56(20): 2584-2593, 2017 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-28376304

RESUMO

Na+/H+ exchanger regulatory factor-1 (NHERF1) is a scaffolding protein containing two PSD95/discs large protein/ZO1 (PDZ) domains that modifies the signaling, trafficking, and function of the parathyroid hormone receptor (PTHR), a family B G-protein-coupled receptor. PTHR and NHERF1 bind through a PDZ-ligand-recognition mechanism. We show that PTH elicits phosphorylation of Thr591 in the canonical -ETVM binding motif of PTHR. Conservative substitution of Thr591 with Cys does not affect PTH(1-34)-induced cAMP production or binding of PTHR to NHERF1. The findings suggested the presence of additional sites upstream of the PDZ-ligand motif through which the two proteins interact. Structural determinants outside the canonical NHERF1 PDZ-PTHR interface that influence binding have not been characterized. We used molecular dynamics (MD) simulation to predict residues involved in these interactions. Simulation data demonstrate that the negatively charged Glu side chains at positions -3, -5, and -6 upstream of the PDZ binding motif are involved in PDZ-PTHR recognition. Engineered mutant peptides representing the PTHR C-terminal region were used to measure the binding affinity with NHERF1 PDZ domains. Comparable micromolar affinities for peptides of different length were confirmed by fluorescence polarization, isothermal titration calorimetry, and surface plasmon resonance. Binding affinities measured for Ala variants validate MD simulations. The linear relation between the change in enthalpy and entropy following Ala substitutions at upstream positions -3, -5, and -6 of the PTHR peptide provides a clear example of the thermodynamic compensation rule. Overall, our data highlight sequences in PTHR that contribute to NHERF1 interaction and can be altered to prevent phosphorylation-mediated inhibition.


Assuntos
Biologia Computacional , Domínios PDZ , Fosfoproteínas/metabolismo , Receptor Tipo 1 de Hormônio Paratireóideo/metabolismo , Trocadores de Sódio-Hidrogênio/metabolismo , Sequência de Aminoácidos , Calorimetria , AMP Cíclico/biossíntese , Polarização de Fluorescência , Células HEK293 , Humanos , Simulação de Dinâmica Molecular , Fosfoproteínas/química , Fosforilação , Trocadores de Sódio-Hidrogênio/química , Espectrometria de Massas por Ionização por Electrospray , Ressonância de Plasmônio de Superfície
2.
PLoS One ; 10(6): e0129554, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26070212

RESUMO

Na+/H+ Exchanger Regulatory Factor-1 (NHERF1) is a scaffolding protein containing 2 PDZ domains that coordinates the assembly and trafficking of transmembrane receptors and ion channels. Most target proteins harboring a C-terminus recognition motif bind more-or-less equivalently to the either PDZ domain, which contain identical core-binding motifs. However some substrates such as the type II sodium-dependent phosphate co-transporter (NPT2A), uniquely bind only one PDZ domain. We sought to define the structural determinants responsible for the specificity of interaction between NHERF1 PDZ domains and NPT2A. By performing all-atom/explicit-solvent molecular dynamics (MD) simulations in combination with biological mutagenesis, fluorescent polarization (FP) binding assays, and isothermal titration calorimetry (ITC), we found that in addition to canonical interactions of residues at 0 and -2 positions, Arg at the -1 position of NPT2A plays a critical role in association with Glu43 and His27 of PDZ1 that are absent in PDZ2. Experimentally introduced mutation in PDZ1 (Glu43Asp and His27Asn) decreased binding to NPT2A. Conversely, introduction of Asp183Glu and Asn167His mutations in PDZ2 promoted the formation of favorable interactions yielding micromolar KDs. The results describe novel determinants within both the PDZ domain and outside the canonical PDZ-recognition motif that are responsible for discrimination of NPT2A between two PDZ domains. The results challenge general paradigms for PDZ recognition and suggest new targets for drug development.


Assuntos
Sítios de Ligação , Domínios PDZ , Fosfoproteínas/química , Fosfoproteínas/metabolismo , Trocadores de Sódio-Hidrogênio/química , Trocadores de Sódio-Hidrogênio/metabolismo , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIa/química , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIa/metabolismo , Humanos , Cinética , Modelos Moleculares , Mutação , Domínios PDZ/genética , Peptídeos/química , Peptídeos/metabolismo , Ligação Proteica , Conformação Proteica , Relação Estrutura-Atividade
3.
J Biol Chem ; 290(5): 2879-87, 2015 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-25492869

RESUMO

The regulation of the cell cycle by the ubiquitin-proteasome system is dependent on the activity of E3 ligases. Skp2 (S-phase kinase associated protein-2) is the substrate recognition subunit of the E3 ligase that ubiquitylates the cell cycle inhibitors p21(cip1) and p27(kip1) thus promoting cell cycle progression. Increased expression of Skp2 is frequently observed in diseases characterized by excessive cell proliferation, such as cancer and neointima hyperplasia. The stability and cellular localization of Skp2 are regulated by Akt, but the molecular mechanisms underlying these effects remain only partly understood. The scaffolding protein Ezrin-Binding Phosphoprotein of 50 kDa (EBP50) contains two PDZ domains and plays a critical role in the development of neointimal hyperplasia. Here we report that EBP50 directly binds Skp2 via its first PDZ domain. Moreover, EBP50 is phosphorylated by Akt on Thr-156 within the second PDZ domain, an event that allosterically promotes binding to Skp2. The interaction with EBP50 causes cytoplasmic localization of Skp2, increases Skp2 stability and promotes proliferation of primary vascular smooth muscle cells. Collectively, these studies define a novel regulatory mechanism contributing to aberrant cell growth and highlight the importance of scaffolding function of EBP50 in Akt-dependent cell proliferation.


Assuntos
Fosfoproteínas/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Quinases Associadas a Fase S/metabolismo , Trocadores de Sódio-Hidrogênio/metabolismo , Animais , Proliferação de Células , Células Cultivadas , Humanos , Camundongos , Fosfoproteínas/química , Fosforilação , Ligação Proteica , Estabilidade Proteica , Proteínas Proto-Oncogênicas c-akt/química , Proteínas Quinases Associadas a Fase S/química , Trocadores de Sódio-Hidrogênio/química
4.
J Biol Chem ; 288(51): 36426-36, 2013 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-24196963

RESUMO

The interaction between vascular cells and macrophages is critical during vascular remodeling. Here we report that the scaffolding protein, ezrin-binding phosphoprotein 50 (EBP50), is a central regulator of macrophage and vascular smooth muscle cells (VSMC) function. EBP50 is up-regulated in intimal VSMC following endoluminal injury and promotes neointima formation. However, the mechanisms underlying these effects are not fully understood. Because of the fundamental role that inflammation plays in vascular diseases, we hypothesized that EBP50 mediates macrophage activation and the response of vessels to inflammation. Indeed, EBP50 expression increased in primary macrophages and VSMC, and in the aorta of mice, upon treatment with LPS or TNFα. This increase was nuclear factor-κB (NF-κB)-dependent. Conversely, activation of NF-κB was impaired in EBP50-null VSMC and macrophages. We found that inflammatory stimuli promote the formation of an EBP50-PKCζ complex at the cell membrane that induces NF-κB signaling. Macrophage activation and vascular inflammation after acute LPS treatment were reduced in EBP50-null cells and mice as compared with WT. Furthermore, macrophage recruitment to vascular lesions was significantly reduced in EBP50 knock-out mice. Thus, EBP50 and NF-κB participate in a feed-forward loop leading to increased macrophage activation and enhanced response of vascular cells to inflammation.


Assuntos
Retroalimentação Fisiológica , NF-kappa B/metabolismo , Fosfoproteínas/metabolismo , Trocadores de Sódio-Hidrogênio/metabolismo , Vasculite/metabolismo , Animais , Aorta/metabolismo , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células Endoteliais da Veia Umbilical Humana/fisiologia , Humanos , Lipopolissacarídeos/farmacologia , Macrófagos/metabolismo , Macrófagos/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/fisiologia , Fosfoproteínas/genética , Proteína Quinase C/metabolismo , Trocadores de Sódio-Hidrogênio/genética , Fator de Necrose Tumoral alfa/farmacologia , Vasculite/etiologia
5.
J Bone Miner Res ; 28(11): 2266-76, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23661240

RESUMO

Parathyroid hormone-related protein (PTHrP)(1-36) increases lumbar spine (LS) bone mineral density (BMD), acting as an anabolic agent when injected intermittently, but it has not been directly compared with parathyroid hormone (PTH)(1-34). We performed a 3-month randomized, prospective study in 105 postmenopausal women with low bone density or osteoporosis, comparing daily subcutaneous injections of PTHrP(1-36) to PTH(1-34). Thirty-five women were randomized to each of three groups: PTHrP(1-36) 400 µg/day; PTHrP(1-36) 600 µg/day; and PTH(1-34) 20 µg/day. The primary outcome measures were changes in amino-terminal telopeptides of procollagen 1 (PINP) and carboxy-terminal telopeptides of collagen 1 (CTX). Secondary measures included safety parameters, 1,25(OH)2 vitamin D, and BMD. The increase in bone resorption (CTX) by PTH(1-34) (92%) (p < 0.005) was greater than for PTHrP(1-36) (30%) (p < 0.05). PTH(1-34) also increased bone formation (PINP) (171%) (p < 0.0005) more than either dose of PTHrP(1-36) (46% and 87%). The increase in PINP was earlier (day 15) and greater than the increase in CTX for all three groups. LS BMD increased equivalently in each group (p < 0.05 for all). Total hip (TH) and femoral neck (FN) BMD increased equivalently in each group but were only significant for the two doses of PTHrP(1-36) (p < 0.05) at the TH and for PTHrP(1-36) 400 (p < 0.05) at the FN. PTHrP(1-36) 400 induced mild, transient (day 15) hypercalcemia. PTHrP(1-36) 600 required a dose reduction for hypercalcemia in three subjects. PTH(1-34) was not associated with hypercalcemia. Each peptide induced a marked biphasic increase in 1,25(OH)2 D. Adverse events (AE) were similar among the three groups. This study demonstrates that PTHrP(1-36) and PTH(1-34) cause similar increases in LS BMD. PTHrP(1-36) also increased hip BMD. PTH(1-34) induced greater changes in bone turnover than PTHrP(1-36). PTHrP(1-36) was associated with mild transient hypercalcemia. Longer-term studies using lower doses of PTHrP(1-36) are needed to define both the optimal dose and full clinical benefits of PTHrP. © 2013 American Society for Bone and Mineral Research.


Assuntos
Biomarcadores/metabolismo , Densidade Óssea/efeitos dos fármacos , Remodelação Óssea/efeitos dos fármacos , Proteína Relacionada ao Hormônio Paratireóideo/farmacologia , Hormônio Paratireóideo/farmacologia , Pós-Menopausa/efeitos dos fármacos , Idoso , Biomarcadores/sangue , Biomarcadores/urina , Demografia , Feminino , Humanos , Pessoa de Meia-Idade , Minerais/sangue , Minerais/urina , Hormônio Paratireóideo/administração & dosagem , Hormônio Paratireóideo/efeitos adversos , Proteína Relacionada ao Hormônio Paratireóideo/administração & dosagem , Proteína Relacionada ao Hormônio Paratireóideo/efeitos adversos , Pós-Menopausa/sangue , Pós-Menopausa/urina , Vitamina D/análogos & derivados , Vitamina D/sangue
6.
Cardiovasc Res ; 97(1): 134-42, 2013 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-22997161

RESUMO

AIMS: Reactive oxygen species (ROS)-mediated intracellular signalling is well described in the vasculature, yet the precise roles of ROS in paracrine signalling are not known. Studies implicate interstitial ROS hydrogen peroxide (H(2)O(2)) in vascular disease, and plasma H(2)O(2) levels in the micromolar range are detectable in animal models and humans with hypertension. Recently, H(2)O(2) was shown to cross biological membranes of non-vascular cells via aquaporin (Aqp) water channels. Previous findings suggest that H(2)O(2) activates NADPH oxidase (Nox) enzymes in vascular cells and apoptosis signal-regulating kinase 1 (Ask1) in non-vascular cells. We hypothesized that extracellular H(2)O(2) induces smooth muscle cell (SMC) hypertrophy by a mechanism involving Aqp1, Nox1, and Ask1. METHODS AND RESULTS: Treatment of rat aortic SMCs (rASMC) with exogenous H(2)O(2) resulted in a concentration-dependent increase in Nox-derived superoxide (O(2)(•-)), determined by L-012 chemiluminescence, cytochrome c and electron paramagnetic resonance. Nox1 was verified as the source of O(2)(·-) by siRNA. Aqp1 siRNA attenuated H(2)O(2) cellular entry and H(2)O(2)-induced O(2)(•-) production. H(2)O(2) treatment increased Ask1 activation and induced rASMC hypertrophy in a Nox1-dependent mechanism. Adenoviral-dominant-negative Ask1 attenuated H(2)O(2)-induced rASMC hypertrophy and adenoviral overexpression of Ask1 augmented it. CONCLUSION: Our results demonstrate for the first time that extracellular H(2)O(2), at pathophysiological concentrations, stimulates rASMC Nox1-derived O(2)(•-), subsequent Ask1 activation and SMC hypertrophy. The data demonstrate a novel pathway by which H(2)O(2) enters vascular cells via aquaporins and activates Nox, leading to hypertrophy, and provide multiple novel targets for combinatorial therapeutics development targeting hypertrophy and vascular disease.


Assuntos
Aquaporina 1/metabolismo , Peróxido de Hidrogênio/farmacologia , MAP Quinase Quinase Quinase 5/metabolismo , Músculo Liso Vascular/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , NADH NADPH Oxirredutases/metabolismo , Oxidantes/farmacologia , Animais , Aquaporina 1/genética , Células Cultivadas , Relação Dose-Resposta a Droga , Espectroscopia de Ressonância de Spin Eletrônica , Ativação Enzimática , Citometria de Fluxo , Hipertrofia , MAP Quinase Quinase Quinase 5/genética , Microscopia Confocal , Músculo Liso Vascular/enzimologia , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/enzimologia , Miócitos de Músculo Liso/patologia , NADPH Oxidase 1 , Fosforilação , Interferência de RNA , Ratos , Transdução de Sinais/efeitos dos fármacos , Superóxidos/metabolismo , Fatores de Tempo , Transfecção
7.
J Mol Cell Cardiol ; 53(6): 809-19, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22974528

RESUMO

The ezrin-radixin-moesin-binding phosphoprotein 50 (EBP50) is a PDZ-containing scaffolding protein that regulates a variety of physiological functions. In the vasculature, EBP50 promotes neointima formation following arterial injury. In this study the role of EBP50 on vascular smooth muscle cell (VSMC) migration was characterized. The spreading and motility of primary VSMC isolated from EBP50 knockout (KO) mice were significantly reduced compared to wild-type (WT) cells. EBP50-null VSMC had fewer and larger focal adhesions than wild-type cells. Assembly and disassembly of focal adhesion-assessed by live-cell total internal reflection fluorescence imaging-in response to epidermal growth factor (EGF) were significantly reduced in KO cells. Immunoprecipitation experiments showed that EBP50 interacts with EGF receptor via the PDZ2 domain and with focal adhesion kinase (FAK) via the C-terminal ERM domain. EBP50 promoted the formation of a complex containing both EGF receptor and FAK. Phosphorylation of Tyr-925 of FAK in response to EGF was significantly reduced in KO cell compared to WT cells. The residence time of FAK in focal adhesions-determined by fluorescence recovery after photobleaching-was increased in WT cells. Collectively, these studies indicate that EBP50, by scaffolding EGF receptor and FAK, facilitates activation of FAK, focal adhesion turnover, and migration of VSMC.


Assuntos
Vasos Sanguíneos/metabolismo , Movimento Celular , Adesões Focais/metabolismo , Miócitos de Músculo Liso/metabolismo , Fosfoproteínas/metabolismo , Trocadores de Sódio-Hidrogênio/metabolismo , Animais , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Fator de Crescimento Epidérmico/farmacologia , Receptores ErbB/metabolismo , Quinase 1 de Adesão Focal/metabolismo , Adesões Focais/efeitos dos fármacos , Adesões Focais/genética , Camundongos , Camundongos Knockout , Miócitos de Músculo Liso/efeitos dos fármacos , Fosfoproteínas/genética , Fosforilação/efeitos dos fármacos , Ligação Proteica , Trocadores de Sódio-Hidrogênio/genética
8.
J Biol Chem ; 287(29): 24148-63, 2012 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-22628548

RESUMO

Congenital defects in the Na/H exchanger regulatory factor-1 (NHERF1) are linked to disordered phosphate homeostasis and skeletal abnormalities in humans. In the kidney, these mutations interrupt parathyroid hormone (PTH)-responsive sequestration of the renal phosphate transporter, Npt2a, with ensuing urinary phosphate wasting. We now report that NHERF1, a modular PDZ domain scaffolding protein, coordinates the assembly of an obligate ternary complex with Npt2a and the PKA-anchoring protein ezrin to facilitate PTH-responsive cAMP signaling events. Activation of ezrin-anchored PKA initiates NHERF1 phosphorylation to disassemble the ternary complex, release Npt2a, and thereby inhibit phosphate transport. Loss-of-function mutations stabilize an inactive NHERF1 conformation that we show is refractory to PKA phosphorylation and impairs assembly of the ternary complex. Compensatory mutations introduced in mutant NHERF1 re-establish the integrity of the ternary complex to permit phosphorylation of NHERF1 and rescue PTH action. These findings offer new insights into a novel macromolecular mechanism for the physiological action of a critical ternary complex, where anchored PKA coordinates the assembly and turnover of the Npt2a-NHERF1-ezrin complex.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteínas do Citoesqueleto/metabolismo , Fosfatos/metabolismo , Fosfoproteínas/metabolismo , Trocadores de Sódio-Hidrogênio/metabolismo , Animais , Transporte Biológico/fisiologia , Linhagem Celular , Humanos , Immunoblotting , Imunoprecipitação , Fosfoproteínas/química , Fosforilação , Trocadores de Sódio-Hidrogênio/química , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIa/metabolismo
9.
Arterioscler Thromb Vasc Biol ; 32(1): 33-41, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22034511

RESUMO

OBJECTIVE: The Ezrin-radixin-moesin-binding phosphoprotein 50 (EBP50) is a scaffolding protein known to regulate ion homeostasis in the kidney and intestine. Previous work showed that EBP50 expression increases after balloon injury in rat carotids. This study was designed to determine the role of EBP50 on vascular smooth muscle cells (VSMC) proliferation and the development of neointimal hyperplasia. METHODS AND RESULTS: Wire injury was performed in wild type (WT) and EBP50 knockout (KO) mice. Two weeks after injury, neointima formation was 80% lower in KO than in WT mice. Proliferation of KO VSMC was significantly lower than WT cells and overexpression of EBP50 increased VSMC proliferation. Akt activity and expression of S-phase kinase protein2 decreased in KO cells resulting in the stabilization of the cyclin-dependent kinase inhibitor, p21(cip1). Consequently, KO cells were arrested in G(0)/G(1) phase. Consistent with these observations, p21(cip1) was detected in injured femoral arteries of KO but not WT mice. No differences in apoptosis between WT and KO were observed. CONCLUSIONS: EBP50 is critical for neointima formation and induces VSMC proliferation by decreasing S-phase kinase protein2 stability, thereby accelerating the degradation of the cell cycle inhibitor p21(cip1).


Assuntos
Inibidor de Quinase Dependente de Ciclina p21/fisiologia , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/fisiologia , Neointima/etiologia , Fosfoproteínas/fisiologia , Proteínas Quinases Associadas a Fase S/fisiologia , Trocadores de Sódio-Hidrogênio/fisiologia , Animais , Proliferação de Células , Artéria Femoral/lesões , Artéria Femoral/patologia , Artéria Femoral/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neointima/patologia , Neointima/fisiopatologia , Fosfoproteínas/deficiência , Fosfoproteínas/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Trocadores de Sódio-Hidrogênio/genética
10.
J Bone Miner Res ; 26(9): 2287-97, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21544866

RESUMO

Human in vivo models of primary hyperparathyroidism (HPT), humoral hypercalcemia of malignancy (HHM), or lactational bone mobilization for more than 48 hours have not been described previously. We therefore developed 7-day continuous-infusion models using human parathyroid hormone(1-34) [hPTH(1-34)] and human parathyroid hormone-related protein(1-36) [hPTHrP(1-36)] in healthy human adult volunteers. Study subjects developed sustained mild increases in serum calcium (10.0 mg/dL), with marked suppression of endogenous PTH(1-84). The maximal tolerated infused doses over a 7-day period (2 and 4 pmol/kg/h for PTH and PTHrP, respectively) were far lower than in prior, briefer human studies (8 to 28 pmol/kg/h). In contrast to prior reports using higher PTH and PTHrP doses, both 1,25-dihydroxyvitamin D(3) [1,25(OH)(2) D(3) ] and tubular maximum for phosphorus (TmP/GFR) remained unaltered with these low doses despite achievement of hypercalcemia and hypercalciuria. As expected, bone resorption increased rapidly and reversed promptly with cessation of the infusion. However, in contrast to events in primary HPT, bone formation was suppressed by 30% to 40% for the 7 days of the infusions. With cessation of PTH and PTHrP infusion, bone-formation markers abruptly rebounded upward, confirming that bone formation is suppressed by continuous PTH or PTHrP infusion. These studies demonstrate that continuous exposure of the human skeleton to PTH or PTHrP in vivo recruits and activates the bone-resorption program but causes sustained arrest in the osteoblast maturation program. These events would most closely mimic and model events in HHM. Although not a perfect model for lactation, the increase in resorption and the rebound increase in formation with cessation of the infusions are reminiscent of the maternal skeletal calcium mobilization and reversal that occur following lactation. The findings also highlight similarities and differences between the model and HPT.


Assuntos
Remodelação Óssea/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Proteína Relacionada ao Hormônio Paratireóideo/administração & dosagem , Proteína Relacionada ao Hormônio Paratireóideo/farmacologia , Hormônio Paratireóideo/administração & dosagem , Hormônio Paratireóideo/farmacologia , Adulto , Biomarcadores/sangue , Reabsorção Óssea/sangue , Calcitriol/sangue , Cálcio/sangue , Demografia , Feminino , Humanos , Infusões Intravenosas , Íons , Rim/metabolismo , Masculino , Minerais/metabolismo , Hormônio Paratireóideo/sangue , Fósforo/sangue , Fatores de Tempo , Adulto Jovem
11.
J Med Chem ; 53(17): 6412-20, 2010 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-20687610

RESUMO

Glucagon-like peptide-1 (GLP-1) has the ability to lower the blood glucose level, and its regulatory functions make it an attractive therapeutic agent for the treatment of type 2 diabetes. However, its rapid degradation by enzymes like dipeptidyl peptidase-IV (DPP-IV) and neutral endopeptidase (NEP) 24.11 severely compromises its effective clinical use. Whereas specific DPP-IV inhibitors have been developed, NEP 24.11 targets multiple sites in the GLP-1 sequence, which makes it difficult to block. To address this drawback, we have designed and synthesized conformationally constrained GLP-1 analogues by introducing multiple lactam bridges that stabilized both alpha-helices in the N- and C-terminal regions simultaneously. In addition to improving the receptor activation capability (up to 5-fold) by fixing the alpha-helical conformations required for optimal receptor interaction, the introduced lactam bridges provided outstanding shielding over NEP 24.11 (half-life of >96 h). These highly constrained peptides are the first examples of NEP 24.11-resistant GLP-1 analogues.


Assuntos
Dipeptidil Peptidase 4/química , Peptídeo 1 Semelhante ao Glucagon/análogos & derivados , Lactamas/síntese química , Neprilisina/química , Peptídeos Cíclicos/síntese química , Receptores de Glucagon/agonistas , Linhagem Celular , Dicroísmo Circular , Peptídeo 1 Semelhante ao Glucagon/síntese química , Peptídeo 1 Semelhante ao Glucagon/química , Peptídeo 1 Semelhante ao Glucagon/farmacologia , Receptor do Peptídeo Semelhante ao Glucagon 1 , Humanos , Hipoglicemiantes/síntese química , Hipoglicemiantes/química , Hipoglicemiantes/farmacologia , Lactamas/química , Lactamas/farmacologia , Peptídeos Cíclicos/química , Peptídeos Cíclicos/farmacologia , Estrutura Secundária de Proteína , Soluções , Relação Estrutura-Atividade
12.
J Clin Endocrinol Metab ; 95(3): 1279-87, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20061412

RESUMO

CONTEXT: PTH is the only approved skeletal anabolic agent for the treatment of human osteoporosis. Unlike PTH, which is a mixed anabolic and catabolic agent, PTHrP displays features suggesting that it may be a pure anabolic agent when intermittently administered. The full dose range of PTHrP is unknown. OBJECTIVES: The primary objective of the study was to define the complete therapeutic window and dose-limiting toxicities of PTHrP. The secondary objective was to determine whether PTHrP retains a pure anabolic profile at the highest usable doses. DESIGN: This was a single-blinded, two-part, dose-escalating clinical trial. SETTING: The study was conducted in a university academic setting. PATIENTS OR OTHER PARTICIPANTS: Participants included 41 healthy postmenopausal women between the ages of 45 and 75 yr. INTERVENTION: INTERVENTIONs included PTHrP(1-36) or placebo in a dose-escalating design for 3 wk. MAIN OUTCOME MEASURES: Safety measures (hypercalcemia, nausea, vomiting, hemodynamics, flushing, miscellaneous) and bone turnover markers were measured. RESULTS: Intermittent PTHrP was administered safely and without serious adverse events in subjects receiving 500 and 625 microg/d for 3 wk. Subjects receiving 750 microg/d developed mild hypercalcemia. Bone turnover markers suggested that even at the highest doses, daily sc PTHrP may not activate bone resorption, i.e. may be purely anabolic. Interestingly, when hypercalcemia occurred, it may have resulted not from bone resorption but from activation of intestinal calcium absorption by 1,25 dihydroxyvitamin D. CONCLUSIONS: In doses as high as 750 microg/d, in contrast to PTH, intermittently administered PTHrP appears to act as a pure skeletal anabolic agent. Surprisingly, PTHrP in the high doses studied activates 1,25 dihydroxyvitamin D production. Dosing information obtained herein can be used to design a longer term head-to-head comparative efficacy trial of PTHrP vs. PTH.


Assuntos
Dose Máxima Tolerável , Osteoporose Pós-Menopausa/tratamento farmacológico , Proteína Relacionada ao Hormônio Paratireóideo/administração & dosagem , Proteína Relacionada ao Hormônio Paratireóideo/efeitos adversos , Idoso , Reabsorção Óssea , Relação Dose-Resposta a Droga , Feminino , Humanos , Hipercalcemia/sangue , Hipercalcemia/induzido quimicamente , Pessoa de Meia-Idade , Osteocalcina/sangue , Osteogênese/efeitos dos fármacos , Osteoporose Pós-Menopausa/sangue , Método Simples-Cego
13.
Mol Endocrinol ; 23(10): 1681-90, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19574446

RESUMO

The PTH type 1 receptor (PTH1R) and PTHrP are expressed in vessels, where they contribute to regulating vascular smooth muscle cell (VSMC) function. Elevated PTHrP levels in VSMC are often associated with hyperplasia. In contrast, exogenous PTHrP, acting through the PTH1R, inhibits VSMC proliferation. In this study, we investigated the regulation of PTH1R expression by endogenous PTHrP and the associated effects on VSMC proliferation. Blocking binding of secreted PTHrP fragments to the PTH1R by treatment with either an antagonist or an antibody against PTHrP, and inhibition of PTHrP expression by small interfering RNA significantly increased PTH1R expression. Interestingly, treatment of the cells with a PTHrP analog (Bpa(1)-PTHrP) that activates the PTH1R without inducing its internalization had the same effect on receptor expression. To examine the association between receptor expression and the antiproliferative effect of N-terminal fragments of PTHrP, VSMC were treated with exogenous PTHrP (1-36) acutely and chronically to induce receptor down-regulation. Stimulation of VSMC with exogenous PTHrP (1-36) significantly reduced cell proliferation during the first 18 h of treatment but was no longer effective after 3 d, a time when PTH1R was down-regulated. In contrast, treatment with the noninternalizing agonist Bpa(1)-PTHrP strongly inhibited cell proliferation at all time points. In conclusion, our study show that PTHrP, after its intracellular processing and secretion, promotes down-regulation of the PTH1R in VSMC, thereby regulating cell proliferation in an auto/paracrine fashion. This regulatory mechanism may have important implication during vascular remodeling, in particular in the development of neointima after arterial injury, where PTHrP overexpression occurs.


Assuntos
Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/metabolismo , Proteína Relacionada ao Hormônio Paratireóideo/metabolismo , Receptor Tipo 1 de Hormônio Paratireóideo/metabolismo , Animais , Proliferação de Células , Células Cultivadas , Regulação para Baixo , Endocitose , Camundongos , RNA Interferente Pequeno/metabolismo , Ratos , Receptor Tipo 1 de Hormônio Paratireóideo/agonistas
14.
Mol Endocrinol ; 22(5): 1163-70, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18202147

RESUMO

The effects of the expression of the Na+/H+ exchanger regulatory factor-1 (NHERF1) on the distribution, dynamics, and signaling properties of the PTH type 1 receptor (PTH1R) were studied in rat osteosarcoma cells ROS 17/2.8. NHERF1 had a dramatic effect on the subcellular distribution of PTH1R, promoting a substantial relocation of the receptor to regions of the plasma membrane located in very close proximity to cytoskeletal fibers. Direct interactions of NHERF1 with the PTH1R and the cytoskeleton were required for these effects, because they were abolished by 1) PTH1R mutations that impair NHERF1 binding, and 2) NHERF1 mutations that impair binding to the PTH1R or the cytoskeleton. NHERF1 reduced significantly the diffusion of the PTH1R by a mechanism that was also dependent on a direct association of NHERF1 with the PTH1R and the cytoskeleton. NHERF1 increased ligand-dependent production of cAMP and induced ligand-dependent rises in intracellular calcium. These effects on calcium were due to increased calcium uptake, as they were blocked by calcium channel inhibitors and by the addition of EGTA to the medium. These calcium effects were abolished by protein kinase A inhibition but phospholipase C inhibition was without effect. Based on these analyses, we propose that, in ROS cells, the presence of NHERF1 induces PTH-dependent calcium signaling by a cAMP-mediated mechanism that involves local protein kinase A-dependent activation of calcium channels.


Assuntos
Fosfoproteínas/fisiologia , Receptor Tipo 1 de Hormônio Paratireóideo/fisiologia , Transdução de Sinais , Trocadores de Sódio-Hidrogênio/fisiologia , Animais , Transporte Biológico , Cálcio/metabolismo , Linhagem Celular Tumoral , Humanos , Osteossarcoma/genética , Osteossarcoma/metabolismo , Osteossarcoma/patologia , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Ratos , Receptor Tipo 1 de Hormônio Paratireóideo/genética , Receptor Tipo 1 de Hormônio Paratireóideo/metabolismo , Trocadores de Sódio-Hidrogênio/genética , Trocadores de Sódio-Hidrogênio/metabolismo
15.
Circ Res ; 99(9): 933-42, 2006 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-17023675

RESUMO

Parathyroid hormone-related protein (PTHrP) is present in vascular smooth muscle (VSM), is markedly upregulated in response to arterial injury, is essential for normal VSM proliferation, and also markedly accentuates neointima formation following rat carotid angioplasty. PTHrP contains a nuclear localization signal (NLS) through which it enters the nucleus and leads to marked increases in retinoblastoma protein (pRb) phosphorylation and cell cycle progression. Our goal was to define key cell cycle molecules upstream of pRb that mediate cell cycle acceleration induced by PTHrP. The cyclin D/cdk-4,-6 system and its upstream regulators, the inhibitory kinases (INKs), are not appreciably influenced by PTHrP. In striking contrast, cyclin E/cdk-2 kinase activity is markedly increased by PTHrP, and this is a result of a specific, marked, PTHrP-induced proteasomal degradation of p27(kip1). Adenoviral restoration of p27(kip1) fully reverses PTHrP-induced cell cycle progression, indicating that PTHrP mediates its cell cycle acceleration in VSM via p27(kip1). In confirmation, adenoviral delivery of PTHrP to murine primary vascular smooth muscle cells (VSMCs) significantly decreases p27(kip1) expression and accelerates cell cycle progression. p27(kip1) is well known to be a central cell cycle regulatory molecule involved in both normal and pathological VSM proliferation and is a target of widely used drug-eluting stents. The current observations define a novel "PTHrP/p27(kip1) pathway" in the arterial wall and suggest that this pathway is important in normal arterial biology and a potential target for therapeutic manipulation of the arterial response to injury.


Assuntos
Artérias/metabolismo , Ciclo Celular , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Músculo Liso Vascular/metabolismo , Proteína Relacionada ao Hormônio Paratireóideo/metabolismo , Animais , Artérias/citologia , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Proliferação de Células , Células Cultivadas , Regulação para Baixo , Fase G1 , Camundongos , Músculo Liso Vascular/citologia , Proteínas Nucleares/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteoma/metabolismo , Ratos , Fase S , Transdução de Sinais
16.
Nat Med ; 12(4): 425-32, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16582918

RESUMO

The mechanisms underlying leptin resistance are still being defined. We report here the presence in human blood of several serum leptin-interacting proteins (SLIPs), isolated by leptin-affinity chromatography and identified by mass spectrometry and immunochemical analysis. We confirmed that one of the major SLIPs is C-reactive protein (CRP). In vitro, human CRP directly inhibits the binding of leptin to its receptors and blocks its ability to signal in cultured cells. In vivo, infusion of human CRP into ob/ob mice blocked the effects of leptin upon satiety and weight reduction. In mice that express a transgene encoding human CRP, the actions of human leptin were completely blunted. We also found that physiological concentrations of leptin can stimulate expression of CRP in human primary hepatocytes. Recently, human CRP has been correlated with increased adiposity and plasma leptin. Thus, our results suggest a potential mechanism contributing to leptin resistance, by which circulating CRP binds to leptin and attenuates its physiological functions.


Assuntos
Proteína C-Reativa/metabolismo , Leptina/metabolismo , Animais , Western Blotting , Peso Corporal/efeitos dos fármacos , Proteína C-Reativa/farmacologia , Proteínas de Transporte/isolamento & purificação , Proteínas de Transporte/metabolismo , Células Cultivadas , Relação Dose-Resposta a Droga , Interações Medicamentosas , Feminino , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Concentração Inibidora 50 , Interleucina-6/farmacologia , Leptina/sangue , Leptina/farmacologia , Camundongos , Camundongos Obesos , Camundongos Transgênicos , Testes de Precipitina , Proteínas de Ligação a RNA , Ratos , Transgenes
17.
Osteoporos Int ; 17(2): 225-30, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16151606

RESUMO

Parathyroid hormone-related protein (PTHrP) is an anabolic skeletal agent in mice, rats and humans. In previous studies, we have demonstrated that PTHrP can be administered to osteoporotic postmenopausal women at a dose of 6.56 microg/kg/day (or approximately 400 microg/day) for 3 months to yield a 4.7% increase in lumbar spine BMD. This regimen was free of hypercalcemia or adverse effects. Moreover, PTHrP appeared to stimulate bone formation selectively, without stimulating bone resorption. This efficacy in the absence of adverse effects, as well as the apparent "pure anabolic" action of PTHrP, prompted us to attempt to define the complete therapeutic window for PTHrP. In this study, we gradually escalated the dose of PTHrP(1-36) from 9 to 28 microg/kg (or approximately 570 microg to 1,946 microg) administered as a single subcutaneous dose to 22 healthy young adult subjects. PTHrP(1-36) was well tolerated even at the highest dose, just under 2.0 mg, some five times higher than we have previously demonstrated to be effective in increasing bone mass, and some 100 times higher than the maximal approved dose of PTH(1-34). Despite the large dose of PTHrP, the highest serum calcium achieved was 10.6 mg/dl, and this was observed in only one subject at the highest dose. The mean serum calcium in subjects receiving the highest dose was 9.6 mg/dl. Only one subject experienced adverse symptoms/signs, and this was at the highest dose. We conclude that subcutaneous PTHrP(1-36) is safe when administered in single doses approaching 2.0 mg. These findings indicate that the therapeutic window for PTHrP(1-36) in humans is wide and permit the design and implementation of longer safety and efficacy trials.


Assuntos
Conservadores da Densidade Óssea/administração & dosagem , Proteína Relacionada ao Hormônio Paratireóideo/administração & dosagem , Fragmentos de Peptídeos/administração & dosagem , Adulto , Biomarcadores/análise , Pressão Sanguínea/fisiologia , Densidade Óssea/efeitos dos fármacos , Conservadores da Densidade Óssea/efeitos adversos , Reabsorção Óssea/sangue , Cálcio/sangue , Cálcio/urina , Colágeno Tipo I/sangue , Esquema de Medicação , Avaliação de Medicamentos/métodos , Feminino , Frequência Cardíaca/fisiologia , Humanos , Injeções Subcutâneas , Masculino , Pessoa de Meia-Idade , Proteína Relacionada ao Hormônio Paratireóideo/efeitos adversos , Fragmentos de Peptídeos/efeitos adversos , Fragmentos de Peptídeos/sangue , Pró-Colágeno/sangue
18.
J Bone Miner Res ; 20(10): 1792-803, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16160737

RESUMO

UNLABELLED: Osteoblast activity and plasma 1,25(OH)2 vitamin D are increased in HPT but suppressed in HHM. To model HPT and HHM, we directly compared multiday continuous infusions of PTH versus PTHrP in humans. Continuous infusion of both PTH and PTHrP results in marked and prolonged suppression of bone formation; renal 1,25(OH)2D synthesis was stimulated effectively by PTH but poorly by PTHrP. INTRODUCTION: PTH and PTH-related protein (PTHrP) cause primary hyperparathyroidism (HPT) and humoral hypercalcemia of malignancy (HHM), respectively. Whereas HHM and HPT resemble one another in many respects, osteoblastic bone formation and plasma 1,25(OH)2 vitamin D are increased in HPT but reduced in HHM. MATERIALS AND METHODS: We performed 2- to 4-day continuous infusions of escalating doses of PTH and PTHrP in 61 healthy young adults, comparing the effects on serum calcium and phosphorus, renal calcium and phosphorus handling, 1,25(OH)2 vitamin D, endogenous PTH(1-84) concentrations, and plasma IGF-1 and markers of bone turnover. RESULTS: PTH and PTHrP induced comparable effects on renal calcium and phosphorus handling, and both stimulated IGF-1 and bone resorption similarly. Surprisingly, PTH was consistently more calcemic, reflecting a selectively greater increase in renal 1,25(OH)2 vitamin D production by PTH. Equally surprisingly, continuous infusion of both peptides markedly, continuously, and equivalently suppressed bone formation. CONCLUSIONS: PTHrP and PTH produce markedly different effects on 1,25(OH)2 vitamin D homeostasis in humans, leading to different calcemic responses. Moreover, both peptides produce profound suppression of bone formation over multiple days, contrasting with events in HPT, but mimicking HHM. These findings underscore the facts that the mechanisms underlying the anabolic skeletal response to PTH and PTHrP in humans is poorly understood, as are the signal transduction mechanisms that link the renal PTH receptor to 1,25(OH)2 vitamin D synthesis. These studies emphasize that much remains to be learned regarding the normal regulation of vitamin D metabolism and bone formation in response to PTH and PTHrP in humans.


Assuntos
Conservadores da Densidade Óssea/administração & dosagem , Calcitriol/sangue , Hipercalcemia/sangue , Osteogênese/efeitos dos fármacos , Proteína Relacionada ao Hormônio Paratireóideo/administração & dosagem , Teriparatida/administração & dosagem , Adulto , Cálcio/sangue , Feminino , Humanos , Hipercalcemia/induzido quimicamente , Masculino , Osteoblastos/metabolismo
19.
J Biol Chem ; 280(12): 11281-8, 2005 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-15611080

RESUMO

Agonist-mediated activation of the type 1 parathyroid hormone receptor (PTH1R) results in several signaling events and receptor endocytosis. It is well documented that arrestins contribute to desensitization of both G(s)- and G(q)-mediated signaling and mediate PTH1R internalization. However, whether PTH1R trafficking directly contributes to signaling remains unclear. To address this question, we investigated the role of PTH1R trafficking in cAMP signaling and activation of extracellular signal-regulated kinases ERK1/2 in HEK-293 cells. Dominant negative forms of dynamin (K44A-dynamin) and beta-arrestin1 (beta-arrestin1-(319-418)) abrogated PTH1R internalization but had no effect on cAMP signaling; neither acute cAMP production by PTH nor desensitization and resensitization of cAMP signaling were affected. Therefore, PTH1R trafficking is not necessary for regulation of cAMP signaling. PTH-(1-34) induced rapid and robust activation of ERK1/2. A PTHrP-based analog ([p-benzoylphenylalanine1, Ile5,Arg(11,13),Tyr36]PTHrP-(1-36)NH2), which selectively activates the G(s)/cAMP pathway without inducing PTH1R endocytosis, failed to stimulate ERK1/2 activity. Inhibition of PTH1R endocytosis by K44A-dynamin dampened ERK1/2 activation in response to PTH-(1-34) by 69%. Incubation with the epidermal growth factor receptor inhibitor AG1478 reduced ERK1/2 phosphorylation further. In addition, ERK1/2 phosphorylation occurred following internalization of a PTH1R mutant induced by PTH-(7-34) in the absence of G protein signaling. Collectively, these data indicate that PTH1R trafficking and G(q) (but not G(s)) signaling independently contribute to ERK1/2 activation, predominantly via transactivation of the epidermal growth factor receptor.


Assuntos
AMP Cíclico/metabolismo , Endocitose , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Receptor Tipo 1 de Hormônio Paratireóideo/fisiologia , Transdução de Sinais/fisiologia , Arrestinas/fisiologia , Linhagem Celular , Ativação Enzimática , Receptores ErbB/fisiologia , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/fisiologia , Humanos , Fosforilação , Ativação Transcricional , beta-Arrestinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA