Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Neuropharmacology ; 249: 109868, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38403263

RESUMO

Sugar bingeing induces maladaptive neuroadaptations to decrease dietary control and promote withdrawal symptoms. This study investigated sex differences in sucrose bingeing, sucrose withdrawal-induced negative mood effects and underlying neuroimmune response in the prefrontal cortex (PFC) and nucleus accumbens (NAc) of C57BL/6J male and female mice. Two-bottle sucrose choice paradigm was used to develop sucrose dependence in mice. Female mice consumed more sucrose than male mice when given free access to water and 10% sucrose for four weeks. A significant increase in the mRNA expression of neuroinflammatory markers (Il1ß, Tnfα) was found in the PFC of males exposed to sucrose withdrawal. Sucrose bingeing and subsequent sucrose withdrawal showed elevated protein levels of pro-inflammatory cytokines/chemokines/growth factors in the PFC (IL-1ß, IL-6, TNFα, IFN-γ, IL-10, CCL5, VEGF) and NAc (IL-1ß, IL-6, IL-10, VEGF) of male mice as compared to their water controls. These effects were concurrent with reduced mRNA expression of neuronal activation marker (cFos) in the PFC of sucrose withdrawal males. One week of sucrose withdrawal after prolonged sucrose consumption showed anxiety-like behavior in male mice, not in females. In conclusion, this study demonstrates that repeated access to sucrose induces anxiety-like behavior when the sugar is no longer available in the diet and these effects are male-specific. Elevated neuroinflammation in reward neurocircuitry may underlie these sex-specific effects.


Assuntos
Interleucina-10 , Sacarose , Camundongos , Feminino , Masculino , Animais , Fator de Necrose Tumoral alfa , Interleucina-6 , Fator A de Crescimento do Endotélio Vascular , Camundongos Endogâmicos C57BL , Ansiedade/induzido quimicamente , Ansiedade/metabolismo , Água , RNA Mensageiro
2.
Food Sci Nutr ; 11(12): 7581-7593, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38107137

RESUMO

Beans and vegetables are consumed with cereals in India on daily basis. The aim of the study was to assess carcinogenic and non-carcinogenic risk of heavy metals in cooked beans and cooked vegetables consumed by adults (18-59 years) and elderly (≥60 years) subjects from two districts (Ludhiana and Bathinda) of Punjab. A total of 150 households were selected from 30 different locations covering both rural and urban areas. The mean daily consumption of beans and vegetables in Ludhiana was recorded as 35.09 and 215.93 g, respectively. The corresponding figures in Bathinda were observed as 26.85 and 230.54 g. The average amounts of arsenic, cadmium, lead, and mercury were 1.44 × 10-5, 8.21 × 10-5, 1.30 × 10-3, and 2.61 × 10-7 mg/kg for cooked vegetables in urban households of Ludhiana district, respectively. The corresponding values for rural households were 1.53 × 10-5, 5.58 × 10-5, and 2.98 × 10-4 mg/kg while mercury was not detected. The mean chronic daily intake (CDI) of arsenic from cooked beans was significantly (p ≤ .001) higher in urban adult males of Ludhiana (7.74 × 10-9 mg/kg/day) and Bathinda (5.31 × 10-9 mg/kg/day) compared to their rural counterparts. Similar trend was observed in CDI of heavy metals from vegetables. The mean CDI of cadmium from cooked vegetables in urban adult females of Ludhiana (3.76 × 10-7 mg/kg/day) was significantly (p ≤ .001) higher than their rural counterparts and both urban and rural adult females of Bathinda. The study concluded that the subjects of both districts were found safe from non-carcinogenic and carcinogenic risk associated with heavy metals present in cooked beans and vegetables, except for urban subjects and rural adult subjects of Ludhiana district who had cancer risk due to cadmium present in cooked vegetable samples.

3.
Biomacromolecules ; 24(11): 5438-5450, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37856822

RESUMO

The development of luminescent dyes based on 1,1,4,4-tetracyanobuta-1,3-dienes (TCBDs) is an active research area, and a quantum yield (ΦF) of 7.8% has been achieved so far in cyclohexane by appending a fluorophore. Our novel method radically refines weakly emissive 2,3-disubstituted TCBD (phenyl-TCBD 1) (ΦF = 2.3% in CH3CN) into a water-soluble, biocompatible nanoformulation as highly emissive aggregates 1NPs ⊂ PF-127 with ΦF = 7.9% in H2O and without fluorophore conjugation. Characterization of 1NPs ⊂ PF-127 was carried out using various spectroscopic techniques, and its predominant size was found to be 80-100 nm according to transmission electron microscopy and dynamic light scattering techniques. Spectroscopic studies including Fourier transform infrared spectroscopy revealed that aggregated phenyl-TCBD particles were encapsulated in a nonluminescent triblock copolymer (PF-127)-based nanomicelles with the TCBD entrapment efficiency of 77%. With increasing water fraction, the phenyl-TCBD nanoaggregates exhibited a 3-fold higher quantum yield, a greater lifetime, and a red shift (155 nm). This remarkable enhancement in red emissivity enabled them to be used as a bioprobe for bioimaging applications and in photodynamic therapy to selectively target cancer cell lines with singlet oxygen generation capability (ΦΔ = 0.25). According to the MTT assay, compared to the native molecular form (1229 nM), the aggregated 1NPs ⊂ PF-127 (13.51 nM) exhibited dose-dependent cell death when exposed to light with 91-fold increased activity. The histoarchitectures of various vital organs (liver, kidneys, heart, lungs, and spleen) were intact when tested for in vivo biocompatibility. This study has significant implications for developing nonplanar push-pull chromophore-based dyes as biosensors and with potential applications beyond bioimaging.


Assuntos
Neoplasias , Fotoquimioterapia , Humanos , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Linhagem Celular , Corantes Fluorescentes/química , Água , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/química
4.
Amino Acids ; 55(11): 1621-1640, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37749439

RESUMO

The investigation was to determine the effect of camel milk fermented with Limosilactobacillus fermentum KGL4 (MTCC 25515) on ACE-inhibiting, anti-inflammatory, and diabetes-preventing properties and also to release the novel peptides with antidiabetic and anti-hypertensive attributes with molecular interaction studies. Growth conditions were optimised on the basis of total peptide production by inoculating the culture in camel milk at different rates (1.5, 2.0, and 2.5%) along with different incubation periods (12, 24, 36, and 48 h). However, after 48 h of fermentation with a 2.5% rate of inoculum, the highest proteolytic activity was obtained. Reverse phase high-pressure liquid chromatography (RP-HPLC) was used to calculate the % Rpa from permeates of 3 kDa and 10 kDa fractions. Molecular weight distributions of fermented and unfermented camel milk protein fractions were compared using SDS-PAGE. Spots obtained from 2D gel electrophoresis were separated on the basis of pH and molecular weight. Spots obtained from 2D gel were digested with trypsin, and the digested samples were subjected to RP-LC/MS for the generation of peptide sequences. The inhibition of tumour necrosis factor alpha, interleukin-6, and interleukin-1 during fermentation was studied using RAW 264.7 macrophages. In the study, fermented camel milk with KGL4 (CMKGL4) inhibited LPS-induced nitric oxide (NO) production and pro-inflammatory cytokine production (TNF-α, IL-6, and IL-1ß) by the murine macrophages. The results showed that the peptide structures (YLEELHRLNK and YLQELYPHSSLKVRPILK) exhibited considerable binding affinity against hPAM and hMGA during molecular interaction studies.


Assuntos
Anti-Hipertensivos , Camelus , Camundongos , Animais , Anti-Hipertensivos/farmacologia , Camelus/metabolismo , Hipoglicemiantes , Linhagem Celular , Macrófagos/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/metabolismo , Interleucina-6/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Fermentação
5.
Environ Monit Assess ; 195(6): 723, 2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37225915

RESUMO

Milk is an integral part of the human diet and its contamination with heavy metals may alter the health of its consumers. The study was conducted to assess the health risk associated with the heavy metals in milk samples collected from urban and rural households of Ludhiana and Bathinda districts of Punjab, India. One hundred and fifty milk samples were analyzed for heavy metals i.e. arsenic, cadmium, lead and mercury using Inductively Coupled Plasma Mass Spectrometry ICP-MS. The health risks, such as non-carcinogenic and carcinogenic risks from heavy metals in milk samples, were calculated for selected males and females of adults, children and elderly subjects. The results indicated that the arsenic, cadmium and lead content in milk samples were within permissible limit whereas mercury was not detected in any sample. The mean values showed that the selected urban and rural population of both districts was safe from non-carcinogenic risk associated with heavy metal content of milk. However, urban (50% males and 86% females) and rural (25% males) children of Bathinda district were at risk of cancer from arsenic and cadmium present in milk samples, respectively. It was also observed that the selected population of both districts were safe from carcinogenic risk due to the combined effects of heavy metals. It was concluded that even with a small amount of heavy metal in milk samples, the rural adults, rural male children and urban female children of Bathinda district had carcinogenic risk due to milk consumption. Hence, regular monitoring and testing of milk samples must be done as a public health measure to prevent heavy metal contamination in milk to safeguard the health of consumers.


Assuntos
Arsênio , Mercúrio , Adulto , Criança , Idoso , Humanos , Feminino , Masculino , Animais , Cádmio , Leite , Chumbo , Monitoramento Ambiental , Índia/epidemiologia , Medição de Risco , Carcinógenos
6.
Life Sci ; 324: 121704, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37075945

RESUMO

BACKGROUND & AIM: Obesity is a worldwide epidemic leading to decreased quality of life, higher medical expenses and significant morbidity. Enhancing energy expenditure and substrate utilization in adipose tissues through dietary constituents and polypharmacological approaches is gaining importance for the prevention and therapeutics of obesity. An important factor in this regard is Transient Receptor Potential (TRP) channel modulation and resultant activation of "brite" phenotype. Various dietary TRP channel agonists like capsaicin (TRPV1), cinnamaldehyde (TRPA1), and menthol (TRPM8) have shown anti-obesity effects, individually and in combination. We aimed to determine the therapeutic potential of such combination of sub-effective doses of these agents against diet-induced obesity, and explore the involved cellular processes. KEY FINDINGS: The combination of sub-effective doses of capsaicin, cinnamaldehyde and menthol induced "brite" phenotype in differentiating 3T3-L1 cells and subcutaneous white adipose tissue of HFD-fed obese mice. The intervention prevented adipose tissue hypertrophy and weight gain, enhanced the thermogenic potential, mitochondrial biogenesis and overall activation of brown adipose tissue. These changes observed in vitro as well as in vivo, were linked to increased phosphorylation of kinases, AMPK and ERK. In the liver, the combination treatment enhanced insulin sensitivity, improved gluconeogenic potential and lipolysis, prevented fatty acid accumulation and enhanced glucose utilization. SIGNIFICANCE: We report on the discovery of therapeutic potential of TRP-based dietary triagonist combination against HFD-induced abnormalities in metabolic tissues. Our findings indicate that a common central mechanism may affect multiple peripheral tissues. This study opens up avenues of development of therapeutic functional foods for obesity.


Assuntos
Capsaicina , Mentol , Animais , Camundongos , Capsaicina/farmacologia , Capsaicina/metabolismo , Mentol/metabolismo , Mentol/farmacologia , Mentol/uso terapêutico , Qualidade de Vida , Dieta Hiperlipídica/efeitos adversos , Obesidade/tratamento farmacológico , Obesidade/etiologia , Obesidade/metabolismo , Tecido Adiposo Marrom/metabolismo , Fenótipo , Tecido Adiposo Branco/metabolismo , Metabolismo Energético , Camundongos Endogâmicos C57BL
7.
Neuropharmacology ; 229: 109480, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-36868402

RESUMO

Gut dysbiosis has been closely linked to the onset and progression of several brain-related disorders such as depression. The administration of microbiota-based formulations such as probiotics helps restore healthy gut flora and plays a role in preventing and treating depression-like behavior. Therefore, we evaluated the efficacy of probiotic supplementation using our recently isolated putative probiotic Bifidobacterium breve Bif11 in ameliorating lipopolysaccharide (LPS)-induced depression-like behavior in male Swiss albino mice. Mice were fed orally with B. breve Bif11 (1 × 1010 CFU and 2 × 1010 CFU) for 21 days before being challenged with a single intraperitoneal LPS injection (0.83 mg/kg). Behavioral, biochemical, histological and molecular analysis were done with an emphasis on inflammatory pathways linked to depression-like behavior. Daily supplementation with B. breve Bif11 for 21 days prevented the onset of depression-like behavior induced by LPS injection, besides reducing the levels of inflammatory cytokines such as matrix metalloproteinase-2, c-reactive protein, interleukin-6, tumor necrosis factor-alpha and nuclear factor kappa-light-chain-enhancer of activated B cells. It also prevented the decrease of the brain-derived neurotrophic factor levels and neuronal cell viability in the prefrontal cortex of LPS-treated mice. Furthermore, we observed that gut permeability was reduced, there was an improved short-chain fatty acid profile and reduced gut dysbiosis in the LPS mice fed with B. breve Bif11. Similarly, we observed a decrease in behavioural deficits and restoration of gut permeability in chronic mild stress. Together, these results would help in deciphering the role of probiotics in the management of neurological disorders where depression, anxiety and inflammation are prominent clinical features.


Assuntos
Bifidobacterium breve , Camundongos , Masculino , Animais , Metaloproteinase 2 da Matriz , Depressão/terapia , Depressão/metabolismo , Lipopolissacarídeos/toxicidade , Disbiose , Suplementos Nutricionais
8.
Food Funct ; 14(3): 1459-1475, 2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36648164

RESUMO

Cereal bran consumption improves gastrointestinal and metabolic health. Unprocessed cereal brans have a limited shelf-life and contain anti-nutrient phytochemicals. In the present study, lipids and antinutrients (flavonoids, tannin, and polyphenol) were removed from finger millet, kodo millet and rice bran using chemo-enzymatic processing. The thus-obtained modified cereal brans (MCBs) were evaluated for their potential in preventing high fat diet (HFD)-induced obesity. C57BL/6 mice were fed a HFD or a HFD supplemented with 10% w/w modified finger millet bran (mFMB), modified kodo millet bran (mKMB), modified rice bran (mRB), or a combination of the modified brans (1 : 1 : 1) for twelve weeks. The MCBs reduced HFD-induced body weight gain, improved glucose homeostasis, decreased the Firmicutes/Bacteroidetes ratio, and increased the short chain fatty acid (SCFA) levels in the cecum. Liver dyslipidemia, oxidative stress, inflammation, visceral white adipose tissue (vWAT) hypertrophy, and lipolysis were also prevented by the MCBs. Among the individual MCBs, mRB showed a greater effect in preventing HFD-induced increase in the inflammatory cytokines (IL-6, TNF-α, and LPS) than mFMB and mKMB. mFMB and mKMB supplementation more significantly restored the relative abundance of Akkermansia muciniphila and butyrate-producing genera such as Lachnospiraceae, Eubacterium, and Ruminococcus than mRB. Ex vivo gut permeability assay, immunohistochemistry of tight junction proteins, and gene expression analysis in the colon revealed that the combination of three brans was better in preventing HFD-induced leaky gut in comparison to the individual brans. Hierarchical clustering analysis showed that the combination group was clustered closest to the NPD group, suggesting an additive effect. Our study implies that a combination of mFMB, mKMB, and mRB could be used as a nutraceutical or functional food ingredient for preventing HFD-induced gut derangements and associated metabolic complications.


Assuntos
Eleusine , Oryza , Paspalum , Animais , Camundongos , Grão Comestível , Dieta Hiperlipídica/efeitos adversos , Camundongos Endogâmicos C57BL
9.
J Am Nutr Assoc ; 42(6): 598-617, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36416542

RESUMO

OBJECTIVE: The goal of this research was to purify and characterize the novel angiotensin-converting enzyme (ACE)-inhibitory and antioxidant peptides from fermented whey protein concentrate produced by Lactobacillus paracasei and Saccharomyces cerevisiae in a co-fermentation system. METHOD: Whey protein fermented with lactic acid bacteria and yeast culture was analyzed for antioxidative, ACE inhibition, as well as anti-inflammatory activity followed by SDS-PAGE, isoelectric focusing, and 2-dimensional (2D) analysis. Anti-inflammatory activity of whey protein fermentate was also studied on the RAW 264.7 cell line. The bioactive peptides were separated from the whey protein fermentate using reverse-phase high-performance liquid chromatography (RP-HPLC) and reverse-phase liquid chromatography mass spectrometry (RPLC/MS), and thus identification and characterization of purified bioactive peptide was performed. RESULTS: Whey protein fermentate samples' bioactivity was analyzed at specific time intervals at 12, 24, 36, and 48 hours at 37 °C for M11 and at 25 °C for WBS2A. The development settings (incubation time [12, 24, 36, and 48 hours) and inoculation rates [1.5%, 2.0%, and 2.5%]) were optimized for peptide synthesis via the o-phthaldialdehyde (OPA) method (proteolytic activity). Maximum proteolytic activity was observed at 37 °C for M11 (6.50 mg/mL) and at 25 °C for WBS2A (8.59 mg/mL) for 48 hours of incubation. Protein profiling was carried out using SDS-PAGE and 2D gel electrophoresis, in which Sodium dodecyl-sulfate (SDS) exhibited protein bands in the 10- to 55-kDa range, while 2D showed protein bands varying from 10 to 70 kDa. Every spot from 2D was digested by trypsin and identified by RPLC/MS. Protein fractionations (3- and 10-kDa permeates) were carried out employing RP-HPLC. Whey protein fermentate has anti-inflammatory action in RAW 264.7 macrophages that have been exposed to lipopolysaccharide. A molecular docking system was also used to investigate the interactions of peptides (AFLDSRTR, ILGAFIQIITFR) with human myeloperoxidase enzyme. CONCLUSIONS: The antihypertensive and antioxidative peptides discovered from whey protein fermentate may be helpful in the design of pharmacologically active healthy ingredients in the upcoming years.


Assuntos
Anti-Hipertensivos , Antioxidantes , Humanos , Anti-Hipertensivos/farmacologia , Proteínas do Soro do Leite/farmacologia , Antioxidantes/farmacologia , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Simulação de Acoplamento Molecular , Peptídeos/farmacologia
10.
J Am Nutr Assoc ; 42(4): 371-385, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35584265

RESUMO

OBJECTIVE: The aim of the study was to evaluate the whey protein hydrolysate with bio-functional attributes viz. antioxidative, anti-inflammatory and ACE inhibition efficacy and release of bioactive peptides with antioxidative and ACE-inhibitory activity by employing Pepsin. METHOD: The antioxidant, Anti-inflammatory, ACE inhibitory and proteolytic activities of the whey protein hydrolysates were studied followed by SDS-PAGE analysis and IEF. Anti-inflammatory activity of whey protein hydrolysate was also studied on RAW 264.7 cell line. The separation of the bioactive peptides from whey protein hydrolysate was achieved by RP-HPLC. The purified bioactive peptides were identified and characterized using RPLC/MS. RESULTS: WPC (Whey protein concentrate) hydrolysate with pepsin showed proteolytic activity ranging between 14.46 and 18.87 mg/ml. Using the ABTS assay, the highest antioxidative activity was observed in 10 kDa retentate (84.50%) and 3 kDa retentate (85.96%), followed by the highest proteolytic activity (13.83 mg/ml) and ACE inhibitory activity (58.37%) in a 5% WPC solution at 65 °C after 8 h of pepsin hydrolysis. When the protein hydrolysate concentration was low, the production of proinflammatory cytokines by lipopolysaccharide-treated murine macrophages (RAW 264.7) was reduced. SDS-PAGE results exhibited very little protein bands when comparing with WPC hydrolysates to insoluble WPC. There were no protein spots on 2 D gel electrophoresis and "in-solution trypsin digestion" technique have been utilized to digest protein samples directly from WPC hydrolysates. Novel antioxidative peptides and ACE inhibitory peptides were also observed by comparing two databases, i.e., BIOPEP and AHTPDB respectively. The peptide sequences used in this study were found to have excellent potential to be used as inhibitors of hACE as all of them were able to show substantial interactions against the enzyme's active site. CONCLUSIONS: The antihypertensive and antioxidative peptides from whey protein hydrolysates may be beneficial for the future development of physiologically active functional foods. Further, in vivo investigations are required to establish the health claim for each individual bioactive peptide from whey protein hydrolysate.Supplemental data for this article is available online at.


Assuntos
Anti-Hipertensivos , Hidrolisados de Proteína , Animais , Camundongos , Anti-Hipertensivos/farmacologia , Hidrolisados de Proteína/farmacologia , Antioxidantes/farmacologia , Pepsina A/metabolismo , Soro do Leite/metabolismo , Peptídeos/farmacologia
11.
J Am Nutr Assoc ; 42(1): 75-84, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-34605750

RESUMO

OBJECTIVE: The present study aimed to assess the bio-functional analysis of camel milk viz. anti-oxidative, anti-inflammatory activities using potent Lactobacillus fermentum (KGL4) strain through fermentation and also to release the bioactive peptides during fermentation. METHOD: The antioxidant and proteolytic activities of the fermented camel milk were studied followed by SDS-PAGE analysis and 2 D PAGE. The separations of the bioactive peptides of water-soluble extract (WSE) of 3 and 10 kDa (Permeates & Retentates) were achieved by RP-HPLC. The purified bioactive peptides were identified and characterized using RPLC/MS and the effect of WSE of camel milk fermented with KGL4 on lipopolysaccharide (LPS)/endotoxin-induced inflammation in RAW 264.7 macrophages were also studied. RESULTS: The maximal activity was observed in ABTS assay (64.03%), then in hydroxyl free radical scavenging assay, and minimal activity was observed in superoxide free radical assay (57.75%). ABTS assay was significantly (P < 0.05) higher than other assays. MTT assay was performed on WSE of camel milk fermented with KGL4 using treated macrophage cells with different concentrations and found the decreasing range of cell viability at 0.25 mg/mL treatment which was non-significant. 7.80 mg/ml peptide production was found after 48 h of fermentation using the OPA method. Further, WSE of fermented camel milk was separated and analyzed their protein profiles using SDS-PAGE and 2 D-PAGE techniques. Here, many new peptides were found in camel milk when fermented with KGL4 strain. Each protein sequence was characterized through bioinformatic tools, including SWISS-PROT & PIR protein databases. Novel bioactive anti-oxidative peptides were found by searching in the BIOPEP database. CONCLUSIONS: The present study suggests that the L. fermentum KGL4 strain could be explored to produce novel antioxidative peptides from fermented camel milk (Indian breed).


Assuntos
Limosilactobacillus fermentum , Leite , Animais , Leite/química , Camelus/metabolismo , Antioxidantes/farmacologia , Ultrafiltração , Peptídeos/farmacologia , Anti-Inflamatórios/farmacologia
12.
J Food Biochem ; 46(12): e14449, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36206543

RESUMO

The goal of this investigation was to find antidiabetic peptides and inhibit angiotensin converting enzyme (ACE) in Lacticaseibacillus paracasei (M11) fermented dromedary camel milk (Camelus dromedaries). According to the findings, the rate of antidiabetic activity increased along with the incubation periods and reached its peak after 48 hr of fermentation. The inhibitions of α-amylase, α-glucosidase, and lipase were 80.75, 59.62, and 65.46%, respectively. The inhibitory activity of ACE was 78.33%, and the proteolytic activity was 8.90 mg/mL. M11 at 0.25 mg/mL effectively suppressed LPS-induced pro-inflammatory cytokines and their mediators such as NO, TNF-α, IL-6, and IL-1ß in RAW 264.7 cells. The rate of inoculum in the optimization phase was 1.5-2.5%, and the greatest proteolytic activity was observed after 48 hr of fermentation. The investigation of the above property in the ultrafiltered fermented milk exhibited the highest antidiabetic and ACE inhibition activities in the 3 kDa than 10 kDa fractions. The molecular weight was determined employing SDS-PAGE, and the six-peptide sequences were identified using 2D gel electrophoresis. Due to its high proteolytic activity, the L. paracasei strain has been reported to be useful in the production of ACE-inhibitory and antidiabetic peptides. Amino acid sequences such from ɑ1, ɑ2, and ß-caseins have been identified within fermented camel milk by searching on online databases, including BIOPEP (for antidiabetic peptides) and AHTPDB (for hypertension peptides) to validate the antidiabetic and ACE-inhibitory actions of several peptides. PRACTICAL APPLICATIONS: The study aims to identify antidiabetic peptides and inhibit ACE in dromedary camel milk fermented with Lacticaseibacillus paracasei M11. Maximum antidiabetic and ACE-inhibitory actions of the fermented camel milk were observed in 3 kDa permeate fractions. Fermented camel milk significantly reduced the excessive TNF-α, IL-6, and IL-1ß production in LPS-activated RAW 264.7 cells. RP-LC/MS was used to identify 6 bioactive peptides from dromedary fermented camel milk. This fermented camel milk could be used for the management of hypertension and diabetic related problems.


Assuntos
Anti-Hipertensivos , Hipertensão , Animais , Leite/química , Camelus/metabolismo , Lacticaseibacillus , Peptidil Dipeptidase A , Hipoglicemiantes/farmacologia , Hipoglicemiantes/análise , Fator de Necrose Tumoral alfa/genética , Interleucina-6 , Lipopolissacarídeos , Peptídeos/química
13.
J Ethnopharmacol ; 297: 115539, 2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-35843412

RESUMO

ETHNO-PHARMACOLOGICAL RELEVANCE: Gymnosporia montana (Roth) Benth an herbaceous shrub used in Indian traditional medicine their leaves decoction was used as mouthwash to get relieve from toothache, hence it is also known as Dantakashta in Sanskrit language which means the plant used for tooth problems. Traditionally the leaves juice used to alleviate inflammation and in some parts of India like Saurashtra in Gujarat, leaves were chewed as a folklore cure for Jaundice and in Bhandra region Karnataka, leaves extract mixed with cow milk used for jaundice. Hepatoprotective activity for G. montana leaves was well reported however, its use for inflammation and toothache are still not studied to investigate active phytoconstituents responsible for anti-inflammatory activity. AIM OF THE STUDY: The present study aimed at bioactivity guided isolation of G. montana leaves extracts using inhibition of pro-inflammatory mediators such as nitric oxide (NO), tumor necrosis factor (TNF-α), and interleukins (IL-1ß and IL-6) in RAW 264.7 cells in vitro assay to yield bioactive phytoconstituents. MATERIALS AND METHODS: The n-hexane, ethyl acetate and methanol extracts prepared from G. montana leaves were evaluated for cell viability using MTT assay. The effect of extracts to inhibit the pro-inflammatory mediators like NO, TNF-α, IL-1ß and IL-6 in RAW 264.7 macrophages was measured by enzyme-linked immunosorbent assay (ELISA). The quantitative analysis of the isolated phytoconstituents was performed using quantitative Nuclear Magnetic Resonance (qNMR). RESULTS: The n-hexane, ethyl acetate, and methanol extracts of G. montana leaves exhibited cell viability in the range of 97.43-84.88% at 50 µg/mL concentration in RAW 264.7 macrophages. In-vitro evaluation of extracts showed that n-hexane extract was most effective in inhibiting NO, TNF-α, IL-1ß and IL-6 inflammatory mediators at 50 µg/mL in lipopolysaccharides (LPS) stimulated RAW 264.7 cells. Further n-hexane extract, its fraction GMHA3 and ß-amyrin exhibited significant anti-inflammatory activity at 100, 50 and 30 mg/kg per oral, respectively in carrageenan-induced rat paw edema. The quantitative analysis by qNMR revealed ß-amyrin as a major compound in the n-hexane extract. CONCLUSIONS: In vitro and in vivo bioassay results suggested that G. montana n-hexane extract, its fraction GMHA3 and ß-amyrin exhibits significant anti-inflammatory activity proves the traditional uses of G. montana leaves. The reported activity of ß-amyrin for periodontitis provides evidence of profound the use of G. montana leaves for toothache and anti-inflammatory activity.


Assuntos
Interleucina-6 , Fator de Necrose Tumoral alfa , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Bovinos , Edema/tratamento farmacológico , Feminino , Índia , Inflamação/tratamento farmacológico , Mediadores da Inflamação , Lipopolissacarídeos , Metanol/uso terapêutico , Montana , Óxido Nítrico , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Ratos , Odontalgia
14.
Mol Biol Rep ; 49(7): 7123-7133, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35717473

RESUMO

BACKGROUND: Whole-genome sequencing information which is of abundant significance for genetic evolution, and breeding of crops. Wheat (Triticum spp) is most widely grown and consumed crops globally. Micronutrients are very essential for healthy development of human being and their sufficient consumption in diet is essential for various metabolic functions. Biofortification of wheat grains with iron (Fe) and zinc (Zn) has proved the most reliable and effective way to combat micronutrient associated deficiency. Genetic variability for grain micronutrient could provide insight to dissect the traits. METHODS AND RESULTS: In the current study, 1300 wheat lines were screened for grain Fe and Zn content, out of which only five important Indian wheat genotypes were selected on the basis of Fe and Zn contents. These lines were multiplied during at the National Agri-Food Biotechnology Institute (NABI) and re-sequenced to identify genomic variants in candidate genes for Fe and Zn between the genotypes. Whole genome sequencing generated Ì´ 12 Gb clean data. Comparative genome analysis identified 254 genomic variants in the candidate genes associated with deleterious effect on protein function. CONCLUSIONS: The present study demonstrated the fundamental in understanding the genomic variations for Fe and Zn enrichment to generate healthier wheat grains.


Assuntos
Triticum , Zinco , Grão Comestível/genética , Genômica , Genótipo , Humanos , Ferro/metabolismo , Micronutrientes/metabolismo , Melhoramento Vegetal , Triticum/genética , Triticum/metabolismo , Sequenciamento Completo do Genoma , Zinco/metabolismo
15.
3 Biotech ; 12(4): 89, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35299989

RESUMO

This study was carried out to understand the probiotic features, ability to utilize non-digestible carbohydrates and comparative genomics of anti-inflammatory Bifidobacterium strains isolated from human infant stool samples. Bacterial strains were isolated from the stool samples using serial dilution on MRS agar plates supplemented with 0.05% l-cysteine hydrochloride and mupirocin. Molecular characterization of the strains was carried out by 16S rRNA gene sequencing. Anti-inflammatory activity was determined using TNF-α and lipopolysaccharide (LPS) induced inflammation in Caco2 cells. Probiotic attributes were determined as per the established protocols. Isomaltooligosaccharides (IMOS) utilization was determined in the broth cultures. Whole genome sequencing and analysis was carried out for three strains. Four obligate anaerobic, Gram positive Bifidobacterium strains were isolated from the infant stool samples. Strains were identified as Bifidobacterium longum Bif10, B. breve Bif11, B. longum Bif12 and B. longum Bif16. The strains were able to prevent inflammation in the Caco2 cells through lowering of IL8 production that was caused by TNF-α and LPS treatment. The strains exhibited desirable probiotic attributes such as acid and bile tolerance, mucin binding, antimicrobial activity, bile salt hydrolase activity, cholesterol lowering ability and could ferment non-digestible carbohydrates such as isomaltooligosaccharides and raffinose. Furthermore, Isomaltooligosaccharides supported the optimum growth of the strains in vitro, which was comparable to that on glucose. Strains could metabolize IMOS through cell associated α-glucosidase activity. Genomic features revealed the presence of genes responsible for the utilization of IMOS and for the probiotic attributes. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-022-03141-2.

16.
Toxicol Ind Health ; 38(3): 139-150, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35230206

RESUMO

Blood lead level (BLL) is the primary biomarker for lead-exposure monitoring in occupationally exposed workers. We evaluated occupational lead-exposure (OE) impact on cardiopulmonary functions in lead-acid battery recycling unit workers. Seventy-six OE cases and 30 control subjects were enrolled for questionnaire-based socio-demographic, dietary, tobacco usage, and medical history data. Anthropometric measurements, systolic and diastolic blood pressure (SBP and DBP), and pulmonary function tests were performed. Venous blood was collected for BLL, hematological analysis, and biochemical analysis. OE caused a significant increase in BLL, SBP, DBP, and small airways obstruction in lung function tests. It also impaired platelet indices, affected renal and liver biochemical measurements, and promoted oxidative stress and DNA damage. Multilinear regression analysis suggested that BLL affected SBP (ß = 0.314, p = .034) and increased small airways obstruction (FEV1/FVC, ß = -0.37, p = .05; FEV25-75%, ß = -0.351, p = .016). Higher BLL appears to be an independent modulator of hypertension and poor pulmonary function upon occupational lead exposure in lead-acid battery recyclers.


Assuntos
Hipertensão , Exposição Ocupacional , Pressão Sanguínea/fisiologia , Estudos Transversais , Humanos , Hipertensão/etiologia , Chumbo , Exposição Ocupacional/efeitos adversos , Exposição Ocupacional/análise
17.
Bioconjug Chem ; 32(9): 2014-2031, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34461019

RESUMO

Combined chemo-phototherapy for boosting the efficacy of individual modalities by synergism for antiglioma treatments is in its embryonic stage and far away from effective clinical translation. Herein, moving a step closer, we recommend a facile stratagem to fabricate smart biocompatible and biodegradable multifunctional nanoplatforms comprising inherently fluorescent poly(levodopamine) nanoparticles (FLs) co-loaded with doxorubicin (DOX) and indocyanine green (ICG). The designed near-infrared (NIR) phototheranostic agents upon NIR laser irradiation helped precipitate combined chemo-phototherapy [both photothermal therapy (PTT) and photodynamic therapy (PDT)] and optical imaging under one roof. Excellent glioma-targeting ability was allocated to the nanoplatforms by conjugating them with a novel chimeric therapeutic peptide with glioma homing and antiglioma dual functionality. Further, DOX/ICG/peptide co-loaded nanoplatforms (FLDIPs) exhibited triggered drug release in response to multiple stimuli. Studies performed in 2D C6 glioma cells and 3D spheroids exhibited superior combined chemo-PDT/PTT effects (∼94% killing in cells and ∼87% in spheroids) of the designed FL based nanoplatforms compared to individual therapeutic components. Herein, the FL based multifunctional nanoplatforms with active targeting ability and stimuli responsive drug release behavior will further help in nullifying chemotherapy based adverse effects and mitigate chemo-resistance by adopting a combinatorial approach.


Assuntos
Barreira Hematoencefálica , Glioblastoma , Doxorrubicina , Humanos
18.
Fundam Clin Pharmacol ; 35(6): 1004-1017, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33636045

RESUMO

Short-chain fatty acids (SCFAs), metabolites of colonic bacterial fermentation of complex carbohydrates, are closely related to the release of gut hormones. In this study, we examined the involvement of transient receptor potential ankyrin 1 (TRPA1) in SCFA-induced increase in intracellular calcium ([Ca2+ ]i ) and its impact on gut hormone secretion using naturally TRPA1 expressing intestinal secretin tumour cell-1 (STC-1) cell line. Individual SCFAs and their physiological mix enhanced calcium influx in TRPA1-dependent manner. SCFA mix also significantly increased membrane expression of TRPA1. Gene expression studies revealed that SCFA mix elevated the expression of genes involved in calcium-activated calcineurin pathway in TRPA1-dependent manner and cAMP-regulated transcriptional co-activators (CRTC) pathway independent to TRPA1. Genes representing synaptic vesicular exocytosis and gut hormone precursors were significantly elevated with SCFA mix treatment. Treatment with TRPA1 antagonist HC-030031 markedly reduced these effects. The release of gut hormones was elevated with 10 mm SCFA mix in TRPA1 dependent manner. Our in vivo prebiotic study results suggested presence of an environment conducive to increase in gut hormone secretion. Overall, our findings provide an evidence for the possible role of TRPA1 in SCFA-induced increase in gut hormone secretion, hence another mechanism of action for prebiotics.


Assuntos
Cálcio , Neoplasias , Ácidos Graxos Voláteis , Humanos , Secretina , Transdução de Sinais
19.
Neurochem Res ; 46(5): 1177-1187, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33599956

RESUMO

Growing experimental evidences have suggested the reciprocal correlation between sleep deprivation and pain. Inflammation and oxidative stress are among the key pathways underlying this correlation. Therefore, the present study was aimed to assess the effect of antioxidant and anti-inflammatory compound naringenin (NGN) against chronic sleep deprivation (CSD)-induced mechanical and thermal hyperalgesia in female Swiss albino mice. In this study, mice were chronically sleep-deprived for 8 h a day for five days a week with the weekend as a free sleep period and continued for nine weeks using a modified multiple platform method. The pain behavioral tests were conducted at the end of the fourth week to assess the development of hyperalgesia followed by the administration of NGN and a combination of NGN with Sirtinol (SIR, a sirtuin1 inhibitor) till the end of the study. After nine weeks, pain behavioral tests, along with oxidative stress and inflammatory parameters in cortex and striatum, were assessed. Results indicated that CSD-induced hyperalgesia in mice accompanied by increased oxidative stress and inflammatory markers in cortex and striatum of the brain. NGN combatted the hyperalgesic response and also decreased levels of oxidative stress and inflammatory markers. Furthermore, the pharmacological effect of NGN was mitigated with SIR. Thus, the findings of the present study reveal that NGN is acting via sirtuin1 to exert its antinociceptive activity against CSD-induced hyperalgesia.


Assuntos
Analgésicos/uso terapêutico , Flavanonas/uso terapêutico , Hiperalgesia/tratamento farmacológico , Sirtuína 1/metabolismo , Animais , Peso Corporal/efeitos dos fármacos , Feminino , Hiperalgesia/etiologia , Hiperalgesia/metabolismo , Interleucina-6/metabolismo , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Privação do Sono/complicações , Privação do Sono/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
20.
Inflammopharmacology ; 29(2): 499-511, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33517508

RESUMO

Huntington's disease (HD) is a progressive neurodegenerative and hyperkinetic movement disorder. Decreased activity of cAMP-responsive element-binding protein (CREB) is thought to contribute to the death of striatal medium spiny neurons in HD. The present study has been designed to explore the possible role of roflumilast against qunilonic acid (QA) induced neurotoxicity in rats intending to investigate whether it inhibits the neuroinflammatory response through activation of the cAMP/CREB/BDNF signaling pathway. QA was microinjected (200 nmol/2 µl, bilaterally) through the intrastriatal route in the stereotaxic apparatus. Roflumilast (0.5, 1, and 2 mg/kg, orally) once-daily treatment for 21 days significantly improved locomotor activity in actophotometer, motor coordination in rotarod, and impaired gait performance in narrow beam walk test. Moreover, roflumilast treatment significantly attenuated oxidative and nitrosative stress (p < 0.05) through attenuating lipid peroxidation nitrite concentration and enhancing reduced glutathione, superoxide dismutase, and catalase levels. Furthermore, roflumilast also significantly decreased elevated pro-inflammatory cytokines like TNF-α (p < 0.01), IL-6 (p < 0.01), IFN-γ (p < 0.05), NF-κB (p < 0.05) and significantly increased BDNF(p < 0.05) in the striatum and cortex of rat brain. The results further demonstrated that roflumilast effectively increased the gene expression of cAMP(p < 0.05), CREB(p < 0.05) and decreased the gene expression of PDE4 (p < 0.05) in qRT-PCR. These results conclusively depicted that roflumilast could be a potential candidate as an effective therapeutic agent in the management of HD through the cAMP/CREB/BDNF signaling pathway.


Assuntos
Aminopiridinas/farmacologia , Benzamidas/farmacologia , Doença de Huntington/tratamento farmacológico , Inflamação/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Aminopiridinas/administração & dosagem , Animais , Benzamidas/administração & dosagem , Fator Neurotrófico Derivado do Encéfalo/metabolismo , AMP Cíclico/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Ciclopropanos/administração & dosagem , Ciclopropanos/farmacologia , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Doença de Huntington/fisiopatologia , Inflamação/patologia , Masculino , NF-kappa B/metabolismo , Fármacos Neuroprotetores/administração & dosagem , Estresse Nitrosativo/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Ácido Quinolínico/toxicidade , Ratos , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA